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A DYNAMIC APPROACH FOR THE EVALUATION OF 
PORTFOLIO PERFORMANCE UNDER RISK CONDITIONS 
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Abstract 
In this paper, we examine the behavior of a stock portfolio in reaction to possible fluctua-

tions in the stock market. Our analysis is based on stress test and simulation techniques. Using 
historical data, we construct a portfolio (profile portfolio) with specific characteristics for volatil-
ity, return and beta coefficient. Our simulations suggest that adjustments must be made in a portfo-
lio’s composition in order to obtain maximum return or minimum risk, with respect to investors’ 
preferences. We conclude that an asset manager can achieve the highest return by keeping his 
original position in the medium risk shares and adjusting his original position for the low and high 
risk shares. Finally, we compare different portfolios based on market capitalization and we obtain 
an optimum composition. 
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1. Introduction 
There are many recent quantitative studies that examine portfolio behavior, especially the 

years when financial markets experienced large fluctuations. The quantitative methods are usually 
based on “stress testing” and simulation analysis. Moreover, many mathematical models have been 
developed using tools from dynamic programming and optimization techniques. This paper is 
based on Markowitz’s portfolio theory and on the assumption that portfolio optimizers respond to 
the risk of an investment by selecting portfolios that maximize return subject to a specified level of 
calculated risk, or equivalently minimize risk subject to achieving a specified level in expected 
return (Markowitz, 1952, 1959, 1991; Merton, 1972; Kroll, Levy and Markowitz, 1984). The dif-
ference of this paper from previous research is that we develop a system equation method, repre-
senting a “profile” portfolio in order to examine the behavior of a portfolio. The selection of the 
portfolio’s shares is based on investors’ profile which is determined by the beta coefficient as a 
proxy variable for risk.  

Portfolio optimization problems were first introduced by Merton (1969) who considered a 
case where transactions can be carried out cost free with the aim to maximize discounted con-
sumption utility. In this setting, the optimal policy, according to Merton, is to continuously trans-
act in order to hold fixed fractions of total wealth in various shares and even if very small transac-
tion costs were present, transactions would be necessary only if the fraction of stock holding is 
“sufficiently” far away from Merton’s optimal fraction to warrant the transaction. Magill and Con-
stantinides (1976) first considered a portfolio optimization problem with one risky asset, propor-
tional transaction costs and an interval in the target risky asset proportion. They show that if the 
proportion varies randomly within this interval, no trading is needed. When the proportion lies 
outside the interval, the optimal policy would be to buy or sell just enough to bring the proportion 
back into the interval. 

In a number of studies, dynamic programming is used in the formulation of financial prob-
lems (Consigli and Dempster, 1998; Walter et al., 2004; Tenney, 2005; Muthuraman and Zha, 2005). 
The methodologies in these studies are based on dynamic stochastic programming, Monte Carlo 
simulation, free-boundary Hamilton Jacobi Bellman (HJB) equations (Bellman, 1957) etc. These 
studies seek for the best allocation of wealth, given a set of assets and targeting the mean variance 
portfolio optimization. According to a recent study (Bai et al., 2006), it has been demonstrated that 
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the estimated return for the Markowitz mean-variance optimization (1952, 1959) is significantly dif-
ferent from the value which the theory predicts. In the above mentioned study, it is proved that the 
estimated optimal return is always larger than the relevant theoretical parameter. In addition, devel-
oping new bootstrap estimators for the optimal return and its asset allocation, they prove that boot-
strap estimates are consistent with their counterpart parameters. Nevertheless, this result is not new. 
Several studies (Sharpe, 1967, 1971; Stone, 1973; Elton, Gruber, and Padberg, 1976, 1978; Marko-
witz and Perold, 1981; and Perold, 1984) computing the corresponding estimates, indicate that there 
have been persistent doubts, held by both academics and practitioners, who hesitate to apply the 
mean variance paradigm, since they are cautious about the performance of the estimates. 

Michaud (1989) reports that a relativly low level of analytical sophistication in the culture 
of institutional equity management is one often-cited reason for the lack of mean variance optimi-
zation. He considers mean-variance optimization to be one of the outstanding puzzles in modern 
finance that it has yet to meet with widespread acceptance by the investment community, particu-
larly as a practical tool for active equity investment management. He names this puzzle the 
“Markowitz optimization enigma”. 

As we mentioned before, in this paper we examine the behavior of a profile portfolio in 
which investors’ preferences are determined by the beta coefficient, the proxy variable for risk in 
our model. Simulating our model, we observe differences in the portfolio’s composition in order to 
obtain the optimal portfolio, with respect to investors’ preferences. 

The rest of the paper is organized as follows: in section 2 we discuss the methodology and 
the data sets, in section 3 we present our results, and finally, in section 4 we report the conclusions 
of our paper. 

2. Methodology and Data 
The purpose of this study is to examine the behavior of a shares portfolio, and to calculate 

some basic factors of the portfolio that reflect its future behavior. In order to achieve this, we fol-
low a stress test method by simulating a dynamic system that represents the portfolio’s “profile”. 
The dynamic system includes the equations describing the portfolio composition as well as the 
portfolio characteristics.  

Stress testing is a simple form of scenario analysis. In our analysis we assume that the 
portfolio managers may specify certain fixed assumptions (defined in terms of percent changes in 
applicable risk factors) and based on these assumptions, we perform periodic stress testing. Rather 
than considering the evolution of risk factors over several time intervals, stress testing examines 
changes in risk factors over a single time period. In our simulation analysis, we consider as a risk 
factor the fact that the shares portfolio might experience possible changes in terms of shares risk 
exposure. We use stress testing in order to assess market risk, since we have assumed that the 
shares’ beta coefficient might change over time.  

We perform a single scenario that consists of projected values for the probabilities of migra-
tion at the end of the horizon. The result is compared with the portfolio’s current market value, and the 
portfolio loss is calculated as the difference between the two. In this respect, the portfolio manager 
might present stress test results in his daily risk report. Such stress scenarios may be hypothetical, re-
flecting possible large fluctuations in the stock market. Nevertheless, they can also be historically 
based. In this case, stress scenarios may reflect the percentage changes in risk factors experienced dur-
ing historical periods selected, such as stock market crashes, currency devaluations, etc. 

We have developed a method based on the optimization techniques, in order to obtain the 
maximum return regarding to specific portfolio characteristics. The general optimization problem 
can be set as follows: 

 ),...,(max 1 nxxf ,  (1) 
subject to the constraints: 

,),...,( 1 in bxxg ≤  

 ,),...,( 1 in cxx ≤ϕ  with mi ,...,1= ,  (2) 
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By solving this problem, we try to find the values of variables nxx ,...,1  that give us the 

maximum value of the function f . However, the values of nxx ,...,1  must satisfy the constraints. We 

find among the values of variables nxx ,...,1 , satisfying the above constraint, the one giving the larg-

est value to the objective function f . In the case of only two variables, say x, y, one might solve the 
byxg ≤),(  for y  in terms of x , and then substitute into f to get an unconstrained problem in the 

single variable x . However, in a more general case of an optimization problem, the solution should be 
found with a more complex method. 

In order to find the values of nxx ,...,1 , and then the maximum value of function f , we 
should calculate the Lagrange multipliers for the given optimization problem. The Lagrangian multi-
plier is the following : 
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then we set the partial derivatives of the above relation equal to zero, as shown: 
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∂
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 is the partial derivative of f with respect to jx . Similarly, ig  and iϕ  are the partial 

derivatives of g  and ϕ  with respect to ix . The above relations are the necessary conditions for the 
solution of the optimization problem. The first part of Lagrangian relations restates the constraint, 
while the second part is the new conditions of the problem. Nonnegativity of λ  reflects the fact that 
increasing b enlarges the feasible region for values of nxx ,...,1  and therefore cannot reduce the 
maximum value attainable. The last equation says that either the multiplier is zero or else the con-
straint is tight.  

Based on the above optimization theory, we construct a dynamic system with equations that 
describe the portfolio behavior. We develop an equation system using historical data in order to esti-
mate important factors such as portfolio return, beta coefficient and the proportion of the stocks for 
each beta category. For our analysis, we have categorized the stocks into 3 categories based on risk 
exposure. Initially, we have defined the number of stocks, actually the percentage per beta category 
that already belongs to the portfolio, as well as the return and volatility of each beta category. Table 1 
shows the variables in our model that reflect the characteristics of the stocks belonging to portfolio.  

Table 1 

Portfolio characteristics 

Rating Risk category Beta Return Volatility Portfolio weight 

1 Low risk stocks b1 r1 v1 w1 

2 Medium risk stocks b2 r2 v2 w2 

3 High risk stocks b3 r3 v3 w3 
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Implementing the model, we can measure basic factors, such as the portfolio return, vola-
tility, beta and finally, the portfolio composition. This implies that by changing the initial condi-
tions of the system, the characteristics of the stocks, e.g. the return or the volatility and the portfo-
lio weight, we can calculate the maximum return that this specific portfolio can achieve. Simulat-
ing the model, we can find the portfolio composition and moreover the characteristics of it, that 
provide us with the maximum return. The purpose of the equation system is to maximize the port-
folio return with specific initial conditions and subject to the constraints. 

The equation system has the following form: 
      prmax       (6) 

subject to the following constraints: 
1) hpl bbb << , 

 2) ,10 1 << w  ,10 2 << w  10 3 << w ,  (7) 
3) 10 321 <++< www , 

where 1w  is the factor denoting the percentage of stocks with beta 1 in the portfolio, 2w  is the 

factor denoting the percentage of stocks with beta 2 in the portfolio, and 3w  is the factor denoting 

the percentage of stocks with beta 3 in the portfolio, 1r  is the factor that reflects the return of 

stocks with beta 1, 2r  is the factor that reflects the return of stocks with beta 2, and 3r  is the fac-
tor that reflects the return of stocks with beta 3, and finally the portfolio return equals 

332211 rwrwrwrp ++=  and hl bb ,  are the low and high beta coefficients of portfolio, respec-
tively. 

The variables that can be measured and describe the portfolio behavior, have the follow-
ing form: 
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where 2
pσ  represents the volatility of portfolio, 2

iσ  is the factor that represents the volatility of 

stocks that belong to i (i = 1,2,3) beta category and 12ρ  is the correlation coefficient between 

stocks that belong to 1st and 2nd beta categories, 13ρ  is the correlation coefficient between stocks 

that belong to 1st and 3rd beta categories, and similarly, 23ρ  is the correlation coefficient between 
stocks that belong to 2nd and 3rd beta categories.  

An important feature of our work is that in the simulation of our dynamic system, we 
have considered that stocks in a specific beta category might migrate to another beta category 
through time. We calculate the basic factors of the portfolio, and we maximize the portfolio return 
by taking into account possible changes in beta categories. This implies that the possibilities of 
beta changes may reflect the trend of the market. Implementing the model, we can predict the fu-
ture behavior and compute the characteristics of the portfolio only by changing the possibilities of 
the system. Thus, one can find the maximum portfolio return and predict the future behavior of it 
just by setting the possibilities of changes in beta categories or/and by setting a range of portfolio 
beta, which he or she wishes for the portfolio. Thus, the simulation of the system provides us with 
the maximum portfolio return regarding significant factors, such as volatility, portfolio composi-
tion and portfolio beta. 

The data used in this analysis have been collected from two sources. The statistical analy-
sis concerning portfolio’s stocks, weights and possibilities of changing risk category due to beta 
change is based on the performance of one of the biggest mutual funds in Greece, the Delos Mu-
tual Fund of the National Bank of Greece. From the whole set of data, which is available on a three 
month data period basis, we used only the information connected with stocks, as we assume that 
the portfolio consists of stocks at a 100% weight.  
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The beta coefficients on a three month basis and the fluctuations over time have been col-
lected from the “Beta Book” of the Center of Financial Studies of the National and Kapodistrian 
University of Athens. The Beta Book is published every three months, the same time interval that 
mutual funds are obligated to publish their tables of investments. The whole period for our statisti-
cal analysis is October 2004 - March 2007. 

3. Results 
We perform a stress test method by simulating a dynamic system that represents the stock 

portfolio’s “profile”. The dynamic system includes the equations that describe the portfolio com-
position as well as the portfolio characteristics. Implementing stress testing, as a simple form of 
scenario analysis, we assume that the portfolio management may specify certain fixed scenarios. In 
our analysis, the fixed scenarios are presented by the possibilities that a stock of a specific risk 
category might migrate to another beta category through time because of market fluctuations.  

Simulating the model, we can compute portfolio’s volatility, return, beta and composition 
given a range of portfolio beta (according to the desired profile). Given the portfolio beta ranges, 
we observe the differences in the portfolio composition and we extract conclusions on how an as-
set manager has to operate in order to achieve the maximum return given the portfolio minimum 
risk. The way that an asset manager has to react because of the market fluctuations, as he has to 
restructure the portfolio, is very important as it determines portfolio’s characteristics and espe-
cially the return and the volatility. In addition, the way that he will achieve the optimum portfolio 
composition affects the total cost of transactions, consequently portfolio’s return and maybe vola-
tility (because of the lesser transactions). 

The portfolio that we use in our analysis has the following initial characteristics: 

Table 2 

The initial characteristics of the portfolio 

Risk category Return Volatility Beta Portfolio weight 

Low risk stocks 3.40% 0.64% 0.75 33% 

Medium risk stocks 5.10% 0.98% 1.00 34% 

High risk stocks 6.90% 1.38% 1.25 33% 

In order to simulate the behavior of the stock portfolio, we have considered that the stocks 
of specific risk category might migrate to other risk category through time. Using historical data 
for our analysis, we estimate the following probabilities. The probabilities calculated from histori-
cal data denote the possibility that a stock that belongs to a specific risk category may move to 
other risk category. 

Table 3 

Possibilities of beta category migration 

Initial risk category 
Risk category 

Low Medium High 

Low 71.00% 10.00% 6.00% 

Medium 21.00% 75.00% 26.00% 
Probabilities of changing 
at t+1 

High 8.00% 15.00% 68.00% 

The above matrix reflects the probabilities that the stocks may change risk category, 
which implies that a stock of low risk may migrate to the medium risk category, or to the high risk, 
or remain in the same risk category in the next time period, etc. 

Next, in our model we use two different sets of correlation coefficients denoting the dif-
ferent characteristics of the portfolio. We use the dynamic system to maximize the portfolio return 
with constraint that the value of beta coefficient may vary in a range determined by the portfolio 
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manager. Simulating the model, we get the maximum portfolio return; and, moreover, we can cal-
culate the optimal portfolio composition, as well as the volatility and the portfolio beta. 

Performing the stress test method using the dynamic model with ρ12 = 0.32, ρ13 = 0.20 and 
ρ23 = 0.40 (case 1), we obtain the results of Table 4. 

Table 4 

Portfolio characteristics of case 1 

Range of port-
folio beta Max return Volatility 

Optimum portfolio 
beta 

Optimum portfolio composition 

    w1 w2 w3 

0.95<b<1.05 5.49% 0.85% 1.05 27.84% 24.32% 47.84% 

0.90<b<1.10 5.84% 0.95% 1.10 17.44% 25.12% 57.44% 

0.85<b<1.15 6.19% 1.07% 1.15 7.04% 25.92% 67.04% 

0.80<b<1.20 6.22% 1.08% 1.15 6.00% 26.00% 68.00% 

0.75<b<1.25 6.22% 1.08% 1.15 6.00% 26.00% 68.00% 

0.70<b<1.30 6.22% 1.08% 1.15 6.00% 26.00% 68.00% 

Table 5 shows the results of portfolio simulations concerning that the correlation coeffi-
cients have higher values. This is case 2 where ρ12 = 0.50, ρ13 = 0.10 and ρ23 = 0.50. 

Table 5 

Portfolio characteristics of case 2 

Range of portfolio 
beta Max return Volatility 

Optimum  
portfolio beta 

Optimum portfolio composition 

    w1 w2 w3 

0.95<b<1.05 5.49% 0.92% 1.05 27.84% 24.32% 47.84% 

0.90<b<1.10 5.84% 1.03% 1.10 17.44% 25.12% 57.44% 

0.85<b<1.15 6.19% 1.15% 1.15 7.04% 25.92% 67.04% 

0.80<b<1.20 6.22% 1.16% 1.15 6.00% 26.00% 68.00% 

0.75<b<1.25 6.22% 1.16% 1.15 6.00% 26.00% 68.00% 

0.70<b<1.30 6.22% 1.16% 1.15 6.00% 26.00% 68.00% 

Concerning the results, we observe that the maximized portfolio return reaches a stable 
“point” for each case of correlation coefficients. This implies that the value of maximized portfolio 
return cannot be above a specific level, i.e. 6.22%, and similarly the volatility can be above 1.08% 
and 1.16% for the cases 1 and 2, respectively. So, even if we widen the range of the portfolio beta 
in the model in order to have the chance for a higher portfolio return, the maximum portfolio re-
turn that we can obtain is specific. At this point, we can say that the equation model has reached a 
steady state, or, differently, to an equilibrium point. Any further change to the constraint of range 
in portfolio beta doesn’t influence the result of the system. 

The most interesting result is connected with the portfolio composition for every beta range. 
The percentage of the medium risk stocks in the portfolio remains stable and around 25%. As the 
asset manager restructures the portfolio, he achieves the highest return – minimum risk point by sub-
stituting low risk stocks with high risk stocks. The final portfolio composition is characterized by 
high risk stocks in a proportion 2/3 for risky stocks. This result leads to an asset management strategy 
as a manager can achieve the highest return by retaining stable his position in the medium risk stocks 
and restructuring the proportions of the low – high risk stocks for the riskier stocks. 

Next, we simulate the dynamic model and calculate the maximum portfolio return by 
changing the return of stocks per beta category. In so doing we want to examine the influence of 
stocks per beta category in the portfolio return. Figure 1 shows the change of maximized portfolio 
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return as the return of stocks per beta category changes. The black line indicates the relationship 
between the maximized portfolio return and return of stock per beta category without taking into 
account the possibilities that the stocks may migrate to other beta category. On the other hand, the 
grey line describes the same relationship, however, in the case that there are possibilities of change, 
as we have mentioned in the previous part of the work. 
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Fig. 1. Return of low, medium and high risk stocks 

It is obvious that the increase in portfolio return is dependent on the possibilities of migra-
tion. The possibilities of migration indicate that the stocks of a specific beta category will migrate 
to other beta category. This implies that the amount of stocks in a low/medium/high risk category, 
at the next time period, will not be the same, since they change beta category. This has happened 
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because stocks with low return migrate to other beta categories with higher return, like the high 
beta category. The same result holds in the case of stocks with medium risk. A percentage of “me-
dium return” stock moves to high return stocks and a low percentage moves to low return cate-
gory. So, the location of lines in the graphs depends on the possibilities of migration. This is illus-
trated in the 3 diagrams, that have been created regarding to the possibilities that reflect the per-
centage of stocks that change beta category (see Table 3). 

4. Conclusions 
We used a stress test method in order to study the behavior of a stock portfolio concern-

ing specific characteristics, such as its composition and the portfolio’s return and volatility. We 
constructed a dynamic system with equations that describe the behavior of a stock portfolio. The 
system parameters are estimated from quarterly data, using statistical and econometric techniques. 
By implementation of dynamical system equations, we chose the suitable portfolio composition 
among shares with different betas in order to obtain the maximum return with regard to the charac-
teristics of the portfolio. Simulating the model, we achieved the maximum portfolio return related 
to the specific portfolio characteristics that might be given by the portfolio manager. We con-
cluded that the best asset management strategy, given that the manager targets to achieve the high-
est possible return, is maintaining a stable portfolio position in the medium risk shares and restruc-
turing the portfolio asset proportions of the low and high risk ones. 

Moreover, we enhanced the above model by introducing the possibility that shares with a 
specific beta characterization may migrate to another risk category. Similarly, we computed port-
folio’s characteristics (volatility, return, beta) and its composition given a range of portfolio beta 
and the possible stocks’ migrations from a risk category to another. Finally, this model may be 
used to compare shares portfolios, and calculate basic financial indices. 
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