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PORTFOLIO PERFORMANCE ATTRIBUTION1 
Almira Biglova*, Svetlozar Rachev** 

Abstract 
In this paper, we provide further insight into the performance attribution by development 

of statistical models based on minimizing ETL performance risk with additional constraints on 
Asset Allocation (AA), Selection Effect (SE), and Total Expected Value Added by the portfolio 
managers (S). We analyze daily returns of 30 stocks traded on the German Stock Exchange and 
included in the DAX30-index. The benchmark portfolio is the equally weighted portfolio of 
DAX30-stocks. The portfolio optimization is based on minimizing the downside movement of the 
DAX-portfolio from the benchmark subject to constraints on AA, SE and S. We investigate also 
the distributional properties of AA, SE and S sequences by testing the Gaussian distribution hy-
pothesis versus stable Paretian hypothesis.  Finally, we propose an empirical comparison among 
suggested portfolio choice models comparing the final wealth, expected total realized return of the 
optimal portfolio, and performance ratios for obtained sequences of excess returns.   

Key words: Performance attribution, risk measures, tracking error, portfolio optimization.  
JEL Classification: C61, C11, C32. 

1. Introduction 
We start with the definition of performance attribution. David Spaulding in his book 

(2003) wrote that “attribution is the act of determining the contributors or causes of a result or ef-
fect”; we refer to the extensive reference list in this book for complete review of performance at-
tribution for financial portfolios. Tim Lord (1997) stated that “the purpose of performance attribu-
tion is to measure total return performance and to explain that performance in terms of investment 
strategy and changes in market conditions. Attribution models are designed to identify the relevant 
factors that impact performance and to assess the contribution of each factor to the final result”.  

In this paper we evaluate the performance of the portfolio relative to the benchmark ap-
plying the attribution technique.  Our main goal is to determine the source of the portfolio’s “ex-
cess return”, defined as the difference between the portfolio’s return and the benchmark’s return. 
To evaluate the effects, causing the “excess return”, and performance-attribution effects, we for-
mulate several optimization problems based on minimizing Expected Tail Lost (ETL) (see Rachev 
S., Ortobelli S. et al. (2007) for a survey on risk measures) with constraints on Asset Allocation 
(AA) and Selection Effect (SE).  

The main motivation of the paper is two-fold: 
1. Having a portfolio of assets or, fund of hedge funds from the portfolio manager or, 

fund manager, would like  
(1a) to minimize tracking error over a given bench-mark portfolio or bench-mark 

index, and at the same time:  
(1b) guaranteeing excess mean returns at a given benchmark level; and 
(1c) keeping portfolio attributions of its assets (funds) in desirable bounds. 

2. We perform statistical analysis on the optimal portfolios obtained in the back testing in 
order to better understand important statistical features of the optimal performance attribution con-
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straint portfolios. Having an optimal portfolio of type 1 (a, b, c), or a portfolio- or fund-manager 
will have much more assurances that this optimal portfolio will preserve the bounds on the per-
formance attribution until the next re-allocation. In the classical performance attribution literature, 
the optimization component is missing. As advocated in Bertrand Ph. (2005), such a drawback 
could lead to non-desirable discrepancies between optimal (tracking) portfolios and portfolios with 
given attribution bounds. While in this paper we consider only relative optimization (based on 
tracking downside error), similar results will be put forward for absolute optimizations in another 
forthcoming work. 

We now briefly describe our optimization problem: we solve the optimization problems 
daily, in the period from 07.10.2003 to 02.03.2007 (total 632 days), making forecast for the next 
day, based on observations of prior year (250 working days), and observed the realized excess 
return over the benchmark portfolio.   We have chosen as a benchmark an equally weighted portfo-
lio of 30 shares, included in DAX30-index.  We assume that portfolio manager can outperform the 
benchmark making different allocation decisions across industry classes (AA-effect,) or picking 
different securities than are in the benchmark (called SE). To model the AA-effect, we divide the 
assets into industry classes according to their trading volumes.   Recall that AA effect consists in 
adjusting the weights of the portfolio in order to outperform the benchmark, see for example Ber-
trand Ph. (2005) and the references there in.  The portfolio manager might overweight the sector 
relative to the benchmark if she is bullish and underweight the sector if she is bearish.  Selection 
effect consists in the picking different securities that, by the manager’s opinion, outperform those 
in the benchmark. She can also pick the same securities as in the benchmark, but buy more or less 
of them than are in the benchmark. Spaulding D. (2003) formulated one of the Laws of Perform-
ance Attribution: “The sum of attribution effects must equal the excess returns. We need to ac-
count 100% of the excess return. Consequently, when we’ve calculated all the effects, their sum 
must equal our excess return”. It means that 100% of the excess return should be explained by 
analyzed attribution effects.  

In our setting, the AA and SE will define constraint sets in optimization problems of type 
tracking error minimization.   We will address the following questions:   

♦ Are our optimization models successful at determining the weights of sectors (or as-
sets’ classes) to help manager outperform the benchmark?  

♦ Are our optimization models successful at selecting stocks within each sector to help 
manager outperform the benchmark? 

To evaluate our optimal portfolio selection models, we perform the empirical analysis of 
final wealth and expected total realized return of the obtained optimal portfolios with respect to the 
benchmark. We compare the results over different suggested portfolio models to determine the 
most profitable model for portfolio managers which are best at outperforming the chosen bench-
mark. 

 Furthermore, we investigate distributional properties of obtained (as results of our  op-
timizations) values of AA, SE, and S, defined as the difference between the total expected return 
of the portfolio and the total expected return of the benchmark. In our study of those distributional 
properties we emphasize the skewness and kurtosis we observed in the values for AA, SE, and S 
showing a non-Gaussian (so called stable Paretian distributional behavior). Recall that the excess 
kurtosis, found in Mandelbrot's (1963) and Fama's (1963, 1965) investigations on the empirical 
distribution of financial assets, led them to reject the normal assumption (generally used to justify 
the mean variance approach) and to propose the stable Paretian distribution as a statistical model 
for asset returns. The behavior, generally stationary over time of returns, and the Central Limit 
Theorem and Central Pre-limit Theorem for normalized sums of i.i.d. random variables theoreti-
cally justify the stable Paretian approach proposed by Mandelbrot and Fama. Their conjecture was 
supported by numerous empirical investigations in the subsequent years (see Biglova A. et al. 
(2004 a, b); Rachev S. et al. (2003)) and the references therein. In our work we will provide addi-
tional empirical evidence testing normal and stable Paretian hypotheses for AA-, SE- and S-values.  

The remainder of the paper is organized as follows. Section 2 provides a brief description 
of our data and methodology. Section 3 provides a description of the optimization problems.  Sec-
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tion 4 provides a numerical analysis of suggested optimization models. Section 5 concludes the 
paper. 

2. Data and Methodology 
2.1. Description of the Data 

Our sample comprises 30 stocks traded on the German Stock Exchange and included in 
the DAX30-index. We analyze the daily returns of these stocks for the period between 07.10.2003 
and 02.03.2007. Daily returns were calculated as ))1(/)(log()( −= tStStr , where S(t) is the 
stock daily closing at t (the stocks are adjusted for dividends). Everyday, we solve the optimization 
problem using the observations from the prior 250 working days and make a forecast for the next 
day.  We analyze two portfolios: the benchmark portfolio and the portfolio of DAX30-stocks we 
want to optimize. Our benchmark portfolio is equally weighted portfolio of 30 shares, included in 
DAX30-index. We assume that portfolio manager would like to outperform the benchmark making 
different allocation decisions across industry classes. For that, we divide shares of DAX30 into 5 
industry classes according to their trading volume:   

))(_*)())((_ TvalueStockTVolumeisharevolumeTrading = , 
where i is share’s number, T is the time period,  Volume(T) is the average volume over the 

entire period T, and Stock value (T) is the average stock value over the entire period T.   Every 
class contains 6 shares (6 shares with the smallest trading volume refer to the first class, 6 shares 
with the largest trading volume refer to the 5th class). The structure of our benchmark portfolio is 
presented in Table 3 (see Section 4.2). 

2.2. Calculation of the portfolios’ parameters 

Daily, we calculate the following parameters separately for each portfolio, based on ob-
servations of prior year (250 working days): 

Portfolio of DAX-stocks Benchmark portfolio 

lr  is the random daily return of asset l  in the DAX-index  

In the time series setting, )(trl  is the return of the asset l at time period (day)  t, 

Ttnl ,...,1;,...,1 == , where n is a number of assets equal to 30, T=250. We will use the same notation 

for observed historical values of )(trl . 

lR – mean return (expected value of lr ) , 
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In our case, the benchmark portfolio is equally 

weighted, 30/1=blz . 
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After these parameters are calculated, we calculate S, the total expected value added by 
the portfolio managers: 

∑ ∑
= =

−=−=−=
m
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1 1

)()( )()( . 

The aim of portfolio attribution is to break down total value added into its main sources, 
namely: asset allocation (AA), security selection (SE), and interaction (I). 

Asset Allocation (AA) 
The contribution of the asset class i to the total value added measured by: 

))(( )(b
bibipii RRwwAA −−= . 

The total asset allocation effect is measured by: 
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Selection Effect (SE) 
The contribution of the total out performance of the choice of security within each asset 

class is given by:  
)( bipibii RRwSE −=  

The total selection effect is given by: 
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Interaction 
Bertrand Ph. (2005) stated that the sum of the asset allocation and selection effects is not 

equal to the total outperformance of asset class i, iS . To ensure equality, it is necessary to add a 
term referred to as interaction that is defined by: 

))(( bipibipii RRwwI −−= . 
It can be interpreted as the part of the excess return jointly explained by the asset alloca-

tion and selection effects.  It can be defined as an extension of the effect of security selection: it is 
the security selection effect on the over- or under-weighted part of asset class i.  
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3. Description of Optimization Problems 
Our portfolio optimization models are based on minimizing a downside (tail) risk meas-

ure, called Expected Tail Loss (ETL), also known as Total Value-at-Risk (TVaR), Expected Short-
fall, Conditional Value-at-Risk (CVaR ), and defined as   

∫=
δ

δ δ 0

)(1)( dqXVaRXETL q , 

where { }δδδ ≥≤−=−= − )(/inf)()( 1 xXPxFXVaR X  is the Value-at-Risk (VaR) 
of the random return  X. If we assume a continuous distribution for the probability law of X, then 

))(/()( XVaRXXEXETL δδ −≤−=  and thus, ETL can be interpreted as the average loss 
beyond VaR (see Rachev S., Ortobelli S. et al. (2007)). 
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3.1. Optimization Tracking Error Problem with Constraints on AA, SE, S,  and  indi-
vidual asset weights 

Our goal is to find an optimal portfolio minimizing the tracking error measured 
by )( )()( bp rrETL −δ . We shall examine various optimization problems choosing different δ 
=0.01, 0.05, 025 and 0.50, subject to constraints on the AA, SE and S in contrast to the standard 
tracking error given by the standard deviation )( )()( bp rrSTD − , by using )( )()( bp rrETL −δ . 
Thus, we do not penalize for positive deviations of our portfolio from the benchmark; we only 
minimize the downside movement of the optimal DAX30-portfolio from the benchmark (see 
Rachev S., Ortobelli S. et al. (2007)). 

Optimization Problem 3.1.1: Minimum ETL-Tracking Error with Constraints on asset 
weights, AA and SE: 

)(min )()( bp

z
rrETL

pl

−δ     

such that 
(i) 0>plz , where plz  is the weight of individual asset l in the portfolio of DAX30-

stocks,  
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(iii) dRRwSEc
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The constants a,b,c,d can be pre-specified to meet particular needs of the portfolio man-
ager. In our case they can take arbitrary values. 

Optimization Problem 3.1.2: Minimum ETL-Tracking Error with Constraints on  asset 
weights, AA , SE and S: 

 
)(min )()( bp

z
rrETL

pl
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such that (i),(ii),(iii) hold and 
 (iv) sRRS bp ≥−= )()( , 

where s>0 the excess total (benchmark) expected value added we want to achieve with 
minimum ETL-tracking error.  

 

3.2. Optimization Tracking Error Problem with constraints AA, SE , S, and asset 
classes weights 

Optimization Problem 3.2.1: Minimum ETL-Tracking Error with Constraints on classes 
weights, AA, and SE: 
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such that 
(I) 0>piw , where piw is the weight of asset class i in the portfolio of DAX-stocks, 

∑
=

=
m

l
piw

1

1, 



Investment Management and Financial Innovations, Volume 4, Issue 3, 2007 

 

13

and (ii) and (iii) are hold. 
In this optimization problem, after the optimal portfolio of DAX30-stocks is found, we 

determine the weights of assets within the classes in correspondence with the structure of the 
benchmark portfolio. As our benchmark portfolio is equally weighted portfolio, we impose that the 
classes in the optimal portfolio of DAX-stocks are also equally weighted portfolios. Each class 
contains 6 shares. It means that the weight of asset in the class will be found according to this 
strategy as 6/piw , where piw is the optimal weight of the class i in the portfolio of DAX30-
stocks. 

Optimization Problem 3.2.2: Minimum ETL-Tracking error with constraints on classes 
weights, AA, SE and S: 

)(min )()( bp

w
rrETL

pi

−δ , 

such that  (I), (ii), (iii) and (iv)  hold . 
The weights of assets are found as described in Optimization Problem 3.2.1. 

4. Empirical Analysis of Optimal Portfolio Performance 
Suppose an investor has an initial wealth of 10 =W on September 20, 2004. Every day 

she solves the optimization problem described above using daily observed returns from the prior 
year. Once she determines the optimal portfolio of DAX30-stocks plz , at time t, based on the his-

torical return values until t (including), that is, )(tzz plpl = , l=1,…,n   the portfolio wealth at 
time (t+1) generated by the portfolio allocation at time t is evaluated  according to 

))1(1)(()1( )( ++=+ trtWtW p , 
 

where the portfolio’s return )( pr (t+1) at time t+1 is given by 
).1()(...)1()()1( 11

)( ++++=+ trtztrtztr npnp
p  

The cumulative portfolio return CR (t+1) at time t+1, generated by the portfolio alloca-
tion made at time t, is defined iteratively by 

).1()()1( )( ++=+ trtCRtCR p  
Values of the final wealth and cumulative return for the benchmark portfolios were calcu-

lated in the same way.  

4.1. Results Summary 

In Table 1 (Panels A, B, C, D), we first present results obtained by the four different op-
timizations with different constraints on AA, SE, and S. 

Our results show that  
♦ Optimization Problem 3.1.2, based on 05.0ETL -tracking error-minimization, and  

♦ Optimization Problem 3.1.1, based on 05.0ETL -tracking error-minimization with 
constraints 0,3.003.0,3.003.0 ≥≤≤−≤≤− plzSEAA , 

provide the largest realized wealth and total realized return at the end of the period T. 
These strategies were referred to the most profitable strategies. Furthermore, Optimization Prob-
lem 3.1.2 provides consistently most profitable strategies over a variety of constraints sets, while 
Optimization 3.1.1 is best only in the long short strategy where the Optimization Problem 3.1.2 is 
marginally second. Overall, the best performing portfolio, regardless whether we can consider 
long-only or long-short strategy, is given Optimization Problem 3.1.2. 
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Table 1  

Summary statistics over different analyzed optimization models 

ETL(0.01) ETL(0.05) ETL(0.25) ETL(0.5) Portfolios 

Realized 
wealth 

Annualized 
Total Real-
ized Return 

(%) 

Realized 
wealth 

Annualized 
Total Real-
ized Return 

(%) 

Realized 
wealth 

Annualized 
Total Real-
ized Return 

(%) 

Realized
wealth 

Annualized 
Total Real-

ized Re-
turn (%) 

Benchmark 1.47 16.26% 1.47 16.26% 1.47 16.26% 1.47 16.26% 
Panel A: Long only constraints on AA and SE 

Optimization Problem 3.1.1 ( 0,10,10 ≥≤≤≤≤ plzSEAA ) 

Optimal Portfolio 1.91 26.68% 2.04 29.33% 1.82 24.60% 1.88 26.01% 
Optimization Problem 3.1.2 ( 0,0,10,10 ≥≥≤≤≤≤ plzSSEAA ) 

Optimal Portfolio 1.94 27.41% 2.09 30.23% 1.83 24.88% 1.92 26.89% 
Optimization Problem  3.2.1 ( 0,10,10 ≥≤≤≤≤ piwSEAA ) 

Optimal Portfolio NO feasible solution 
Optimization Problem  3.2.2 ( 0,0,10,10 ≥≥≤≤≤≤ piwSSEAA ) 

Optimal Portfolio NO feasible solution 
Panel B: Long-short constraints on AA and SE 

Optimization Problem 3.1.2 ( 0,0,3.003.0,3.003.0 ≥≥≤≤−≤≤− plzSSEAA ) 

Optimal Portfolio 1.88 26.03% 2.13 31.03% 1.85 25.38% 1.89 26.09% 
Optimization Problem  3.2.1 ( 0,3.003.0,3.003.0 ≥≤≤−≤≤− piwSEAA ) 

Optimal Portfolio 0.82 -5.56% 1.19 8.70% 1.20 8.89% 0.92 0.08% 
Optimization Problem  3.2.2 ( 0,0,3.003.0,3.003.0 ≥≥≤≤−≤≤− piwSSEAA ) 

Optimal Portfolio NO feasible solution 
Panel C: No constraints on AA, long only constraints on SE 

Optimization Problem 3.1.1 ( 0,10,11 ≥≤≤≤≤− plzSEAA ) 

Optimal Portfolio 1.88 26.03% 2.10 30.53% 1.82 24.63% 1.89 26.16% 
Optimization Problem 3.1.2 ( 0,0,10,11 ≥≥≤≤≤≤− plzSSEAA ) 

Optimal Portfolio 1.88 26.03% 2.12 30.74% 1.83 24.87% 1.90 26.38% 
Optimization Problem  3.2.1 ( 0,10,11 ≥≤≤≤≤− piwSEAA ) 

Optimal Portfolio NO feasible solution 
Optimization Problem  3.2.2 ( 0,0,10,11 ≥≥≤≤≤≤− piwSSEAA ) 

Optimal Portfolio NO feasible solution 
Panel D: No constraints on SE, long only constraints on AA   

Optimization Problem 3.1.1 ( 0,11,10 ≥≤≤−≤≤ plzSEAA ) 

Optimal Portfolio 1.92 26.87% 2.06 29.66% 1.81 24.40% 1.89 26.08% 
Optimization Problem 3.1.2  ( 0,0,11,10 ≥≥≤≤−≤≤ plzSSEAA ) 

Optimal Portfolio 1.94 27.41% 2.09 30.23% 1.83 24.92% 1.93 26.91% 
Optimization Problem  3.2.1 ( 0,11,10 ≥≤≤−≤≤ piwSEAA ) 

Optimal Portfolio 1.23 8.62% 1.28 10.28% 1.33 11.90% 1.36 12.52% 
Optimization Problem  3.2.2 ( 0,0,11,10 ≥≥≤≤−≤≤ piwSSEAA ) 

Optimal Portfolio NO feasible solution 
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Table 1 reports values of realized wealth and annualized total realized return obtained 
over different mathematical models with different restrictions on AA, SE, and S. The sample in-
cludes a total of 30 stocks traded on the German Stock Exchange during the period of October 
2003 and March 2007. 

As the investigation of the strategies based on comparison of realized wealth and total re-
alized return doesn’t take risk into account, we further analyze the sequences of realized excess 
returns, obtained over the most profitable optimization problems, consider their tail-risk profile 
and select the ones with best risk-return performance. Our next goal is to determine a model which 
achieves the Best Tracking Error Portfolio with Performance Attribution Constraints (we call 
shortly this portfolio BTEP) taking tail-risk (probability for large losses) into account. For that, we 
consider the sequences of realized excess returns: 

)()()( )()( trtrts bp −= , t=1,…,T, 
where  

)()( tr p is the DAX30-portfolio return at time t generated by the portfolio allocation at 
time (t-1), obtained by the optimal strategies obtained in solving the corresponding optimization 
problems 3.1.1, 3.1.2, 3.2.1, and 3.2.2; 

)()( tr b  is the equally weighted benchmark portfolio return at time t .  
The sequence of excess returns contains total T= 632 observations starting from the 251st 

day of the period examined as the “first-day” optimization problem is solved based on first 250 
observations of the first year.   

We start our risk-analysis of the optimal portfolios by computing the most commonly ac-
cepted  risk-reward measure, the Sharpe Ratio (Sharpe W. (1994)) (see (1) below), using  the se-
quences of realized excess returns s(t) for  t=1,…,T. However, in order to include the observed 
non-normality distribution of the realized excess returns s(t) in the risk-return analysis, we also 
calculate the STAR Ratio (STARR) and R-Ratio (see (2) and (3) below) as alternatives to the 
Sharpe ratio replacing the standard deviation in the Sharpe ratio with the tail-risk measured by 
ETL. We analyze and compare STARR Ratio (0.05), and R-Ratio (0.05, 0.05) using the 5% of the 
excess highest and lowest returns. The choice of those quantiles is based on the performance-
evidence we have collected in our previous papers on portfolio optimization (see for example 
Biglova A. et al. (2004 a, b). 

We now give a summary of the three performance ratios: 
1. The Sharpe Ratio (see Sharpe W. (1994)) is the ratio between the expected excess re-

turn and its standard deviation of the realized excess returns s with stable distribution determined 
by the sample T s(t) , t=1,…,T :  

)(
)()(
sSTD

sEs =ρ  , (1) 

where E(s) and  STD(s)  is the  mean and sample  standard deviation s. For this Ratio it is assumed 
that the second moment of the excess return exists, thus the stable distribution we use for modeling 
the probability distribution of s is, in fact, Gaussian.  (We give the definition and discuss the basic 
properties of stable distributions for modeling asset returns in the next section.)  

2. STARR (0.05) (see Rachev S. et al. (2007 a)) is the ratio between the expected excess 
return and its Expected Tail Loss: 

)(
)()(
sETL

sEs
δ

ρ = , (2) 

where )(sETLδ is defined  in  Section 3.  
3. R-Ratio (0.05, 0.05) is the ratio between the Expected Tail Return ETR(s) = ETL(-s) at 

a given confidence level and the ETL of the excess return at another confidence level.  

)(
)(

)(
2

1

sETL
sETL

s
γ

γρ
−

= . (3) 
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We analyze the R-Ratio for parameters 1γ = 2γ =0.05.  
For (2) and (3) to exist (to be well defined) we only need that the index of stability of s is 

greater than 1, which is the mean of s exists. All empirical analyses on the distribution of  asset 
returns show that, without restriction, one can assume that the mean of asset returns is finite (see 
Rachev S. (2007 a) and the references there in). 

Table 2 reports values of stable distribution parameters, performance ratios: Sharpe Ratio, 
STARR-Ratio (0.05), and R-Ratio (0.05, 0.05) for realized excess returns over analyzed strategies. 
Results, presented in Table 2, show that Sharpe Ratio is not suitable to be applied as the coeffi-
cients of stable fit confirm that the realized excess returns are non-Gaussian, heavy-tailed and 
skewed, hence STARR and R-Ratio are more reliable. This table shows that Optimization Problem 
3.1.2 based on ETL (0.05) with long-short constraints on AA and SE: 

0,0,3.003.0,3.003.0 ≥≥≤≤−≤≤− plzSSEAA provides the best values of STARR equal to 
0.0622 and R-Ratio equal to 1.8813, therefore it provides the best portfolio when we take into ac-
count the tail-risk of the realized excess returns.  

We call this optimal portfolio the Best Tracking Error Portfolio with Performance Attri-
bution Constraints (BTEP) and we shall analyze it now in more detail. 

Table 2  

Summary statistics of excess realized returns over the most profitable optimization problems 

alpha beta sigma mu Sharpe Ratio STARR Ratio (0.05) R-Ratio(0.05,0.05) 

Optimization Problem 3.1.2 based on ETL(0.05) 
long only constraints on AA and SE: 0,0,10,10 ≥≥≤≤≤≤ plzSSEAA  

1.5557 0.3066 0.0031 7.021e-004 0.0879 0.0397 1.4005 

Optimization Problem 3.1.2 based on ETL(0.05) 
long-short constraints on AA and SE: 0,0,3.003.0,3.003.0 ≥≥≤≤−≤≤− plzSSEAA  

1.5571 0.2927 0.0031 7.059e-004 0.0907 0.0622 1.8813 

Optimization Problem 3.1.2 based on ETL(0.05) 
no constraints on AA, long only constraints on SE: 0,0,10,11 ≥≥≤≤≤≤− plzSSEAA  

1.5571 0.2927 0.0031 7.096e-004 0.0911 0.0324 1.3483 

Optimization Problem 3.1.1 based on ETL (0.05) 
no constraints on SE, long only constraints on AA: 0,3.003.0,3.003.0 ≥≤≤−≤≤− plzSEAA  

1.5325 0.3120 0.0031 7.912e-004 0.0928 0.0278 1.1937 

 
 
Table 2 reports values of stable distribution’s parameters for the sequences of realized ex-

cess returns and values of performance Ratios for those sequences.  

4.2. Analysis of the BTEP 

Having solved the optimization problem daily, a total of 632 times, in the period from 
07.10.2003 to 02.03.2007, we present mean statistics of the obtained daily optimal portfolios of 
DAX30-stocks in Table 3. 
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Table 3 

Mean statistics of the Best Tracking Error Portfolio with Performance Attribution Constraints (BTEP) 

Optimization Problem BTEP: Constraints: 0,0,3.003.0,3.003.0 ≥≥≤≤−≤≤− plzSSEAA , 05.0ETL  

Classes Shares Trading volume 
(Euro, Millions) 

Mean of the asset 
weights in the optimal 

portfolio 

Mean of the asset 
class weights in the 

optimal portfolio 

Mean of the 
asset weight 
in the class 

hrx 24.55 0.0214 0.2044 
fme 27.39 0.1666 0.1591 

henkel 30.37 0.0166 0.1591 
alt 33.05 0.0166 0.1591 
lin 39.67 0.0166 0.1591 

1st class 

tui-n 41.26 0.0166 

0.1047 

0.1591 
lha 49.1 0.0166 0.0432 

man 49.84 0.0166 0.0432 
meo 51.43 0.0166 0.0432 
con 65.73 0.1234 0.3202 
db1 67.11 0.1788 0.4638 

2nd class 

tka 69.61 0.0332 

0.3856 

0.0863 
sch 69.84 0.1764 0.6792 
dpw 75.19 0.0166 0.0641 
cbk 93.43 0.0166 0.0641 
ifx 93.87 0.0166 0.0641 

bmw 96.64 0.0166 0.0641 

3rd class 

bayer 135.37 0.0166 

0.2598 

0.0641 
vow 151.45 0.0166 0.1112 

rwe-a 158.18 0.0451 0.3013 
bas 162.37 0.0166 0.1112 
ads 183.6 0.0380 0.2537 

muv2 195.43 0.0166 0.1112 

4th class 

sap 227.13 0.0166 

0.1498 

0.1112 
dcx 238.95 0.0166 0.1666 
eoa 262.08 0.0166 0.1666 
dbk 305.46 0.0166 0.1666 

siemens 330.33 0.0166 0.1666 
alv 333.44 0.0166 0.1666 

5th class 

dte 347.28 0.0166 

0.1000 

0.1666 
 

Table 3 reports shares, divided into 5 classes according to their trading volumes, values of 
trading volumes of appropriate shares, presented in millions of Euros, means of the asset weights, 
asset class weights and asset weights in the class over 632 optimal portfolios of DAX-stocks, ob-
tained solving the Optimization Problem 3.1.2 daily, a total 632 times, and based on minimizing of 

05.0ETL with constraints 0,0,3.003.0,3.003.0 ≥≥≤≤−≤≤− plzSSEAA  during the period of 
October 2003 and March 2007.   

Table 3 shows that for most cases, the main parts of optimal portfolios of DAX30-stocks 
were the shares of the second and the third classes (39% and 26%). It means that in most cases the 
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portfolio of DAX-stocks consisting of shares with “average” trading volumes outperforms the 
portfolio of benchmark.  

Figure 1 presents graphs of the realized final wealth of the portfolio of DAX-stocks and 
benchmark portfolio. This exhibit shows that the portfolio of DAX-stocks sample paths dominate 
the benchmark sample paths and they yield the maximum wealth of 2.11 at the end of the period 
examined, the maximum wealth of the benchmark portfolio is equal to 1.47 at the end of the period 
examined.  

 
Fig. 1. Realized Wealth of the Optimized Portfolio (BTEP) and the Benchmark Portfolio 

Figure 2 presents sample paths of cumulative returns for the portfolio of DAX-stocks and 
the benchmark portfolio. The plots also show that the portfolios of DAX-stocks always perform 
better than the benchmark portfolio and it yields the maximum total realized annualized return 
equal to 77.53% at the end of the period examined (and thus the annualized value is 30.67%, the 
total realized return of the benchmark portfolio is equal to 41.11% at the end of the period exam-
ined (with annualized value of 16.26%).  

 
Fig. 2. Total Realized Return of the Optimized Portfolio (BTEP) and the Benchmark Portfolio 
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We now focus on the statistical analysis of the time series of AA, SE and S-values in the 
optimal DAX30-portfolio and the benchmark portfolio.  

We view the observations of Asset Allocation (AA), Selection Effect (SE), and Total ex-
pected value, added by portfolio managers (S), calculated in solving the optimization problems 
632 times, as three samples of size 632 each, and we would like to study the distributional proper-
ties of the AA, SE, and S, and in particular mean-values, dispersion, skewness and kurtosis.   

The fist observation we made concerns the non-normality of the distribution of the sam-
ples for AA, SE, and S. We observe that by testing the hypotheses about normal (Gaussian) versus 
stable (non-Gausian, Paretian) distributions for the AA, SE and S values.  

Let us first recall some basic facts on stable distributions. The α -stable distributions de-
scribe a general class of distribution functions which include leptokurtic and asymmetric distribu-
tions. A random variable X is stable distributed if there exists a sequence of i.i.d. random variables 

NiiY ∈}{ , a sequence of positive real values Niid ∈}{  and a sequence of real values Niia ∈}{  such 

that, as +∞→n :  
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where “ ⎯→⎯d ” points out the convergence in distribution. The characteristic function which 
identifies a stable distribution is given by: 
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Thus, an α -stable distribution is identified by four parameters: the index of stability 
]2,0(∈α  which is a coefficient of kurtosis, the skewness parameter ]1,1[−∈β , ℜ∈μ  and 

+ℜ∈γ , which are respectively, the location and the dispersion parameter. If X is a random vari-
able whose distribution is α -stable, we use the following notation to underline the parameter de-
pendence (see Samorodnitsky G., Taqqu M. (1994)): X ∼ ( )μβγα ,,S . 

When 2=α  and 0=β  the α -stable distribution has a Gaussian density. Theα -
stable distributions with 2<α  are leptokurtotic and present fat tails. While a positive skewness 
parameter ( 0>β ) identifies distributions whose tails are more extended towards right, the nega-
tive skewness parameter ( 0<β ) typically characterizes distributions whose tails are extended 
towards the negative values of the distribution. If 2<α , then X is called stable (non-Gaussian,  
or  Paretian ) random variable.  

We estimate the stable distribution parameters of the sequences AA, SE and S by maxi-
mizing the likelihood function (see McCulloch J. (1998), Stoyanov S. and Racheva-Iotova B. 
(2004 a, b)). It is possible to obtain optimal approximations of the stable parameters with STABLE 
program, developed and described in Stoyanov S., Racheva B. (2004 a, b)).  

We compute the main parameters of the stable law: the index of stabilityα , skewness pa-
rameter β , which will characterize the heavy-tailedness and asymmetry of the observations’ dis-
tributions respectively. We also compute μ  and σ  in the Gaussian fit. The normality tests em-
ployed are based on the Kolmogorov distance (KD) and computed according to   

( ) ( ) |ˆ|sup xFxFKS S
Rx

−=
∈

, 

where ( )xFS  is the empirical sample distribution and ( )xF̂  is the standard normal cumulative 
distribution function evaluated at x for the Gaussian or  stable fit, respectively. 
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Our results show that we can reject the normality using the standard Kolmogorov-
Smirnov test for observations of AA, SE and S values at the extremely high confidence level of 
99%. In contrast, the stable-Paretian hypothesis is not rejected for these sequences at the same 
confidence level. Figure 3 presents the graphs of distribution densities of AA, SE, and S se-
quences. Figure 4 presents the histograms of AA, SE, and S values with respect to normal distrib-
uted values. 

 

 

Fig. 3. Quantile-quantile (QQ) plots of the AA, SE and S quantiles  and  corresponding   the normal (Gaussian) 
quantiles in the BTEP 
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Fig. 4. Histogram of AA, SE and S values and the normal density fit 

Graphs show that the analyzed observations exhibit heavier tails than that the normal. The 
fit of stable non-Gaussian distribution is now applied to the observations and the parameters of 
stable distribution are obtained. Table 4 presents obtained parameters and K-S statistics for the 
normal and stable non-Gaussian cases. The mean values of annualized AA, SE and S are also pre-
sented in Table 4. 

Table 4 

Estimated parameters alpha, beta of AA, SE, and S sequences and K-S distances under the normal 
and the stable distribution in the BTEP 

 Alphas Betas K-S distances 
(normal case) 

K-S distances (sta-
ble case) 

Mean annualized 
values (%) 

AA 1.4599 0.5932 0.7594 0.0664 1.36% 

SE 1.3624 -0.4191 0.7563 0.0537 21.99% 

S 1.3670 -0.4307 0.7705 0.0569 67.35% 

 
Table 4 shows that the K-S distances in the stable case are 10 times smaller than the K-S 

distances in the Gaussian case for the analyzed sequences. So showing clearly that the stable fit 
outperforms the Gaussian one. 
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5. Conclusions 
In this study, we further develop performance attribution methods introducing new opti-

mization models based on ETL-risk measure. We determine the most profitable model for portfo-
lio optimization, which best outperformed the benchmark portfolio.  In addition, we analyze the 
distributional properties of Asset Allocation (AA), Selection Effect (SE) and Total Expected 
Value, Added by portfolio managers (S), and strongly reject for those sequences the normality 
assumption in favor of the stable Paretian Hypothesis.  

In the future, we expect to confirm the obtained results on a large dataset and further de-
velop suggested models. 

References 
1. Biglova A., Ortobelli S., Rachev S. and Stoyanov S. (2004a). “Comparison among different 

approaches for risk estimation in portfolio theory”, Journal of Portfolio Management, New 
York, Vol. 31, pp. 103-112. 

2. Biglova A., Ortobelli S., Rachev S., Stoyanov S. (2004b). “Optimal portfolio selection and 
Risk management: A comparison between the stable paretian approach and the Gaussian one”, 
S. Rachev (edt.) Handbook of Computational and Numerical Methods in Finance, Bikhauser, 
Boston, pp. 197-252,  

3. Bertrand Ph. (2005). “A note on portfolio performance attribution: taking into account”, Jour-
nal of Asset Management, Vol. 5, pp. 428-437. 

4. Fama E. (1963). “Mandelbrot and the Stable Paretian Hypothesis”, Journal of Business, Vol. 
36, pp. 394-419. 

5. Fama, E. (1965). “The Behavior of Stock Market Prices”, Journal of Business, Vol. 38, pp. 
34-105. 

6. Lord T. (1997). “The Attribution of Portfolio and Index Returns in Fixed Income”, The Jour-
nal of Performance Measurement.  Vol. 2, №1. 

7. Mandelbrot B. (1963). “The Variation in Certain Speculative Prices”, Journal of Business, 
Vol. 36, pp. 394-419. 

8. McCulloch J. (1998). “Linear regression with stable disturbances”, A Practical guide to heavy 
Tailed Data, R. Adler et al. (edt)  Bikhauser, Boston. 

9. Rachev S., Tokat Y., and Schwartz E., (2003). “The Stable non-Gaussian Asset Allocation: A 
comparison with the Classical Gaussian Approach”, Journal of Economic Dynamics and Con-
trol, Vol. 27, pp. 937-969. 

10. Rachev S., Martin D., Racheva-Iotova B. and Stoyanov S. (2007a). “Stable ETL optimal port-
folios and extreme risk management', forthcoming in Decisions in Banking and Finance, 
Springer/Physika 

11. Rachev S., Ortobelli S., Stoyanov S., Fabozzi F., Biglova A. (2007b). “Desirable Properties of 
an Ideal Risk Measure in Portfolio Theory”, forthcoming in International Journal of Theoreti-
cal and Applied Finance 

12. Samorodnitsky G. and Taqqu M. (1994). “Stable Non-Gaussian Random Processes, Stochas-
tic models with Infinite Variance”. Chapman and Hall, New York.   

13. Sharpe W.  (1994). “The Sharpe Ratio”, Journal of Portfolio Management, pp. 45-58. 
14. Spaulding D. (2003). “Investment performance attribution: a guide to what it is, how to cal-

culate it, and how to use it”. New York, NY: McGraw-Hill.  
15. Stoyanov S., Racheva-Lotova B. (2004a). “Univariate stable laws in the field of finance-

approximations of density and distribution functions”, Journal of Concrete and Applicable 
Mathematics, Vol. 2/1, pp. 38-57.   

16. Stoyanov S., Racheva B. (2004b). “Univariate stable laws in the field of finance-parameter 
estimation”, Journal of Concrete and Applicable Mathematics, Vol. 2/4, pp. 24-49. 

 
 


