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CONSISTENCY OF (INTERTEMPORAL) BETA ASSET 
PRICING AND BLACK-SCHOLES OPTION VALUATION 

Antje Henne*, Peter Reichling** 

Abstract 
It is well-known that the CAPM valuation formula results from a quadratic utility of the 

representative investor. In this paper we show that the CAPM valuation rule remains valid if the 
representative investor exhibits an exponential utility and asset and market returns are bivariate 
normally distributed. In contrast to quadratic utility, exponential utility implies a positive stochas-
tic discount factor that guarantees positive (option) prices. In particular, within our discrete-time 
framework, options are priced according to the Black-Scholes formula. 

In addition, our approach allows the valuation of single assets if their returns follow an in-
tertemporal market model with stochastic beta. The resulting valuation formula differs from the 
standard CAPM only in that the expected beta replaces the deterministic one. It turns out that the 
expected beta can easily be estimated from the return time series. 
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1. Introduction 
The capital asset pricing model (CAPM) is still regarded as a paradigm of capital market 

theory1. Primarily, this may be due to its simple structure. Besides, during the last decades, re-
search was more concentrated on the pricing of derivative instruments rather than on the valuation 
of underlying assets. 

In its standard version the CAPM claims that the expected return of a risky asset consists 
of two parts. The first one is a liquidity premium at the level of the risk-free interest rate. The sec-
ond one is a risk premium that equals the market risk premium adjusted for the systematic risk of 
the asset. 

Thus, the attractiveness of the model comes from two facts. On one hand, the linearity of 
the valuation formula is consistent with an arbitrage-free capital market because a portfolio's beta 
equals the weighted average of the betas of the stocks that constitute the portfolio. On the other 
hand, the model in its standard version has the economically comprehensible interpretation that 
only the systematic risk factor is valued because unsystematic risks can be diversified. 

Although there is a large number of special versions2 and versions with weaker assump-
tions3 the model is exposed to frequent critique. Fama and French (1992) found out that beta coef-
ficients even in long time series do not have any explanatory power to the cross-section of returns 
at the stock market. Instead, differences within this cross-section are explained by microeconomic 
factors like the market value and the book-to-market ratio of equity4. Furthermore, Roll and Ross 
(1994) replied on the basis of Roll's (1977) critique. They showed that a small degree of ineffi-

                                                           
* Otto-von-Guericke-University Magdeburg, Germany. 

** Otto-von-Guericke-University Magdeburg, Germany. 
1 Two main applications of the CAPM can be found in performance measurement and company valuation. For example, 
auditors suggest to compute the cost of equity via the so called tax CAPM of Brennan (1970). 
2 Only few of the variety of examples are the tax CAPM of Brennan (1970) mentioned above, the intertemporal CAPM of 
Merton (1973a), the multi-beta CAPM of Losq and Chateau (1982), the consumption-based CAPM and the lognormal 
CAPM of Rubinstein (1976), and the CAPM with stochastic inflation of Roll (1973). 
3 One example is Black's (1972) zero-beta version without a risk-free asset. Turnbull (1977) analyzed special versions with 
respect to market imperfections. Lintner (1969) showed that heterogeneous expectations do not lead to severe deviations in 
asset valuation. 
4 Former studies could rather confirm the CAPM. (See Black, Jensen and Scholes, 1972; and Fama and Macbeth, 1973). 
However, at the latest since the (Fama and French, 1992) study, the standard CAPM is regarded as empirically falsified. 
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ciency of the market index, that is used to compute the beta coefficients, is sufficient to observe a 
covariance of zero between beta coefficient and mean return1. 

Since the standard CAPM is regarded as empirically falsified, we turn to the following 
theoretical point of critique. Dybvig and Ingersoll (1982) showed that the valuation formula of the 
CAPM results from a linear stochastic discount factor used by the representative investor to value 
risky future cash flows. The stochastic discount factor represents the marginal utility of a represen-
tative investor. A linear marginal utility results from a quadratic utility function. Hence, the quad-
ratic utility function implies the CAPM valuation rule. But a quadratic utility function exhibits a 
negative marginal utility in the end and increasing relative and absolute risk aversion. Further-
more, negative (option) prices may occur if the representative investor exhibits a quadratic utility. 

In this paper we show that the valuation formula of the CAPM likewise results from a 
representative investor with an exponential utility function in case of bivariate normally distributed 
asset and market returns. In contrast to a quadratic utility, an exponential utility function always 
exhibits a positive marginal utility and constant absolute risk aversion. Furthermore, mean and 
variance completely characterize normally distributed random variables. With normally distributed 
asset returns, in market equilibrium the CAPM valuation rule can be derived from mean-variance 
portfolio selection. Furthermore, it turns out that in our discrete-time model with exponential util-
ity and normally distributed asset returns, options can be valued by the Black and Scholes (1973) 
formula. In contrast to a quadratic utility funtion, this excludes negative option prices. 

Additionally, the valuation framework with exponential utility and normally distributed 
asset returns has the following advantage. Using the corresponding stochastic discount factor, the 
valuation of single financial assets is possible even in case of stochastic beta coefficients. The as-
sumption of the market model with a stochastic beta as return generating process is motivated by 
Merton's (1973a) intertemporal CAPM. 

In case the beta coefficient is stochastic, it is unknown at each point in time. In this situa-
tion the least squares regression analysis is not helpful because it yields just one single estimator. 
The valuation by a representative investor with exponential utility results in a valuation formula 
that is linear in the expected beta coefficient if asset betas and the market return are bivariate nor-
mally distributed. Fortunately, it is possible to estimate the expected beta from the return time se-
ries without the need for observing realized beta coefficients. On this note, we present a testable 
version of Merton's (1973a) intertemporal CAPM. 

The paper is organized as follows. In section 2 the valuation of options and underlying as-
sets by a representative investor is presented. The representative investor exhibits a quadratic util-
ity function at first and an exponential utility function afterwards. Section 3 deals with stochastic 
beta coefficients. The valuation formula with expected beta is derived. Section 4 concludes with a 
brief summary. 

2. Valuation Framework with a Representative Investor 
Let P0 denote the current price and P the random future price of an investment at the end 

of the period in our one-period model. The return R on a portfolio consisting of this investment 
with fraction x and the risk-free asset with interest rate rf with fraction (1−x) reads as follows: 

 .where)1(
0

0
P

PP
RrxRxR PfP

−
≡⋅−+⋅=  (1) 

The maximization of expected utility with respect to the fraction x gives the following 
first order condition: 

 

                                                           
1 If the security market line is used in performance measurement, nearly every ranking can be created by an appropriate 
index choice (See Dybvig and Ross, 1985). 
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This leads to the following valuation P0 of the risky future cash flow P: 
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The risky future cash flow is transformed in two steps. At first, it is transformed into a 
corresponding risk-free cash flow that is discounted by the risk-free interest rate subsequently. 
Thus, the stochastic discount factor 
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gives a characterization of the marginal rate of substitution between a risky and a risk-free 
cash flow1. The valuation according to equation (3) corresponds to the risk-neutral valuation tech-
nique. With the state-price density ω, the mean )(E P⋅ω  is discounted by the risk-free interest 
rate. In our discrete-time single-period model, the incompleteness of the market with continuous 
states is expressed by the dependency of the valuation on risk preferences. 

The stochastic discount factor ω represents the normalized marginal utility of the repre-
sentative investor. Therefore, its mean equals unity: 

 .1)(E =ω  (5) 

By rearranging equation (2), it can be seen that the risk-neutral valuation of the risky re-
turn RP equals the risk-free interest rate: 

 ).(E Pf Rr ⋅ω=  (6) 

2.1. Representative Investor with a Quadratic Utility Function 

Dybvig and Ingersoll (1982) showed that the CAPM valuation formula holds if the repre-
sentative investor exhibits a quadratic utility function. However, in this case negative option prices 
may occur in an incomplete market with discrete-time trading. A derivation of the (Dybvig and 
Ingersoll, 1982) result is given in the following. 

Let frRr −≡  denote the excess return. For efficiency reasons we analyze portfolios 
which consist of the market portfolio M with fraction x and the risk-free asset with fraction (1−x). 
Moreover, we use the following quadratic utility function: 
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The maximization of expected utility with respect to the fraction of the market portfolio 
gives the following first order condition: 
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Rearranging yields the optimal fraction of the market portfolio: 

                                                           
1 See also Glosten and Jagannathan (1994). 
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To compute the stochastic discount factor of a quadratic utility function, we put this frac-
tion into the derivative of the utility function u(R) with respect to R: 
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Taking the mean yields: 
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Finally, using market volatility σM, the stochastic discount factor ωqu of a quadratic utility 
function reads as follows: 
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To show that the valuation rule with the quadratic stochastic discount factor leads to the 
CAPM equation, we use equation (6) and get: 
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Rearranging leads to the CAPM valuation rule: 
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Equation (12) shows that the quadratic stochastic discount factor is linear in the return of 
the market portfolio with a negative slope. If the end-of-period price and the return of the market 
portfolio, respectively, are unbounded, the quadratic stochastic discount factor can take negative 
values. According to equation (12), this occurs if 

 .
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A negative stochastic discount factor may lead to negative asset prices. Examples are call 
options on the market index that are deep out-of-the-money. If the payoff of such a call is positive 
only if condition (15) is fulfilled, its payoff is positive only if the valuation factor takes negative 
values. Therefore, call options on the market index that are sufficiently deep out-of-the-money get 
a negative price. Of course, this does not contradict the law of one price. However, an arbitrage-
free market asks for a positive stochastic discount factor. 

Jarrow and Madan (1997) concluded the linearity of the stochastic discount factor from 
the mean-variance criterion. However, this implication only holds for arbitrarily distributed returns 
that are continuously computed. Otherwise, i.e. without any assumption concerning the return dis-
tribution, only the quadratic utility function leads to a mean-variance criterion. Conversely, the 
following section shows that with bivariate normally distributed asset and market returns an expo-
nential stochastic discount factor implies the valuation formula of the CAPM, too. 
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2.2. Representative Investor with an Exponential Utility Function 

To show how the CAPM valuation rule is related to a representative investor with an ex-
ponential utility function, we assume: 

(A1) The representative investor exhibits constant absolute risk aversion, i.e. an exponen-
tial utility function.  

(A2) Returns of single assets and the market return are bivariate normally distributed. 
Using these assumptions we obtain the following proposition: 
Proposition 1: Under the assumptions (A1) and (A2), the CAPM valuation formula 

holds. 
Proof: With constant absolute risk aversion a, i.e. exponential utility function 

 fM rrxRRaRu +⋅=⋅−−= where}exp{)( , (16) 

and with normally distributed return R, it is sufficient to maximize the certainty equivalent 
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The maximization of the certainty equivalent CE(R(x)) with respect to the fraction of the 
market portfolio x yields: 
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With the optimal fraction *x  of the market portfolio, we are able to derive the exponen-
tial stochastic discount factor. The derivation of the utility function u(R) with respect to R reads: 

 .
)(E

exp}exp{)(
2*

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅
σ

−⋅⋅−⋅=
∂

∂
M

M

M
fx r

r
raa

R
Ru  (19) 

Taking the mean yields:1  
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Finally, the stochastic discount factor ωexp of an exponential utility function reads as fol-
lows: 
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To show that the valuation rule with the exponential stochastic discount factor leads to the 
CAPM equation, we again use equation (6) and get: 
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If asset and market returns have a bivariate normal distribution the Stein-Rubinstein co-
variance formula yields2:  

                                                           
1 Here, we utilize that for a normally distributed random variable X with mean µ and standard deviation σ it holds that 
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2 If random variables X and Y have a bivariate normal distribution, g: ℜ→ℜ is an at least once continuously differentiable 
function, ))('(E Yg  exists, and 0)()(lim =⋅±∞→ yfygy , where f(y) is the density of Y, then 
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Rearranging and replacing rM by (RM−rf) leads to the CAPM valuation formula: 

 ).)(E()(E fMPfP rRrR −⋅β+=   (24) 

Hence, with a bivariate normal distribution of asset and market returns, the CAPM valua-
tion rule can be derived under the assumption that the representative investor exhibits an exponen-
tial utility. Therefore, the CAPM does not necessarily imply the quadratic utility function of the 
representative investor. 

To value options with the exponential stochastic discount factor, we consider the payoff C 
of a European index call option with exercise price K: 

 }0;max{ KMC −= , (25) 

where M  denotes the index price. Furthermore, we assume: 
 
(A3) The index price M follows a geometric Brownian motion: 

 ).(
)(
)( tdWdt

tM
tdM

MM σ+µ=  (26) 

Using assumption (A3) a continuous-time stochastic index price process is supposed. 
However, we are only interested in the end-of-period price and the return over the entire period, 
respectively. That means that we assume a continuous state space with discrete trading points in 
time. Note, that in contrast to the Black and Scholes (1973) and Merton (1973b) option valuation 
framework, in our discrete-time model, it is not possible to duplicate the option's payoff. Neverthe-
less, using assumption (A3) we formulate the following proposition that gives the relationship be-
tween a representative investor with exponential utility and the Black-Scholes option pricing for-
mula: 

Proposition 2: Under the assumptions (A1) and (A3), options are valued according to the 
Black-Scholes formula. 

Proof: The solution of the stochastic differential equation (26) in assumption (A3) reads 
as follows: 
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Rearranging leads to: 
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If we write equation (26) as a stochastic integral equation, we get: 
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Now, we define the index return as 
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Using equations (28) and (29) yields: 
                                                                                                                                                               

),(Cov)/)((E))(,(Cov YXydYgdYgX ⋅= . A proof of the Stein-Rubinstein covariance formula can be 
found in Rubinstein (1976). 
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Hence, the expected index return equals the drift µM from the geometric Brownian motion 
(26) times time t. In our one-period model, we simplify the notation to1:  
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Let c
fr  denote the continuously compounded risk-free interest rate that corresponds to the 

discretely compounded risk-free interest rate rf in equation (3). Then, the valuation of the index 
call option using the exponential stochastic discount factor according to assumption (A1) reads as 
follows: 
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where )(N ⋅  denotes the cumulative standard normal distribution function. 
If the utility function of the representative investor is exponential, his marginal utility is 

always positive. Thus, the stochastic discount factor ωexp is always positive. In contrast to the 
quadratic stochastic discount factor ωqu, this implies positive (option) prices. 

                                                           
1 It holds that ))((Ee)0())((E tRMMtM ⋅=  (See also Korn and Korn, 2001). 
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The valuation of index options by a representative investor with an exponential utility 
function leads to the Black-Scholes formula if the return of the underlying asset is normally dis-
tributed. Therefore, with lognormally distributed prices of the underlying asset, the valuation of 
options by the Black-Scholes formula is adequate despite discrete-time trading if the representative 
investor exhibits constant absolute risk aversion. This completes the results of Rubinstein (1976) 
and Brennan (1979). 

3. Valuation with Stochastic Beta Coefficients 
Based on Merton's (1973a) intertemporal CAPM, we assume a return generating process 

that differs from the standard market model by time-dependent beta coefficients: 
(A1) Asset returns follow the intertemporal market model: 
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Additionally, we assume: 
(A2) Beta coefficients and the market return are bivariate normally distributed. 
Using these assumptions and assumption (A1), we obtain the following proposition that 

gives the relationship between a representative investor with an exponential utility function and the 
CAPM valuation rule in a situation with stochastic beta coefficients: 

Proposition 3: With the intertemporal market model according to assumption (A4) in 
conjunction with assumptions (A1) and (A5), the CAPM valuation rule reads: 
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Proof: The risk-neutral valuation of a risky return RP using the exponential stochastic dis-
count factor leads to the following equation: 
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With the stochastic discount factor, the market return gets a valuation amounting to the 

risk-free interest rate. Therefore, the value of the excess return in formula (37) is zero: 

 .0)(E exp =⋅ω Mr  (38) 

The Stein-Rubinstein covariance formula gives: 
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Putting the results of equations (38) and (39) into equation (37) and the result of equation 
(37) into equation (36), we get the following valuation formula: 

 )(E)(E),(Cov PMPMPf Rrrr +⋅β−β=  (40) 

This yields: 
 ).)(E()(E)(E fMPfP rRrR −⋅β+=   (41) 

Hence, if the representative investor exhibits an exponential utility function and beta coef-
ficients and the market return are bivariate normally distributed, the CAPM valuation rule with 
stochastic beta coefficient differs from the standard CAPM formula only in that the former reveals 
a linear dependency on the expected beta coefficient. 

However, the beta coefficients are not known at each point in time. Therefore, it is not 
possible to compute their average to estimate the expected beta coefficient. Nevertheless, the fol-
lowing proposition states that the mean beta can be estimated from the return time series under the 
same assumptions which were used to derive the CAPM valuation rule in case of stochastic beta 
coefficients: 

Proposition 4: Under the assumptions (A1), (A4), and (A5), expected beta coefficients 
can be estimated from the return time series. 

Proof: From 0)(E =ε P  in equation (34), it follows that: 

 ).(E)(E),(Cov)(E)(E MPMPMPP rrrr ⋅β+β=⋅β=  (42) 

Furthermore, from 0)(E =ε P  and 0),(Cov =ε MP r  in equation (34), it follows 
that: 
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Putting the last result into equation (42) and rearranging yield: 
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)(E

)(E(E
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exp
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=β   (44) 

All expected values on the right-hand side of this equation can be estimated from the re-
turn time series. 

4. Summary 
The capital asset pricing model (CAPM) is regarded as empirically falsified. Furthermore, 

tests of the CAPM only check the efficiency of the market index used to compute the beta coeffi-
cients. Some theoretical critique applies to the fact that the valuation formula of the CAPM results 
from a quadratic utility function of the representative investor. A quadratic utility function implies 
an in-the-end-negative marginal utility and increasing risk aversion. In addition, the quadratic util-
ity function leads to a valuation factor for risky payoffs that is linear in the market return with a 
negative slope. With this valuation factor, call options on the market index that are very deep out-
of-the-money get negative prices. 

Our framework with an exponential utility function of the representative investor under 
the additional assumption of normally distributed returns overcomes these weaknesses. At first, the 
maximization of expected utility by the representative investor leads to the CAPM valuation for-
mula, too. However, in contrast to the quadratic stochastic discount factor, the exponential stochas-
tic discount factor remains positive. Therefore, our approach is consistent with an arbitrage-free 
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capital market. In particular, in our considered discrete-time model, options are priced according to 
the Black-Scholes formula. 

Additionally, the valuation framework with an exponential utility function of the repre-
sentative investor allows the valuation of single assets if their returns follow an intertemporal mar-
ket model with stochastic beta coefficients. The resulting valuation formula differs from the stan-
dard CAPM rule only in that now the expected beta coefficient measures systematic risk. With the 
exponential stochastic discount factor, expected beta coefficients can be estimated from the return 
time series without the need for observing realized beta coefficients. 
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