
Investment Management and Financial Innovations, Volume 4, Issue 1, 2007 

 

40 

THE TIMING OF CAPACITY EXPANSION INVESTMENTS  
IN OLIGOPOLY UNDER DEMAND UNCERTAINTY 
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Abstract 
Since a flexibility value emerges in waiting to expand capacity, the impact of demand un-

certainty in an oligopolistic industry leads to capacity expansion timing. The creation of growth 
opportunities is then the outcome of expanding capacity at optimal times. However, in our model 
different capacity size competitors interact not affecting each others, because assessing the impact 
of demand uncertainty on capacity expansion projects takes them to set up independently their 
optimal capacity expansion timing schedules. In equilibrium no firm expands capacity more often 
than any other. Under demand uncertainty simultaneity in capacity expansions is the only possible 
Markov Perfect Equilibrium.  
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I. Introduction 
Capital assets investment poses a significant challenge under strategic competition. Theo-

retically speaking, assessment of risk in this context is more complex than in the single firm case. 
Furthermore, it is a stylised fact that, due to their usual irreversible nature, decisions such as Ca-
pacity Expansion (CE) investments generate large sunk costs, especially in capital-intensive indus-
tries. 

We start from the basis that competitors want to expand existing plants capacity or build 
new plants by examining their products demand behaviour. Hence, incumbent firms make their 
expansions profitably enough to minimise the effects of demand downturns in the future by timing 
CEs optimally. The following paper is an effort to apply investment under uncertainty analysis to 
strategic CE investments.  

Analysing CEs timing under demand uncertainty, we find that the underlying issue is the 
existence of growth options. Consequently, we define an equilibrium state as one in which all 
firms expand capacity with the same frequency, so that a timing equilibrium indicates that all firms 
in the industry are cultivating growth options. 

In oligopoly, we obtain optimal expansion thresholds, determined by both financial and 
real variables. We then find the optimal CE schedule for each firm. Under demand uncertainty, the 
only possible CE timing equilibrium is that one where all firms in the industry expand capacity at 
the same optimal expansion threshold. Otherwise, no CE timing equilibrium is possible.  

Assuming homogeneous product technologies, we assert that larger capacity firms can af-
ford to expand capacity at lower product prices than smaller capacity firms, because scale econo-
mies allow them dispose of enough cash flow (and/or financial leverage). This makes sense since 
the more scale economies the higher turnover, and therefore the larger cash-flow (and/or financial 
leverage). The point is linking operations to revenues to capital budgeting. 

First we order firms exogenously according to decreasing installed capacity size from 1 to 
N, such that an augmenting demand will trigger CE projects sooner for earlier order firms. We 
basically mean that firms can always be ordered such that the smallest one is defined as N. Hence 
firm N is the firm with least cash flow (and/or financial leverage), and therefore, the one requiring 
the highest demand realisation to make its CE project affordable.  

Once firms calculate profits endogenously, each competitor will be able to obtain sepa-
rately its optimal CE thresholds over the underlying asset demand, setting so its CE timing strat-
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egy, as it maximises its CE value. In our model pre-emption does not emerge basically because the 
size of firms determines the order of expansion. 

We achieve closed-form solutions that allow us to study the analytical properties of CE 
timing. Unlike mainstream strategic CE investment literature, in our model firms are able to decide 
the timing of CEs endogenously. This is the main advantage of endogenising demand uncertainty 
stochastically.  

II. Background 
Our most straightforward antecedent from the Industrial Organisation literature is due to 

Gilbert and Harris (1984). These authors study the timing of CE investments in the absence of 
demand uncertainty.  

However, due to the lack of option values, Gilbert and Harris (1984) endogenise timing 
deterministically, whereas we do it stochastically. This changes the results in that firms will time 
CEs to take account of the ongoing demand uncertainty. Apart of this, in our model strategies are 
not history dependent, while Gilbert and Harris allow for some of their strategies to be history-
dependent.  

A much closer literature to our approach develops the Industrial Organisation implica-
tions of investment under uncertainty. The article from this strand of literature methodologically 
nearest to our article is Grenadier (1996). That paper models strategic expansion timing under de-
mand uncertainty in Real Estate markets. Grenadier’s paper focuses on the strategic exercise of 
American call options to explain strategic expansion processes. His model’s development is analo-
gous to ours in the use of option pricing techniques to assess the value of waiting to invest under 
demand uncertainty, but his focus is not on timing equilibrium. 

We depart from the point that, in a market without demand uncertainty, there is no option 
value in waiting to expand capacity. In such a case, CE timing is faster than with the presence of 
demand uncertainty in both single and multiple-firm industries. As Grenadier finds, once we intro-
duce demand uncertainty in duopoly, an option value of waiting to invest emerges for competitors. 
This makes the CE timing game slower.  

However, Grenadier imposes a time-to-build constraint, which clearly distinguishes the 
outcomes of his model from ours. Like us Grenadier (1996) reaches a simultaneous equilibrium, 
but in contrast, he reaches a sequential equilibrium that we rule out by definition. Additionally, we 
are able to completely characterise the solutions of our model as Markov Perfect Equilibria.  

On the other hand, our model is generated through Risk-Neutral Valuation Programming, 
then is solved as a stopping time game. The overall results portray Markov Perfect Equilibria 
(MPE) which, necessarily, are Subgame Perfect Nash Equilibria. The main benefit of employing 
this solution technique is the result that MPE characterise the solution to single agent stopping 
time problems. 

In our model this translates into solving single-firm CE optimisation problems in an in-
dustry where firms, with asymmetric marginal profits, are waiting to expand capacity by assessing 
risk through option values. The timing of CE decisions will then be determined through optimal 
stopping time games, delimited by those marginal profits asymmetries.  

Subsequently, we make use of some of Dutta and Rustichini’s (1993) theorems to charac-
terise the results of our model as an application of optimal stopping time games.  

In the past, Capozza and Li (1994) have applied optimal-stopping rules to solve risk-
neutral valuation programmes to time investment decisions, but without studying strategic effects, 
as we do here. Observe the main advantage of this kind of technique is its effectiveness as a strate-
gic management tool, which is difficult to achieve with fixed-point models. 
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III. The Model: CE investments and risk neutral valuation  
Preliminaries 

Let us focus on homogeneous product industries1. Uncertainty on demand, assumed to be 
industry-wide because of the non-differentiated character of product, is the result of the occurrence 
of events whose behaviour can be captured through an exogenous stochastic process that shifts 
market demand, and consequently, firms' CE timing through their profit functions.  

For N-firms, denoted Ni ,....,1=  where 2≥N  is a finite number, suppose each firm i 

possesses iK  units of optimally chosen capacity, so that the N-firms can be ordered in decreasing 
installed capacity size from 1 to N. Each firm can make irreversible investments of exogenously 
determined sizes.  

Without further loss of generality, let all CEs of firm i be the same size 0>Δ iK . Since 

the capacity of firm i is iK , firm i will have iii KjKjK Δ+≡)(  capacity after CE j, 

where 1≥j ( iiii KjKjKK Δ=−=Δ )( ). The production function q of firm i is a function  

)( iKqq =  

This will be the underlying production function of the model. 
 
Assumption 1: Production technologies are homogeneous across the industry.  
Then 

)(...)(... 11 NN KqKqKK ≥≥⇒≥≥  

The industry´s demand function is given by 

     )(QPP ϕ= , (1) 

where Q represents the total output flow of the industry such that ∑
=

>=
N

i
iKqQ

1
0)(  

and ϕ, the demand shift (stochasticprocess, 0>ϕ ), follows the following Geometric Brownian 
Motion (Ito Diffusion Process): 

     dzdtd σα
ϕ
ϕ

+= . (2) 

Representing t time, α the expected growth rate of ϕ (growth rate parameter, 0>α ), σ 
the volatility of ϕ  (standard deviation parameter) and z a Wiener process on ϕ. 

Basically, equation (1) tells the deterministic demand function of the industry is subject to 
multiplicative shocks represented by the stochastic process in equation (2).  

 
Assumption 2:  For simplicity, we assume there are no variable costs.  
Then, firm i's profit flow, given the vector of rival capacities i−Κ , is 

)(),,( iiii KPqK =ΚΠ − ϕ  

                                                           
1 Differentiated product industries will call for a separate treatment from the investment under uncertainty theoretical view-

point. 
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)()(),,( iiii KqQPK ϕϕ =ΚΠ −  

)())(),...,(( 1 iN KqKqKqPϕ=  

    ),(),,( iiiii KGK −− Κ=ΚΠ ϕϕ .  (3) 

And firm i’s marginal profit flow is written as 
),(),,( ´

iiiii KGK −− Κ=Κ ϕϕπ , 

where ),( iiKG −Κ  denotes the capital revenue function and ),('
iiKG −Κ is the mar-

ginal revenue product of capital of firm i.  
In fact, 

)())(),...,(()()(),( 1 iNiii KqKqKqPKqQPKG ==Κ − . 

By definition 0)( >QP , below we show P is also positive in equation (1).  
 
Assumption 3:  Firm i’s marginal profit is always positive. 

0),(0),,( ´ >Κ⇒>Κ −− iiiii KGK ϕϕπ  

Such that  

Nππ ≥≥ ....1 . 

Based on assumptions 1 to 3, we have to make clear that we will only pay attention to 
continuous operations. This is equivalent to say that firms are not likely to have losses, otherwise 
they may suspend operations or exit the industry, which are exogenous decisions (that is, these 
cannot be made from this model).  

The firm’s value in oligopoly 

We focus in oligopolies. Observe in capital-intensive industries, it is usual to incur in 
large fixed costs. These may represent sunk costs, namely, once installed, machinery and capital 
equipment may be impossible to resell, and even if these were not, their second-hand value may be 
far less than the original one.  

This condition is often known as capital specificity, which gives place to different degrees 
of irreversibility depending on the type of uncertainty faced:  The wider the uncertainty is, the 
more the will be irreversibility.  For instance, in the petroleum refining industry capital specificity 
is typical, and demand uncertainty is likely to be wide due to the non-differentiated character of 
product.  

 
Assumption 4:  In this CEs timing model investments are completely irreversible. 
Suppose now that the rest of firms in the oligopoly have already expanded capacity at 

least once, such that these are only incumbent firms.  For the time being, in this model entry is 
blockaded. Using vector notation, the total value of firm i in terms of physical capacity 

),),(( 1 ϕ−ΚjKZ ii  is: 

  ),),((),),((),),(( ϕϕϕ iiiiiiiii jKWjKVjKZ −−− Κ+Κ=Κ , (4) 

where ),),(( ϕiii jKV −Κ denotes profits flows on capacity in place and 

),),(( ϕiii jKW −Κ  denotes the net present value of additional capacity not yet purchased.  
Note equation (4) is a wider definition than the one in equation (3). Such a partition in 

two terms aims to show how, given other firms’ capacity, under demand uncertainty firm i´s cur-
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rent CE investments will affect posterior ones by taking into account potential CEs net present 
value1. The concept of growth option is in this way captured in equation (4): The unit(s) of capac-
ity added today would pave the way to add further units in the future2.  

Assume momentarily that we can number units of capacity infinitely in the order they are 
installed, with each unit installed one after another. Suppose firm i has installed units 1 through n 
so far. Then, ommitting ϕ momentarily 

   )),(()),(()),(( iiiiiiiii jKWjKVjKZ −−− Κ+Κ=Κ . (5) 

We can rewrite equation (5) by adding the change in value of firm i´s installed units to the 
change in value of its projects to install further units. Namely: 

)),((...)),1(()),(( iiiiiiiii nKVKVjKZ −−− ΚΔ++ΚΔ=Κ  

(6) 

...)),2(()),1(( +Κ+Δ+Κ+Δ+ −− iiiiii nKWnKW  

Equation (6) poses the main issue of growth options: If firm i bought and installed unit 
n+1, of value )),1(( iii nKV −Κ+Δ , at an optimal time endogenously determined, at what other 
optimal time endogenously determined should this exercise its option, 
worth )),2(( iii nKW −Κ+Δ , to buy and install unit n+2, which will eventually have a value 

of )),2(( iii nKV −Κ+Δ , and so on?3  
The key notion is, if firms investment projects are irreversible, agents must make invest-

ment timing decisions that trade-off the extra returns from early commitment against the benefits 
of tailoring their investment decisions to the ongoing uncertainty. Then uncertainty can depress 
current investment by making waiting for information more attractive. This gives place to what is 
called the flexibility value of waiting to invest.  

Once a CE decision is made, at least the cost of investment is sunk and can not be recov-
ered, should there be regret. Therefore firm i will wait as long as possible for information on de-
mand to arrive before making any CE decision, because this firm will be assessing CE options 
before committing resources.  

This insight can be directly applied to any kind of capital investment decision involving 
irreversibility, especially in those environments where sunk costs are large4. We hold that in an 
infinite large horizon CE options are exercised to install capacity as growth options, renouncing to 
the flexibility value of waiting to expand capacity. The total value of firm i in oligopoly Z conse-
quently is given by 

  )),(()),(()),((
10

iiiiiiiii jKWjKVjKZ
nj

n

j
−−− ΚΔ+ΚΔ=Κ ΣΣ

∞

+==
. (7) 

Choosing an arbitrary interval of time dt equal to Δt and studying when its limit tends to 
0, in continuous time (7) results in 

                                                           
1 Pindyck (1988) departs from an equation similar to (4). For the single firm, he examines the implications of irreversible 
investments with respect to capacity choice, capacity utilisation, firm value and long run marginal cost.   
2 Carliss Baldwin (1982) and later Pindyck (1991) explain the existence of growth options through investment timing 
decisions at single firm level. 
3 Pindyck (1988) solves this as an investment timing optimisation problem for the single firm. In fact, we are doing a 
similar work by applying the same methodology, to the multiple-firm case though. 
4 He and Pindyck (1992) prove that when capacity is flexible (this means different processing units can be used indistinctly 
for producing different outputs), the single product and the multi-product firm are solving the same irreversible investment 
problem. 
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   ∫ ∫
∞
Δ+Δ=

n

n
dxxWdxxVxZ iii

0

),(),(),( ϕϕϕ . (8) 

Such that the profit flow up to n is ),,( ϕiii K −ΚΠ . Equation (8) can be interpreted as 
the analytical dissection of equation (4), where x represents total industry capacity.  

Our analysis concentrates on Markov Perfect Equilibrium (MPE) in pure strategies. Note 
a Markovian pure strategy is a strategy that depends only on the current level of the state variable, 
and not the past levels. The analysis will show that an MPE takes the following form for each 
firm: Expand capacity as soon as the state variable is above some critical threshold, otherwise do 
not expand capacity. The task now is to determine the critical thresholds. 

Next, we explain the Risk-Neutral valuation programme we use to optimise equation (8) 
and the optimal stopping time solution we find to determine the critical thresholds for firm i. 

The optimal capacity expansion threshold 

Let us assume at this stage there are increasing or at least constant returns to CEs at plant 
level, such that product is growing at least as capacity, to incentive lumpy additions. This means 
that 0a allfor  )()( ≥≥ iiii KaqaKq , that is, homogeneity of at least degree zero exists. Sup-

pose firm i increases its capital stock from iK  to )( jKi as ϕ  varies over dt from ϕ to ϕϕ d+ . 
According to our theory, given other firms` capacities, expanding capacity 

from )(to jKK ii , would generate an immediate profit flow, eliminating the option value of wait-

ing to expand capacity. We assert firm i can reach )( jKi  capacity at iKjkΔ  sunk costs of the 
depleted option value, where k represents unitary fixed costs that are positive and exogenously 
determined. Hence, we set the following firm i’s optimisation problem w for any interval (t,T] 

=+ )),(( ϕϕ djKw i
i  

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=Ω+Π∫ −−−

Κ= −

t
XdX TT

ii
t

itTrir

KXX
ee

0
0

}0,00{
|),(),(max )(

|
ϕϕϕτϕττ

τε  

subject to ∫
∞

− Δ
0

dtKjkt
ie r

, (9) 

where τX  denotes the capacity of all firms in the industry at time t and r the risk-free 
rate; note that in order for firms to exercise their options at some finite expected time t we need 

α>r . Ω  denotes a forced terminal profit for firm i between t and a virtually final time T and 
crystallises the calculation of firm i s´ growth options. 

The left-hand side of equation (9) indicates that firm i expands )(  to jKK i  and then 

the problem re-starts at a new uncertainty level ϕϕ d+ . Given other firms` capacity at time t, the 

first term of the right-hand side in equation (9) represents the present value of iKΔ  for firm i. The 

second term represents the present value of any further iKΔ added by firm i, given other firms` 
capacity at time t.  

Since φ is a stochastic process, the whole right-hand side of equation (9) embodies an op-
tion value. Basically, this means that the profit flows of firm i s´ CE projects can be reproduced in 
the financial markets. 
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Assumption 5: In this oligopoly firms are risk-neutral, or equivalently, risk in ϕ  has zero 

correlation with the overall futures risk of the underlying product market. 
 Subsequently, to time the CE investment, firm i will calculate recursively the CE ex-

pected value, denoted by operator ε in equation (9), over dt as  

+Κ= − dtKGKw iii
i ),()( , ϕϕ  

  { }))(()]),(([ i
i KjKkdjKw ii

rdte −−++ − ϕϕε .  (10) 

The solution to equation (10) (expected value function or Bellman equation) in our con-
text prescribes the formulation of an optimal stopping time problem.  

Therefore, firm i will choose )( jKi  to maximise the right-hand side of equation (10). 
Then the resulting maximum will be the value of the Bellman equation each time firm i expands 
capacity. Since irreversibility implies ii KjK ≥)( , substituting ii KjK =)(  in equation (10) 

  { } )],([   ),(),( ϕϕεϕϕ dKwdtKGKw i
i

i
i e rdt

ii ++Κ= −
−  (11) 

we obtain the “first”initial value of ),( ϕi
i Kw . 

To determine the path the option value to expand capacity follows, we derive the right 
hand side of equation (11) by Ito’s lemma. Dividing through by dt and making zero dt terms of 
second and higher order, we get: 

 0),(),(),(),(
2
1 22 =Κ+−+ − ii

i
i

i
i

i
iiKGKrwKwKw ϕϕϕαϕϕϕσ ϕϕϕ . (12) 

Solving differential equation (12), we obtain: 

ϕϕϕ ββ 2
2

1
1 )()(),( iii

i KAKAKw += , 

where 21  and  ββ  are the following (finite) exponents  

12
2
1

2
1

2

2

221 >+⎟
⎠
⎞

⎜
⎝
⎛ −+−=

σσ
α

σ
α

β
r

 

and   (13) 

02
2
1

2
1

2

2

222 <+⎟
⎠
⎞

⎜
⎝
⎛ −−−=

σσ
α

σ
α

β
r

. 

)(and)( 21 ii KAKA  represent solution coefficients (below we will describe their eco-
nomic interpretation). 

The complete solution to equation (12) is given by 

  iiii
i kK

KG
KAKAKw ii −

Κ
++= −

δ
ϕ

ϕϕϕ ββ ),(
)()(),( 2

2
1

1 , (14) 

where δ  )0( >−= αδ r stands for a dividend rate (“convenience” yield) on φ, a posi-
tive constant term. 
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Since β 2  may make iw  fluctuate infinitely, we have to impose the boundary condi-

tion 0)0( =w , which implies making 0)(2 =iKA . Then equation (14) becomes 

   iii
i kK

KG
KAKw ii −

Κ
+= −

δ
ϕ

ϕϕ β ),(
)(),( 1

1 . (15) 

At CE thj , writing )( iKϕϕ = , the necessary condition for optimality over (15), called 
the value matching condition, imposes that the additional value of expanding capacity be equal to 
its additional cost, namely 

  i
ii

ii Kjk
jKGjK

jKjKA i Δ=
Κ

+ −

δ
ϕ

ϕ β )),(())((
))(())(( 1

1 . (16) 

The sufficient condition for optimality over (15), called the smooth pasting condition, re-
quires that 

   0
)),((

))(())(( 11
11 =

Κ
+ −−

δ
ϕβ β ijKG

jKjKA i
ii . (17) 

Solving for equations (16) and (17) we obtain the closed-form solutions of 

 jKii ))((*ϕ and ) j(KA ii )(  

)),(()1(
))((

1

1*

ii jKG
Kkj

jK
i

i
ii

−Κ−

Δ
=

β
δβ

ϕ  

and  (18) 

11

1

1

1
1

)),((1
)(

ββ

δβ
β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Κ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
−

−= −

−

ijKG
Kjk

)j(KA i

i
i . 

The first equation in (18) describes firm i’s optimal expansion threshold for adding 

iKjΔ lump sum of capacity.  The ratio 
11

1

−β
β

 indicates the gap needed to trigger this CE under 

demand uncertainty. The second equation in (18), plugged back into equation (15) at round jth 
becomes the value of waiting to expand capacity that firm i is giving up when decides to add 

iKjΔ  lump-sum of capacity, namely )()( )()( 1
1 jiji KKA ϕ β

. Therefore, equation (15) repre-
sents the flexibility value function of firm i. 

Observe equations (18) only make sense if the marginal profit of additional capacity is 

positive, which by assumption 3 holds. Therefore 0 and 0)( )()(*
1 <> )(KAK jijiiϕ .  

IV. Characterisation of CE strategies: The endogenisation of CEs timing 
In order to understand the exposition, we consider first an industry with two firms, i.e.  

2,1=i . Later on we will generalise to the N-firm industry case. Both firms hold the option to add 
lump-sum capacity when facing demand uncertainty. Because of the Markov nature of strategies, 
all subsequent rounds of investments are independent of the first round; then it is sufficient to ana-
lyse the first round of CEs, so we set the number of rounds to 1=j . 
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Firms will compete on the addition of lumpy capacity as follows: The first firm to expand 
capacity is firm 1, which will produce relatively more than firm 2, which will see the value of its 
plant(s) affected. Firm 2’s capacity is rendered (relatively) less profitable because of the presence 
of a larger rival. If and when firm 2 exercises its CE option, this will gain value from increasing its 
current capacity.  

From Dutta and Rustichini (1993),  we expect that firm 2’s optimal strategy will be to set 

up a CE timing threshold for P consistent with the behaviour of ϕ, namely *
2ϕ , which was ob-

tained in equation (18) and we restate here as:  

   
))1(),1(()1(

))1((
211

21
222

**
KKG

Kk
K

−
Δ

==
β

δβ
ϕϕ . (19) 

The threshold shown in equation (19) represents the solution to the optimal stopping time 
problem of firm 2 given firm 1 has already expanded capacity, in duopoly. We have to point out 
that model discrepancies basically due to the absence of time-to-build constraints in our model, 
take us to obtain a different expression of firm 2’s optimal CE threshold from Grenadier (1996). 

Given that firm 1 have already expanded capacity, the CEs timing is endogenised as fol-
lows: 

If the observed *
2ϕϕ > , firm 2 will expand capacity at once since this wants to be first, 

obtaining in that way the net present value of its CE 

    2
212 ))1(),1(())1((

Kk
KKGK

Δ−
δ

ϕ
. (20) 

Equation (20) shows firm 2’s discounted profit flows net of expansion costs.  

If the observed *
2ϕϕ ≤ , firm 2 will wait until   *

2ϕ is first hit because its threshold is 

above firm 1’s. Hence, in the moment   *
2ϕ is hit, firm 2 will get 

2
212 ))1(),1((*

KkKKG
Δ−

δ
ϕ

. 

However, since firm 2 has to wait until  *
2ϕ is hit, the expected present value of its CE 

project will be: 

   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Δ−⎥⎦

⎤
⎢⎣
⎡ Γ

2
212 ))1(),1((r-e 

*
Kk

KKG
δ

ϕ
ε , (21) 

where Γ represents the (random) first time when ϕ reaches *
2ϕ 1. Note in equation (21) the 

net present value is calculated at the optimal Γ, that is, when firm 2 reaches its optimal threshold. 

This means that the discount is taken at the moment when ϕ hits *
2ϕ  from below, and present val-

ues expectation are calculated as the waiting time gets closer to 0. 
 
Therefore, firm 2’s CE value will be: 
 

                                                           
1 Γ is the definition of the virtual final time T in equation (9). 
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( )( ) ( ) ( )( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

>Δ−

=
*
22

212

2

*
22

212

212

 if 
))1(),1((

 if 
1,11

)),1(),1(( *

*

1

ϕϕ
δ

ϕ
ϕ
ϕ

ϕϕ
δ

ϕ

ϕ β

Kk
KKG

Kk
KKGK

KKW  (22) 

Working backwards, firm 1 will put in practice the following CE timing strategy: 

If the observed *
2ϕϕ ≥ , firm 1 will not want to be left behind and will expand capacity 

right before firm 2 does. Then its CE value will be: 

0))1(),1(())1((
1

211 >Δ− KkKKGK
δ

ϕ
. 

If the observed *
1ϕϕ < , firm 1 will wait as earns the value of waiting to expand capacity given by 

0))1(())1(( 1
1

11 >KKB ϕ β . 

But if **
21 ϕϕϕ <≤ , firm 1 will be assessing the following flexibility value function 

1
211

1
1

11
)),1(())1(())1(())1(( KkKKGKKKC Δ−+

δ
ϕϕ β . 

Therefore, firm 1’s CE value will be:  

 

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

≥Δ−

<≤Δ−+

<

=

*

**

*

21
211

211
211

1
1

11

1
1

1
11

211

))1(),1(())1((

)),1(())1(())1(())1((

))1(())1((

),),1((

ϕϕ
δ

ϕ

ϕϕϕ
δ

ϕ
ϕ

ϕϕϕ

ϕ β

β

ifKkKKGK

ifKkKKGKKKC
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From which firm 1 obtains its optimal CE threshold: 
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Besides, 
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Once firm 1 expands capacity, its total value equals the sum of the profits on its existing 
capacity and the value of its additional capacity. That is, firm 1’s payoff is: 

  ),),1((),),1((),),1(( 211211211 ϕϕϕ KKWKKVKKZ += . (26) 
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Analogously, once firm 2 expands capacity, this will receive a payoff 
 ),1(),1(( 212 )KKZ ϕ of 

  )),1(),1(()),1(),1(()),1(),1(( 212212212 ϕϕϕ KKWKKVKKZ += . (27) 

Observe, equations (26) and (27), the values of firm 1 and 2 in terms of physical capacity 
under demand uncertainty, are effectively equation (4) written in duopoly.  

V. The existence of equilibrium: Capacity Expansion Timing Equilibrium 
DEFINITION: A CE Timing Equilibrium (CETE) is that one in which all firms in the 

industry expand capacity with the same frequency, that is, no firm expands capacity more often 
than any other.  

Since all the firms held the same growth options, the existence of a CETE guarantees that 
all firms in the industry always grew at the same pace. Proposition 1 summarises firm i’s optimal 
CE strategy.  

PROPOSITION 1:  Under demand uncertainty, the optimal expansion threshold of any 
firm i at CE j is given by 
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Proof: *
iϕ  is the unique threshold solution of the optimal stopping time problem posed in 

equation (9) ■ 
Consequently, 

PROPOSITION 2: The optimal strategy under demand uncertainty is to expand capacity 

the first moment that ϕ equals or exceeds the trigger parameter *
iϕ . That is, the optimal Markov 

CE time j of firm i, *
iΓ , can be written as: 
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Proof: *
iΓ  is optimal because of proposition 1. Besides, to prove that *

iΓ  is Markov, we 
invoke Dutta and Rustichini’s (1993) characterisation, according to which the Optimal Stopping 
Equilibria are a subset of the MPE of the game ■ 

We continue analysing the 2-firm case. The N-firm case will just restate the results stud-
ied. Then, by definition of CETE1, 

 
THEOREM 1:  The following describes a timing Markov Perfect Equilibrium (MPE) in 

pure strategies: If )()( 2
´
21

´
1 KqKq =  both firms will exercise simultaneously their growth op-

tions at *
iΓ with probability 1 and non-simultaneously with probability 0. 

Proof:  First, to show this is a Nash equilibrium, whenϕ  hits *
iϕ  then *

iϕϕ = , so that 
according to proposition 2, optimal payoffs are achieved in equations (26) and (27); below or 
above these thresholds, payoffs are not optimal. Moreover, we have shown, calculating the optimal 

                                                           
1 We have to mention the proof on the existence of this equilibrium is summarised in theorem 0 of Dutta and Rustichini 
(1993). 
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expansion threshold in equation (18), that assumption 3 assures that 0* >iϕ . Consequently, P will 
be positive by the definition of industry demand in equation (1). Proposition 2 proves that output 
price is positive in CETE.  

Besides, since firm 1 and firm 2 will be compelled to expand capacity whenever their re-

spective *
iϕ are reached, the only way they could time CEs in equilibrium, that is, the only way 

one of them could not expand capacity more often than the other, is if both always expand capacity 

at the same time. This means **
21 ϕϕ = . Then, at 1=j  
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where: 

ii MPCKq :)(´ : Marginal Product of Capital of firm i 
Which, by assumption 1, follows. 
Hence, because both firms are maximising their payoffs, they will expand with probabil-

ity 1 simultaneously at *
iΓ , and with probability 0 at any other time■ 

Note how the strategies work: firm i expands capacity as soon as *
iϕϕ ≥ . Hence if the 

initial value of  )0(ϕϕ =  is greater than *
2ϕ , both firms expand capacity immediately. 

If *
1)0( ϕϕ < , both firms wait before expanding capacity. If *

2
*
1 )0( ϕϕϕ <≤ , then firm 1 ex-

pands capacity immediately while firm 2 waits to expand capacity. 
Therefore in our model actions can be taken simultaneously or sequentially, depending on 

the initial value of ϕ . This is distinct from whether the equilibrium is simultaneous or sequential. 

The equilibrium is sequential if the thresholds are distinct, i.e., if *
2

*
1 ϕϕ < , but we rule this case 

out by the definition of CETE, because in this instance firms 1 could expand capacity twice or 
more before firm 2. The equilibrium is simultaneous if the thresholds are equal. The latter occurs if 
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Observe this will hold in this model only if there are constant returns to scale in the pro-
duction technology of the industry, that is if 
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Then, both firms (and all firms, in the N-firm case) expand capacity at the same moment, 
irrespective of their capacity and CE sizes, given their MPCs equal. 

Note that in such a case firms 1 and 2’s thresholds would be the same, even though these 
are asymmetric firms formulating asymmetric problems. The explanation is that firm 2’s behaviour 
is unaffected by firm 1’s. After firm 1 has moved, firm 2 faces a single-agent optimization prob-
lem that is independent of exactly when firm 1 has moved, since it relies only on the fact that firm 
1 has already moved.  

Finally, let us suppose CE sizes ( iKΔ ) were not the same.  One way of allowing firms 
choosing their CE sizes would be the following (see Dixit (1995) for an extended explanation of 
the methodology here used). Observe adding only one unit of capacity under demand uncertainty, 
the optimal CE threshold can be written as: 
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Let n
iK  denote firm i’s installed capacity in plant n and jn

iK + denote firm i’s lump-sum 

projected CE of exogenously determined size nmn
ii KK −+ . By construction, the marginal reve-

nue product of capital is: 
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Substituting (31) into (30), we get 
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or equivalently 

    ( ) )()1(
)(

1

1*

ii

i
ii KqQ

Kk
K

Δ−
Δ

−
=Δ

ηζβ
δβϕ ,  (32) 

where 

;i
n
i

mn
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NN Δ=Δ−=−++ ηζ  

and, ( )ii KΔ*ϕ : Threshold for the lump-sum CE ( )shortin  ,*
iϕ . 

We have to underline that the similarity of thresholds observed in the model with fixed 
CE sizes will sustain letting CE sizes varying, since in either case capacity asymmetric firms will 
still be setting their optimal CEs thresholds independently of each others, as they are endogenising 
timing optimally. 
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VI. The N-firm case 
In the N-firm case we basically extend the number of firms in the industry from 2 to a fi-

nite N. Nonetheless, all the insights developed in the above sections are sustained. We endogenise 
CE timing straightforwardly. Remember, because of the Markov nature of strategies, all subse-
quent rounds of investments are independent of the first round; then it is sufficient to analyse the 
first round of CEs, so we set the number of rounds to 1=j . 

Therefore, at  CE 1=j  
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Propositions 1 and 2 are generalisations that extend to the N-firm case. Consequently, un-
der demand uncertainty, a CETE will be reached if and only if firms equal their marginal products 
of capital. That is, 

THEOREM 2:  The following describes a timing MPE in pure strategies: If  

)(...)( ´
1

´
1 NN KqKq ==  

all firms will exercise their growth options simultaneously at *
iΓ with probability 1 and non-

simultaneously with probability 0. 
Proof: It follows from theorem 1’s proof.■ 

VII. Conclusions 
In the model this paper has developed, the main consequence of demand uncertainty has 

been the generation of growth options, which have been shown to impact firms’ CE timing deci-
sions. As the investment under uncertainty literature would anticipate, investment rules here de-
rived involve the concurrent calculation of both CE values and timing. 

According to our theory, out of CETE, larger capacity size firms can grow faster than 
smaller capacity size firms, which can even crowd these out of the industry. The absence of CETE 
affects industry growth, because larger capacity size firms can expand more often and therefore 
can get even larger than smaller capacity size firms.  

In our model, if the industry follows a CETE, small capacity size firms will be able to 
grow as much as large capacity size firms, because no firm will expand capacity more often than 
any other. As a matter of fact, in this industry firms may equalise sizes at some point by following 
simultaneous CETE. 

Besides, the model in this paper exposed could explain how firms tend to grow at differ-
ent paces in industries experiencing increasing returns to scale, but grow more or less at the same 
pace in industries experiencing constant returns to scale. This is because industries already settle 
will tend to grow slower than industries at early stages. 

We have to remark its many empirical applications, in comparison to fixed-point type 
models, especially managerial applications. Clearly, it would be easier to find analysable data in 
commodity industries.  

As extensions, it would be interesting to study this model dropping some of the assump-
tions established. Particularly, for industries like the petroleum refining one it would be appealing 
allowing for the presence of variable costs, since this would bring up the role that crude oil prices 
play in CE timing decisions, especially if their stochastic nature is contemplated‡. 

                                                           
‡ I would like to thank Katharine Rockett at the University of Essex and especially Robin Mason at the University of 
Southampton for their helpful comments. 
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