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Abstract  

This paper examines the portfolio optimization of energy futures by using the STARR ratio that can evaluate the risk 
and return relationship for skewed distributed returns. We model the price returns for energy futures by using the 
ARMA(1,1)-GARCH(1,1)-PCA model with stable distributed innovations that reflects the characteristics of energy: 
mean reversion, heteroskedasticity, seasonality, and spikes. Then, we propose the method for selecting the portfolio of 
energy futures by maximizing the STARR ratio, what we call “Winner portfolio”. The empirical studies by using 
energy futures of WTI crude oil, heating oil, and natural gas traded on the NYMEX compare the price return models 
with stable distributed innovations to those with normal ones. We show that the models with stable distributed 
innovations are more appropriate for energy futures than those with normal ones. In addition, we discuss what 
characteristics of energy futures cause the stable distributed innovations in the returns. Then, we generate the price 
returns of energy futures using the ARMA(1,1)-GARCH(1,1)-PCA model with stable ones and choose the portfolio of 
energy futures employing the generated price returns. The results suggest that the selected portfolio of “Winner 
portfolio” performs better than the average weighted portfolio of “Loser portfolio”. Finally, we examine the usefulness 
of the STARR ratio to select the winner portfolio of energy futures. 

Keywords: energy futures markets, portfolio optimization, principal component analysis, α -stable distributed 
innovations, t copula. 
JEL Classification: C51, G11, Q40. 
 

Introduction© 

This paper examines the portfolio optimization of 
energy futures by using the STARR ratio that can 
evaluate the risk and return relationship for skewed 
distributed returns. Additionally, we conduct 
empirical studies by using the WTI crude oil, heating 
oil, and natural gas futures traded on the NYMEX. 

Commodities such as energy, agriculture, and metal 
have been considered as the third investment assets, 
compared with the stocks and bonds. Financial 
institutions and hedge funds have recently 
recognized the commodities as the alternative 
investment objects and then tailored their own 
trading strategies in order to generate the cash. 
Down the line commodity trading is providing high 
returns as in Geman (2005) because of the 
diversification effects in the financial portfolio of 
the stocks and bonds. For example, Erb and Harvey 
(2006) and Miffre and Rallis (2007) recently 
examined and discussed the profitability of 
momentum strategies in commodity futures. In 
particular, energy trading, one of the commodities, 
has recently got roaring, because energy is traded not 
only by financial companies that provide the liquidity 
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to the market but also by energy companies that have 
to be responsible for the demand for energy. Under 
the market circumstances, hedge funds, one of savvy 
financial institutions, often have a joy to dive into 
energy markets by employing their trading strategies 
basically tested in financial markets. One of their fa- 
mous trading strategies applied to financial markets is 
a long and short trading strategy that makes zero cost 
portfolio of long and short positions and then 
generates the cash owing to the price convergence, 
which is categorized as the statistical arbitrage and 
convergence trading. In order to investigate the 
performance of the trading, Gatev, Goetzmann, and 
Rouwenhorst (2006) test the pairs trading, one of 
long and short trading strategies, by using historical 
stock prices. In addition, Jurek and Yang (2007) 
compare the performance of their optimal mean 
reversion strategy with that of Gatev, Goetzmann, 
and Rouwenhorst (2006) using the simulated data. 
The pairs trading is very close to zero-investment 
strategy as in Rachev, Jăsić, Stoyanov, and Fabozzi 
(2007) and Rachev, Jăsić, Biglova, and Fabozzi 
(2006) in the sense that the zero cost portfolio by 
using the winner and loser ones historically produces 
the profit. However, the long and short trading 
strategies including pairs trading are not applied to 
energy markets as long as we know. In order to 
conduct the long and short trading strategies in 
energy markets, we have to know how to model the 
energy futures prices and how to construct the 
portfolio to be chosen as the winner or loser portfolio. 
Thus, this paper investigates the portfolio optimization 
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of energy futures by using the STARR ratio that can 
evaluate the risk and return for skewed distributed 
returns often observed in energy futures markets. 

In order to do this, we start with the modeling of 
energy price returns. Energy commodity prices such 
as crude oil and natural gas have four highlighted 
characteristics compared with those of financial 
assets such as stocks and bonds. In the beginning, it 
is well documented that energy prices have mean 
reversion as in Pilipovic (1998) and among others.  
Then, the volatility in energy prices is larger than 
that in stock prices and time varying. Because of the 
characteristics of the volatility in energy prices, 
energy prices present the inverse leverage effect 
such that the price volatility increases in the prices 
as in Eydeland and Wolyniec (2003), while stock 
prices have the leverage effect as in Black (1975). In 
addition, energy prices have stronger seasonality 
than the financial prices owing to the seasonality of 
supply and demand for energy. In order to 
demonstrate the seasonality in the price models, 
energy price returns are represented by using the 
Principal Component Analysis (PCA) as in Geman 
(2005). It is consistent with the energy market 
observation that the common factor with seasonality 
such as temperature makes different energy prices 
fluctuate in the same direction. Finally, the 
imbalance between supply and demand gives rise to 
the sudden price soaring: spikes often observed in 
deregulated electricity and natural gas markets as in 
e.g., Huisman and Mahieu (2001), Eydeland and 
Wolyniec (2003), Geman and Roncoroni (2006), 
and among others. As discussed in Kanamura 
(2006), energy prices are strongly affected by the 
supply and demand relationship and then the 
innovation terms of energy price returns are more 
skewed than those of stock price returns due to price 
spikes by way of the more upward sloping supply 
curve transformation of the mean-reverting demand 
process than the exponential. Like these since energy 
has four unique characteristics such as ARMA effect 
(mean reversion), GARCH effect (heteroskedasticity), 
PCA (seasonality), and skewed innovations (spikes), 
we should incorporate these characteristics into the 
model of the energy price returns. Down the line we 
model the price returns for energy by using the 
ARMA(1,1)-GARCH(1,1)-PCA model with stable 
distributed innovations by reflecting the 
characteristics of energy prices1,2.Then, we propose 
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the method for selecting the portfolio of energy 
futures by maximizing the STARR ratio as in e.g., 
Rachev, Menn,  and Fabozzi (2005) that can evaluate 
the risk and return for skewed distributed returns often 
observed in energy futures markets. 

The empirical studies by using energy futures prices 
of WTI crude oil, heating oil, and natural gas traded 
on the NYMEX compare the price return models for 
energy futures, especially focusing on the 
distributions of the innovations. We show that the 
models with stable ones are more appropriate for 
energy futures than those with normal ones. In 
addition, we offer some arguments that the stable 
innovations may come from price spikes in energy 
futures markets. We then generate the price returns 
by using the proposed ARMA(1,1)-GARCH(1,1)-
PCA model with stable ones and choose the 
portfolio of energy futures by maximizing the 
STARR ratio. The results will illustrate that the 
selected portfolio, what we call “Winner portfolio”, 
performs better than the average weighted portfolio, 
what we call “Loser portfolio”, in energy markets. 
Finally, we examine the usefulness of the STARR 
ratio to select the winner portfolio of energy futures. 

This paper is organized as follows. Section 1 explains 
the ARMA(1,1)-GARCH(1,1)-PCA model with 
stable distributed innovations for energy price returns 
and then proposes the method for choosing the winner 
portfolio in energy markets by using the STARR 
ratio. Section 2 empirically compares price return 
models for energy futures traded on the NYMEX, and 
conducts the portfolio optimization based on the 
procedure as in Section 1. Section 3 concludes and 
offers the directions for our future research. 

1. The model  

1.1. The price return model for energy. Energy 
price returns are well known to have mean reversion 
and heteroskedasticity. In addition, they often 
present the large outliers in the distributed noises 
partially due to price spikes. Thus, the return model 
requires the ARMA type model for the mean 
reversion, GARCH type model for the 
heteroskedasticity as in Bollerslev (1986), and the 
stable distributed innovations for the price spikes.  

Furthermore, energy prices are correlated with each 
other and they are expected to have common 
principal components particularly due to 
seasonality. Thus, this paper models the price return 
of energy futures by using the ARMA(1,1)-
GARCH(1,1)-Principal Component Analysis 
(PCA)3 model with stable distributed innovations as 
in Appendix A as follows. 
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where ei,t denotes stable innovations for each 
variable, and zt has a multivariate distribution 
having  a skewed Student's t copula with stable 
marginals. Note that I, T, and S represent the 
numbers of energy futures, observations, and 
principal components, respectively. 

By using this model, we simulate the price returns of 
energy futures in order to choose two portfolios of 
energy futures: high and low performance portfolios. 

1.2. Portfolio selection based on the price return 
model. In order to conduct a long and short trading, 
we have to construct high and low performance 
portfolios, what we called “Winner portfolio” and 
“Loser portfolio”, respectively. This section 
proposes the method for selecting the winner 
portfolio of energy futures by using the STARR 
ratio that can evaluate risk and return of skewed 
distributed returns.  

Denote by zpl the weight of asset l in a portfolio of n 
assets, and denote by r(p) the total random return of 
the portfolio consisting of n assets: 

∑
=

=
n

l
lpl

p rzr
1

)( ,          (5) 

where rl is the random daily return of asset l. Denote 
by R(p) the total expected daily return of the portfolio 
of n assets: 
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where Rl represents the expected return of asset l. 

We define the objective function of the portfolio 
optimization by using the STARR ratio1 as in e.g., 
Rachev, Menn, and Fabozzi (2005) and Biglova and 
Rachev (2007) as follows: 

                                                      
1 The STARR ratio is also called as the CVaR ratio. 
2 The location parameter μ  and the scale parameter σ  are the mean 
and the standard deviation, respectively in the case of normal 
distribution hypothesis. 
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STARR ratio represents the ratio between the 
expected excess return and its Expected Tail Loss 
(ETL). Note that the ETL is a downside tail risk 
measure, also known as Total Value-at-Risk 
(TVaR), Expected Shortfall (ES), and Conditional 
Value-at-Risk (CVaR), and defined as  
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where 
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is the Value-at-Risk (VaR) of the random return X. 
If we assume a continuous distribution for the 
probability law of X, ETL can be interpreted as the 
average loss beyond VaR as in Rachev, Ortobelli, 
Stoyanov, Fabozzi, and Biglova (2007). 
We choose the portfolio weights zpl to maximize the 
STARR in Eq. (7). 
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The selected portfolio is set to be the winner portfolio 
in energy futures markets. On the other hand, we 
define the loser portfolio as the equally weighted 
portfolio of energy futures in order to examine the 
performance of the winner portfolio comparing to the 
average return in energy futures markets. 

2. Empirical studies for energy futures prices 

2.1. Data. The studies use three series of daily 
closing prices of WTI crude oil, heating oil, and 
natural gas futures traded on the New York 
Mercantile Exchange (NYMEX). They include six 
different delivery months from one to six whose 
sources are obtained from Bloomberg and whose 
observations start from April 3, 2000 to July 10, 
2003. The price quotes of the WTI crude oil, heating 
oil, and natural gas futures are US dollars per barrel, 
cents per gallon, and dollars per mmBtu, respectively. 

2.2. Comparisons of price return models for 
energy prices. In this section, we compare the 
stable assumption for price returns of energy futures 
with the normal assumption by fitting the data with 
joint stable and normal distributions, respectively. 
We implicitly assume that returns are uniquely 
determined by the location parameter μ  and the 
scale parameter σ  as in Appendix A2. Assuming 
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that the observations are i.i.d., we estimate two main 
parameters of the stable law as in Appendix A: the 
index of stability α  and skewness parameter β , 
which characterize the heavy-tailedness and 
asymmetry of the price return distributions of 
energy futures, respectively. For the Gaussian fit, 
we compute the first moment and standard 
deviation. Finally, to test the normal and stable 
distribution hypotheses, we compute the 
Kolmogorov-Smirnov (KS) statistic according to 

|)(ˆ)(|sup xFxFKS S
Rx

−=
∈

,          (12) 

where )(xFS is the empirical sample distribution 

and )(ˆ xF  is the standard normal cumulative 
distribution function evaluated at x for the Gaussian 
or stable fit, respectively. This statistic emphasizes 
deviations around the median of the fitted 
distribution. It is a robust measure in the sense that 
it focuses only on the maximum deviation between 
the sample and fitted distributions. 

Our sample comprises returns of 18 risky assets of 
energy markets for the period from April 3, 2000 to 
July 10, 2003. 

In the simple setting of the i.i.d. returns model, we 
have estimated the values for the four parameters of 
the stable Paretian distribution using the method of 
maximum likelihood. Figure 1 shows the scatter plots 
of the estimated pairs of α  and β  for all assets. 

A comparison between the Gaussian and stable 
hypotheses clearly indicates that stable distributions 
approximate the returns' distribution much better 
than the Gaussian one. With KS test we can compare 
the empirical cumulative distribution of several 
assets returns with either a simulated Gaussian or a 
simulated stable distribution.   

Table 1 shows that we can generally reject the 
hypothesis of normality of returns' distribution at 
different levels of confidence considered. 
Analogously, we cannot generally reject the stable 
distribution hypothesis for return distributions at 
different levels of confidence considered.  

Table 2 shows that the average KS statistic across 
different energy futures prices equals about 0.74, 
when FS(x) is the cumulative Gaussian distribution 
for the case of confidence level equal to 0.05. When 
FS(x) is the cumulative stable distribution, the 
average KS statistic among different assets is about 
0.07. The KS statistic for the stable non-Gaussian 
test is almost 10 times smaller than the KS distance 
in the Gaussian case.  

We notice from Figure 1 that all estimates of 
parameter α  are less than 2. We see also from 

Table 2 that the third quartile for α  is 
approximately 1.90. This implies that none of the 
asset returns is normally distributed.  

The majority of energy futures prices have negative 
estimate β  as it can be seen from Figure 1. The 
mean of β  is equal to about -0.54 as in Table 2. 
This fact also confirms that the stable fit 
outperforms the Gaussian one. 

Table 1. Normality and stable distribution 
hypotheses for i.i.d. model 

Confidence level 95% 99% 99.9% 99.95% 99.99% 

% of energy futures 
prices for which the 
normal distribution 
hypothesis is rejected 

73.98 74.00 74.04 74.40 74.24 

% of energy futures 
prices for which the 
stable distribution 
hypothesis is rejected  

7.10 7.14 7.37 7.13 6.62 

Table 2. Summary of statistics for sample of 18 
assets on i.i.d. model 

 α β KS distances 
(normal) 

KS distances 
(stable) 

Mean 1.8754 -0.5396 0.7398 0.0710 

Median 1.8923 -0.5368 0.7407 0.0677 

1 quartile 
(25%) 1.8653 -0.7606 0.7241 0.0431 

3 quartile 
(75%) 1.9021 -0.4082 0.7524 0.0997 

 
Fig. 1. Scatter plots between index of stability α  and 
skewness parameter β  for daily returns of 18 assets 

As a next step, we estimate the normal and stable 
GARCH(1,1) models for energy futures price 
returns. The assumptions of i.i.d. returns and 
conditional homoskedasticity are often violated in 
energy data where we observe volatility clustering. 
Such behavior is captured by Autoregressive 
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Conditional Heteroskedastic (ARCH) models and 
their generalization (GARCH models, see Bollerslev 
(1986)). Accordingly, as the second test we consider 
the GARCH models with normal and stable 
distribution innovations. Recall that the GARCH model 
of the asset returns (yt)'s can be represented by the 
expressions that assume that return process is given by 

ttt zy σ= ,               (13) 

where zt's are i.i.d. mean zero and unit variance 
random variables representing the innovations of the 
return process and where the conditional variance in 
the GARCH(p,q) model is given by  
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In the most common form of the GARCH model, zt 
~ N(0,1), so that the returns are conditionally 
normal. We observe that the GARCH model with a 
conditionally normal return distribution can lead to 
heavy tails in the unconditional return distribution.  

If we assume that the distribution of the historical 
innovations zt-n, ... , zt is heavier-tailed than the 
normal, then the returns will not be conditionally 
normal any more so that the GARCH model will 
exhibit non-Gaussian conditional distribution. Note 
that in this model, tσ  given by Eq. (14) can be 
interpreted as a scale parameter and not necessarily 
volatility, since for some distributional choices for 
zt, the variance may not exist. Specifically, in the 
case that zt 's are realizations from a α -stable non-
Gaussian distribution, the GARCH model is 
represented by the modified expression:   
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Note that the index of stability α  for the stable 
distribution is constrained to be greater than one1. 
We call the representation Eq. (15) with its 
assumption “a stable-GARCH model”. 

Similar to common GARCH models that do not 
assume stable distributed innovation processes, the 
stable-GARCH model may prove beneficial to 
model the conditional distribution of asset returns 
by capturing the temporal dependencies of the return 
series appropriately. To test the goodness-of-fit of 
the models, the standard Kolmogorov distance 
statistic can be applied. We fit the GARCH(1,1) 
models in Eqs. (14) and (15) with the Gaussian 

                                                      
1 Note that term yt-i

2 in assuming stable innovation process zt can 
become infinite rendering the whole expression meaningless. The 
condition of α  > 1 means that we impose a finite mean condition. 

innovations and α -stable distributions, respectively. 
The model parameters are estimated using the method 
of maximum likelihood assuming the normal 
distribution of innovations. In this the strong 
consistency property of estimators of the model under 
the stable Paretian hypothesis is preserved since the 
index of stability of the innovations is greater than 1 
as in Rachev and Mittnik (2000). After estimating the 
GARCH(1,1) model parameters, we computed the 
model residuals and then verified which distributional 
assumption is more appropriate.  

Table 3 shows the results of testing the normal and 
stable distribution hypotheses for stable-
GARCH(1,1) models of energy futures prices with 
normal and stable innovations, respectively. The 
results show that at the 95% confidence level, the 
hypothesis of normality is rejected for 37% of assets 
residuals and the hypothesis of stable distribution is 
rejected only for 4% of assets with residuals. 
Comparing the results in Table 3 to those in Table 1, 
we observe that the Gaussian model is rejected in 
fewer cases in the GARCH(1,1) model than in the 
simple i.i.d. model. 

Table 3. Normality and stable distribution 
hypotheses for GARCH (1,1) model 

Confidence level 95% 99% 99.9% 99.95% 99.99% 

% of energy futures 
prices for which the 
normal distribution 
hypothesis is rejected 

36.86 36.78 37.37 37.41 37.95 

% of energy futures 
prices for which the 
stable distribution 
hypothesis is rejected 

4.37 4.72 5.06 4.65 4.69 

Table 4. Summary of statistics for sample of 18 
assets on GARCH(1,1) model 

 α β KS distances 
(normal) 

KS distances 
(stable) 

Mean 1.9087 -0.6633 0.3686 0.0437 

Median 1.9113 -0.7610 0.3700 0.0437 
1 quartile 
(25%) 1.8910 -0.8663 0.3559 0.0344 

3 quartile 
(75%) 1.9279 -0.4855 0.3768 0.0517 

A summary of the computed statistics for the 
residuals of the GARCH(1,1) model is reported in 
Table 4. The results in Table 4 show that the 
average KS statistic across different innovation 
series equals about 0.37, when FS(x) is the 
cumulative Gaussian distribution for the case of 
confidence level equal to 0.05. When FS(x) is the 
cumulative stable distribution, the average KS 
statistic among different innovation series is about 
0.04. The KS statistic for the stable non-Gaussian 
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test is almost 10 times smaller than the KS distance 
in the Gaussian case. Generally, the results imply that 
the stable Paretian distribution is more adequate as a 
probabilistic model for the innovations compared to 
the Gaussian assumption. A plausible model for asset 
returns is then a model that exhibits the properties of 
volatility clustering captured by the GARCH process 
and heavy-tails captured with stable non-Gaussian 
innovations in the GARCH model. 

Figure 2 shows the scatter plots of the estimated 
pairs of α  and β  for all assets' innovation series. 
We notice from Figure 2 that all estimates of 
parameter α  are less than 2. We see also from 
Table 4 that the third quartile for α  is 
approximately 1.93. This implies that none of the 
asset returns is normally distributed.  

The majority of energy futures prices have negative 
estimate β  as it can be seen from Figure 2. The 
mean of β  is equal to about -0.66 as in Table 4. 
This fact also confirms that the stable fit 
outperforms the Gaussian one.  

 
Fig. 2. Scatter plots between index of stability α  and 

skewness parameter β  for innovations of GARCH(1,1) fit 
of daily returns of 18 assets 

Comparing Tables 3 and 1, the stable distribution 
model is rejected in fewer cases in the GARCH(1,1) 
model than in the simple i.i.d. model. It implies that 
by removing the heteroskedasticity from price returns 
that may cause the transformation of normally 
distributed innovations, i.e., stable ones, the stable 
distribution innovations are highlighted. It may be 
helpful to increase the possibility of justifying our 
assumption that the stable distributed innovations in 
price returns stem from the price spikes. 

As a next step, we estimate ARMA(1,1)-
GARCH(1,1) model. The sequence h = (hn) is 
described by the ARMA model, if  

nnnh σεμ += ,              (16) 

where  

)()( 2211110 qnqnnpnpnn bbbhahaa −−−−− +++++++= εεεμ KK .  (17) 

From Eqs. (16) and (17) we find that 

][)( 2211011 qnqnnnpnpnn bbbahahah −−−−− +++++=++− εεεε KK .  (18) 

Notice that in the case of q = 0, the model is reduced 
to the case of AR(p) model. In the case of p = 0, the 
model is reduced to the case of MA(q) model. The 
special case of ARMA(p,q) is ARMA(1,1), which is 
the combination of AR(1) and MA(1) models: 

nnnn bhaah σεε +++= −− 11110 .        (19) 

For the case of |a1| < 1, the time series, described by 
the model, is stationary. Figure 3 presents the 
computer realization of the sequence, for which the 
ARMA(1,1) model holds.  

 
Fig. 3. Simulation of ARMA(1,1) model of 

nnnn bhaah σεε +++= −− 11110 , where a0 = -1, 

a1 = 0.5, b1 = 0.1, and 1.0=σ  

The algorithm is offered in Appendix B. 

We test the hypotheses about the stable and normal 
distributions of innovations applying the KS statistics. 
We have estimated the values for the four parameters 
of the stable Paretian distribution using the method of 
maximum likelihood for the sequences of innovations. 
Figure 4 shows the scatter plots of the estimated pairs 
of α  and β  for the innovations of GARCH(1,1) fit 
of residuals, obtained from ARMA(1,1) fit of daily 
returns of 18 assets. A comparison between the 
Gaussian and stable hypotheses clearly indicates that 
stable distributions approximate the innovations' 
distribution much better than the Gaussian one. With 
KS test we can compare the empirical cumulative 
distribution of innovations with either a simulated 
Gaussian or a simulated stable distribution. Table 5 
shows that we can generally reject the hypothesis of 
normality of innovations' distribution at different 
levels of confidence considered. 

Analogously, we cannot generally reject the stable 
distribution hypothesis for innovations' distributions 
at different levels of confidence considered. 
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Table 5. Normality and stable distribution 
hypotheses for ARMA (1,1)-GARCH (1,1) model 

Confidence level 95% 99% 99.9% 99.95% 99.99% 
% of energy futures 
prices for which the 
normal distribution 
hypothesis is rejected 

37.60 36.26 36.85 36.99 36.52 

% of energy futures 
prices for which the 
stable distribution 
hypothesis is rejected 

4.63 4.51 4.37 4.47 4.33 

Table 6 shows that the average KS statistic across 
different energy futures equals about 0.38, when 
FS(x) is the cumulative Gaussian distribution for the 
case of confidence level equal to 0.05.  

Table 6. Summary of statistics for sample of 18 
assets on ARMA(1,1)-GARCH(1,1) model 

 α β KS distances 
(normal) 

KS distances 
(stable) 

Mean 1.9096 -0.6730 0.3760 0.0463 
Median 1.9074 -0.8505 0.3750 0.0480 
1 quartile 
(25%) 1.8939 -0.9562 0.3645 0.0357 

3 quartile 
(75%) 1.9289 -0.4451 0.3903 0.0529 

When FS(x) is the cumulative stable distribution, the 
average KS statistic among different assets is about 
0.05. The KS statistic for the stable non-Gaussian 
test is almost 8 times smaller than the KS distance in 
the Gaussian case. 

We notice from Figure 4 that all estimates of 
parameter α  are less than 2. We see also from 
Table 6 that the third quartile for α  is 
approximately 1.91. This implies that none of the 
innovation sequences is normally distributed.  

 
Fig. 4. Scatter plots between index of stability α  and 

skewness parameter β  for innovations of ARMA(1,1)-
GARCH(1,1) fit of 18 assets 

The majority of innovations have negative estimate 
β  as it can be seen from Figure 4. The mean of β  is 
equal to -0.67 as in Table 6. This fact also confirms 
that the stable fit outperforms the Gaussian one. 

2.3. Principal component models for energy 
futures price returns. We modeled price returns of 
energy futures so far and then found that the price 
return models with stable distributed innovations are 
more appropriate for energy futures than those with 
normal ones. However, they have dependent structure 
not only for the different maturity futures prices of 
the same energy but also for the different energy 
futures prices. For example, temperature often affects 
demand for energy. Accordingly, it is possible that 
the corresponding prices move together. In order to 
capture the whole dependency structure for energy, 
we test the asset return models based on the Principal 
Component Analysis (PCA) as in Rachev, Mittnik, 
Fabozzi, Focardi, and Jăsić (2007).    

In the beginning, we perform the PCA for the 
analyzed asset returns in an effort to examine how 
many factors influence them. We consider the 
influence of factors, which are combinations of 
analyzed assets. We replace the original n (n = 18 
for our case) correlated time series Xi with n 
uncorrelated time series Pi, supposing that each Xi 
is a linear combination of the Pi. Supposing that 
only p of the portfolios Pi have a significant 
variance, while the remaining n-p have very small 
variances, we implement a dimensionality 
reduction by choosing only those portfolios whose 
variance is significantly different from zero. We 
call these portfolios factors F. We can then 
approximately represent each series Xi as a linear 
combination of the factors plus a small 
uncorrelated noise (e): 
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The PCA works either on the variance-covariance 
matrix or on the correlation matrix. Although the 
technique is the same, the results are generally 
different. The PCA applied to the variance-covariance 
matrix is sensitive to the units of measurement, which 
determine variances and covariances. This 
observation does not apply to returns, which are 
dimensionless quantities. Therefore, we apply the 
PCA to the correlation matrix, as the returns of our 
analyzed assets are heavy tailed.  

Having performed the PCA by using the correlation 
matrix of analyzed asset returns, we obtained 18 
principal components, which are linear 
combinations of the original series, X = (X1,..., Xn)′, 
i.e., they are obtained by multiplying X by the 
matrix of the eigenvectors. 

Table 7 shows the total variance explained by a 
growing number of components. Thus, the first 
component explains about 66.82% of the total 
variance, the first two components explain about 
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90.81% of the total variance and so on. Obviously 
18 components explain 100% of the total variance. 
From Table 7 it follows that 7 of the portfolios Pi 
explain 99% of total variance. Therefore, we 
implement a dimensionality reduction by choosing 
only the first 7 factors for further analysis of their 
distributions' properties. We consider that each 
series Xi of asset returns can be represented as a 
linear combination of these 7 factors plus a small 
uncorrelated noise. 

Table 7. % of total variance by growing # of 
components on covariance matrix 

Principal 
component % of variance explained % of total variance 

explained 

1  66.8151 66.8151 

2  23.9985 90.8136 

3  3.5411 94.3548 

4  1.8570 96.2118 

5  1.3153 97.5272 

6  0.9210 98.4482 

7  0.5769 99.0251 

8  0.3256 99.3508 

9  0.2547 99.6056 

10  0.1323 99.7380 

11  0.1084 99.8465 

12  0.0698 99.9164 

13  0.0339 99.9503 

14  0.0271 99.9774 

15  0.0117 99.9892 

16  0.0067 99.9960 

17  0.0030 99.9990 

18  0.0009 100 

In the simple setting of the i.i.d. returns model, we 
have estimated the values for the four parameters of 
the stable Paretian distribution using the method of 
maximum likelihood. Figure 5 shows the scatter 
plots of the estimated pairs of α  and β  for all 
analyzed factors. 

A comparison between the Gaussian and stable 
hypotheses clearly indicates that stable distributions 
approximate the factors' distribution much better 
than the Gaussian one. With KS test we can compare 
the empirical cumulative distribution of several 
assets returns with either a simulated Gaussian or a 
simulated stable distribution.  

As Table 8 shows we can generally reject the 
hypothesis of normality of factors' distributions at 
different levels of confidence considered. 
Analogously, we cannot generally reject the stable 
distribution hypothesis for factors' distributions at 
different levels of confidence considered. 

Comparing the results in Table 8 to those in Table 1, 
we observe that the Gaussian model is rejected in 
fewer cases in the i.i.d. model of factors than in the 
simple i.i.d. model of asset returns. 

The results in Table 9 show that the average KS 
statistic across different energy futures equals about 
0.75, when FS(x) is the cumulative Gaussian 
distribution for the case of confidence level equal to 
0.05. When FS(x) is the cumulative stable 
distribution, the average KS statistic among different 
factors is about 0.20. The KS statistic for the stable 
non-Gaussian test is almost 5 times smaller than the 
KS distance in the Gaussian case. 

We notice from Figure 5 that all estimates of 
parameter α  are less than 2. We see also from 
Table 9 that the third quartile for α  is 
approximately 1.87. This implies that none of the 
factors is normally distributed.  

Some factors have negative estimate β  as it can be 
seen from Figure 5. The mean of β  is equal to        
-0.18 as in Table 9. This fact also confirms that the 
stable fit outperforms the Gaussian one. 

Table 8. Normality and stable distribution 
hypotheses for i.i.d. PCA model 

Confidence 
level 95% 99% 99.9% 99.95% 99.99% 

% of energy 
futures prices 
for which the 
normal 
distribution 
hypothesis is 
rejected 

75.07 73.20 73.78 72.97 72.51 

% of energy 
futures prices 
for which the 
stable 
distribution 
hypothesis is 
rejected 

19.98 21.09 20.70 21.60 20.40 

Table 9. Summary of statistics for sample of 18 
assets on i.i.d. PCA model 

 α β KS distances 
(normal) 

KS distances 
(stable) 

Mean 1.5749 -0.1786 0.7507 0.1988 

Median 1.5245 0.0130 0.7573 0.1428 

1 quartile 
(25%) 1.3897 -0.4025 0.7361 0.1092 

3 quartile 
(75%) 1.8660 0.0713 0.7613 0.3303 

In addition to the comparison between Tables 8 and 1, 
the stable distribution model is rejected in more cases 
in the i.i.d. PCA model than in the simple i.i.d. model. 
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It implies that the stable distributed innovations are 
accommodated in each energy price returns. It may 
partially support our assumption that the stable 
distributed innovations in price returns stem from the 
price spikes in that the price spikes occur due to the 
imbalance of supply and demand for each energy. 

 
Fig. 5. Scatter plots between index of stability α  and 

skewness parameter β  for 7 factors' series 

As a next step, we estimate the normal and stable 
GARCH(1,1) models for factors, obtained from the 
PCA. Table 10 shows the results of testing the 
normal and stable distribution hypotheses for stable-
GARCH(1,1) models of factors with normal and 
stable innovations, respectively. The results show 
that at the 95% confidence level, the hypothesis of 
normality is rejected for about 43% of assets 
residuals and the hypothesis of stable distribution is 
rejected only for about 8% of assets' residuals.  

Comparing the results in Table 10 to those in Table 3, 
we observe that the Gaussian model is rejected in more 
cases in the GARCH(1,1) model for factor series than 
in the GARCH(1,1) model for asset returns. 

Table 10. Normality and stable distribution 
hypotheses for GARCH(1,1)-PCA model 

Confidence 
level 95% 99% 99.9% 99.95% 99.99% 

% of energy 
futures prices 
for which the 
normal 
distribution 
hypothesis is 
rejected 

42.75 41.15 40.71 41.00 41.52 

% of energy 
futures prices 
for which the 
stable 
distribution 
hypothesis is 
rejected 

7.79 9.42 8.58 8.18 9.04 

A summary of the computed statistics for the 
residuals of the GARCH(1,1) model is reported in 
Table 11. The table shows that the average KS 
statistic across different factors equals about 0.43, 

when FS(x) is the cumulative Gaussian distribution 
for the case of confidence level equal to 0.05. When 
FS(x) is the cumulative stable distribution, the 
average KS statistic among different factors is about 
0.08. The KS statistic for the stable non-Gaussian test 
is almost 5 times smaller than the KS distance in the 
Gaussian case. Generally, the results imply that the 
stable Paretian distribution is more adequate as a 
probabilistic model for the innovations compared to 
the Gaussian assumption. A plausible model for 
factors' returns is then a model that exhibits the 
properties of volatility clustering captured by 
GARCH process and heavy-tails captured with stable 
non-Gaussian innovations in the GARCH model.  

Table 11. Summary of statistics for sample of 18 
assets on GARCH(1,1)-PCA model 

 α β KS distances 
(normal) 

KS distances 
(stable) 

Mean 1.6614 -0.2458 0.4275 0.0779 

Median 1.6514 0.0213 0.4248 0.0554 

1 quartile 
(25%) 1.5755 -0.7642 0.3860 0.0535 

3 quartile 
(75%) 1.9001 0.0827 0.4424 0.0603 

Figure 6 shows the scatter plots of the estimated 
pairs of α  and β  for all factors' innovation series. 
We notice from Figure 6 that all estimates of 
parameter α  are less than 2. We see also from 
Table 11 that the third quartile for α  is 
approximately 1.90. This implies that none of the 
innovations is normally distributed.  

The majority of innovations have negative estimate 
β  as it can be seen from Figure 6. The mean of β  
is equal to about -0.24 as in Table 11. This fact also 
confirms that the stable fit outperforms the 
Gaussian one. 

In contrast to the comparison between Tables 10 and 
3, the stable distribution model is rejected in more 
cases in the GARCH(1,1)-PCA model than in the 
GARCH(1,1) model. It implies that the stable 
distributed innovations may be accommodated not 
only in principal component returns but also in each 
energy price returns. It may partially support our 
assumption that the stable distributed innovations in 
price returns stem from the price spikes in that the 
price spikes occur not only due to the events 
influencing whole energy markets such as wars and 
cold waves but also due to the imbalance of supply 
and demand for each energy such as shortage of 
natural gas storage. 

Comparing Tables 10 to 8, the stable distribution 
model is rejected in fewer cases in the 
GARCH(1,1)-PCA model than in the i.i.d. PCA 
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model. It implies that by removing heteroskedasticity 
from price returns, the stable distribution innovations 
are highlighted. It may support our assumption that 
the stable distributed innovations in price returns 
stem from the price spikes1. 

As the last step, we have estimated ARMA(1,1)-
GARCH(1,1) model for factors as in Tables 12 and 13. 

In the simple setting of the i.i.d. returns model, we 
have estimated the values for the four parameters of 
the stable Paretian distribution using the method of 
maximum likelihood. Figure 7 shows the scatter 
plots of the estimated pairs of α  and β  for the 
innovations of GARCH(1,1) fit of residuals, 
obtained from ARMA(1,1) fit of factor series. 

 
Fig. 6. Scatter plots between index of stability α  and 

skewness parameter β  for innovations of GARCH(1,1) fit 
of 7 factors' series 

Table 12. ARMA(1,1)-GARCH(1,1) model for principal components 
ri pi qi,1 qi,2 qi,3 qi,4 qi,5 qi,6 qi,7 

i = 1 0.007 0.190 0.085 0.170 0.126 0.154 0.026 -0.554 
i = 2 0.007 0.173 0.078 0.143 0.078 0.077 0.014 -0.094 
i = 3 0.006 0.157 0.072 0.135 0.071 0.033 0.001 0.032 
i = 4 0.006 0.144 0.066 0.130 0.065 0.009 0.000 0.103 
i = 5 0.006 0.134 0.062 0.124 0.061 -0.007 -0.003 0.154 
i = 6 0.005 0.126 0.058 0.119 0.055 -0.020 -0.005 0.188 
i = 7 0.020 0.549 0.103 -0.925 -0.197 1.395 0.408 0.528 
i = 8 0.022 0.515 0.142 -0.658 -0.132 0.408 0.119 -0.091 
i = 9 0.023 0.464 0.156 -0.502 -0.192 -0.059 -0.016 -0.183 
i = 10 0.024 0.426 0.160 -0.355 -0.232 -0.383 -0.094 -0.147 
i = 11 0.023 0.397 0.156 -0.251 -0.255 -0.535 -0.121 -0.069 
i = 12 0.023 0.373 0.144 -0.172 -0.252 -0.626 -0.134 0.003 
i = 13 0.003 0.030 -0.081 -0.067 0.144 0.003 -0.118 0.018 
i = 14 0.003 0.028 -0.073 -0.020 0.061 -0.035 0.026 -0.021 
i = 15 0.003 0.025 -0.065 0.000 0.017 -0.029 0.110 0.004 
i = 16 0.003 0.021 -0.051 0.017 -0.029 0.001 0.028 0.006 
i = 17 0.004 0.018 -0.044 0.021 -0.041 0.015 -0.028 -0.001 
i = 18 0.004 0.017 -0.041 0.021 -0.038 0.016 -0.040 -0.004 

 

Table 13. ARMA(1,1)-GARCH(1,1) model for 
principal components (cont’d)• 

fj aj,0 aj,1 bj, 1 α0 α1 β1 

j=1 0.0042 0.5373 -0.6056 0.07030 0.9059 0.0202 

j=2 -0.0073 0.7114 -0.7787 0.0371 0.8619 0.1047 

j=3 0.0070 0.3378 -0.3000 0.0513 0.9078 0.0421 

j=4 0.0468 -0.4911 0.3571 0.0356 0.7329 0.2425 

j=5 -0.0463 0.5192 -0.5566 0.4708 0.1682 0.5576 

j=6 0.1039 -0.7754 0.2478 0.1421 0 0.9999 

j=7 -0.0128 -0.2500 0.2048 0.5862 0 0.5913 

                                                      
1•In this case, the price spikes consist in the principal components. 

A comparison between the Gaussian and stable 
hypotheses clearly indicates that stable distributions 
approximate the innovations' distribution much 
better than the Gaussian one. With KS test we can 
compare the empirical cumulative distribution of 
innovations with either a simulated Gaussian or a 
simulated stable distribution.   

The results in Table 14 show that we can generally 
reject the hypothesis of normality of innovations' 
distribution at different levels of confidence 
considered. Analogously, we cannot generally 
reject the stable distribution hypothesis for 
innovations’ distributions at different levels of 
confidence considered.  

Comparing the results in Table 14 to those in Table 
5, we observe that the Gaussian model is rejected in 
more cases in the ARMA(1,1)-GARCH(1,1) model 
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for factor series than in the ARMA(1,1)-GARCH(1,1) 
model for asset returns. 

Table 15 shows that the average KS statistic across 
different innovation series equals about 0.41, when 
FS(x) is the cumulative Gaussian distribution for the 
case of confidence level equal to 0.05. When FS(x) 
is the cumulative stable distribution, the average KS 
statistic among different innovation series is about 
0.10. The KS statistic for the stable non-Gaussian 
test is almost 4 times smaller than the KS distance in 
the Gaussian case.  

We notice from Figure 7 that all estimates of 
parameter α  are less than 2. We see also from 
Table 15 that the third quartile for α  is 
approximately 1.91. This implies that none of the 
innovation sequences is normally distributed.  

The majority of innovations have negative estimate 
β  as it can be seen from Figure 7. The mean of β  
is equal to about -0.23 as in Table 15. This fact also 
confirms that the stable fit outperforms the 
Gaussian one. 

In contrast to the comparison between Tables 14 and 
5, the stable distribution model is rejected in more 
cases in the ARMA(1,1)-GARCH(1,1)-PCA model 
than in the ARMA(1,1)-GARCH(1,1) model. It 
implies that the stable distributed innovations may 
be accommodated not only in principal component 
returns but also in each energy price returns. It may 
partially support our assumption, especially in the 
proposed model, that the stable ones stem from the 
price spikes in that the price spikes occur not only 
due to the events influencing whole energy markets 
but also due to the imbalance of supply and demand 
for each energy. 

Comparing Tables 14 to 10, the stable distribution 
model is rejected almost in the same way between in 
the ARMA(1,1)-GARCH(1,1)-PCA model and in the 
GARCH(1,1)-PCA model. It implies that the mean 
reversion as in ARMA effect does not affect the stable 
distributed innovations of principal components. 

Table 14. Normality and stable distribution 
hypotheses for ARMA(1,1)-GARCH(1,1)-PCA 

model 

Confidence level 95% 99% 99.9% 99.95% 99.99% 

% of energy futures 
prices for which the 
normal distribution 
hypothesis is rejected 

40.97 41.83 40.39 41.85 41.46 

% of energy futures 
prices for which the 
stable distribution 
hypothesis is rejected 

9.88 8.39 9.76 8.40 8.72 

Table 15. Summary of statistics for sample of 18 
assets on ARMA(1,1)-GARCH(1,1)-PCA model 

 α β KS distances 
(normal) 

KS distances 
(stable) 

Mean  1.6735 -0.2298 0.4097 0.0988 

Median  1.6514 0.0400 0.3928 0.0812 

1 quartile 
(25%) 1.5883 -0.7650 0.3820 0.0751 

3 quartile 
(75%) 1.9058 0.1143 0.4224 0.0603 

Our results show that the ARMA(1,1)-
GARCH(1,1)-PCA model with stable distributed 
innovations is more appropriate forecasting model 
for the PCA factors' series of energy futures prices 
than that with normal ones. In addition, the 
ARMA(1,1)-GARCH(1,1)-PCA model with stable 
distributed innovations is likely to be more desirable 
to model for energy futures than the ARMA(1,1)-
GARCH(1,1) model with stable distributed 
innovations in that the PCA model can incorporate 
not only the whole market price behavior of stable 
distributed innovations but also each energy one.   

 
Fig. 7. Scatter plots between index of stability α  and 

skewness parameter β  for innovations of ARMA(1,1)-
GARCH(1,1) fit of 7 factors' series 

2.4. Scenarios generation based on the asset price 
return model. By using the PCA, we determined 
that each series (i = 1,..., 18) of asset returns can be 
represented as a linear combination of 7 factors plus 
a small uncorrelated noise. Now, we have to 
generate the series of i = 1,..., 18 using the formula 
of factor models as in Eq. (1). In our model, I = 18, 
T = 812, and S = 7 are employed as the numbers of 
energy futures, observations, and principal 
components, respectively. 

The algorithm is as follows. We use the window of 
250 observations to estimate parameters and residuals 
of the factor model as in Eq. (2) and then to generate 
the factor returns' values and residuals' values for the 
next day as in Eq. (1). Here in the following we 
describe the method of return's generation for 251 day. 
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We consider the first 250 observations of returns of the 
each asset and the matrix of factor returns as 
independent variables1 to estimate parameters pi, qi,j 
and the sequence of residuals ei,t. We also have the 
factor return series fj,t for the corresponding 250 days. 
For each j = 1,..., 7 we fit the ARMA(1,1)-
GARCH(1,1) model with stable innovations uj,t to the 
factor, respectively2. We fitted stable distribution into 
the sample innovations obtained from the 

ARMA(1,1)-GARCH (1,1)-fit: ûj,t. In the sample 
innovations of ûj,t for the corresponding 250 days, we 
fit a skewed t copula so as to capture their dependence. 
The results are illustrated as in Table 16. Note that 

iγ 's denote the asymmetry parameters for each 
component, iμ 's denote the location parameters for 
each component, ν  represents the degree of freedom, 
and σ  shows the modified covariance matrix. 

Table 16. Estimates of skewed t copula parameters 
 f1 f2 f3 f4 f5 f6 f7 

γi -0.0542 -0.0671 -0.0116 0.0335 0.0236 -0.0157 -0.1251 

μi 0.1108 0.1709 0.0245 -0.0785 0.0505 -0.0440 0.2471 

ν 5 5 5 5 5 5 5 

Here the covariance matrix is estimated as follows.  

 

We have already estimated the stable marginal 
distribution of any innovation: uj,t. 

Then having estimated the stable distribution for each 
factor's innovations uj,t, we employ it in order to 
transform it into the uniform scenarios generated by 
the skewed t copula by taking the inverse of the fitted 
one-dimensional stable distribution functions. So, as a 
result, we have generated innovations zt at the date 251 
having skewed t copula as dependence and stable 
distributions for the marginals of the innovations (uj,t).•  

Now we can generate scenarios for the factors fj,t at 
date 251 using the estimated ARMA(1,1)-
GARCH(1,1) model for every fj,t with known 
coefficients and with known and generated 
innovations. So, having generated innovations of 
GARCH(1,1), i.e., values of zt, from skewed t 
copula and the stable distribution for the marginal 
distributions and then using the estimated 
coefficients of the GARCH(1,1) model denoted by 

0α , 1α , and 1β  as in Eq. (3), we'll obtain the 
returns of GARCH(1,1) denoted by tε  in Eq. (3) for 
the next day. In addition, we know the coefficients 
of the ARMA(1,1) model as in Eq. (2). So, we have 

                                                      
1• The matrix of size is 250×7. 
2 We distinguish the notation of uj,t from zt, because u represents the 
stable innovation for each factor. 

generated the factor returns of fj,t at date 251 fitting 
skewed t copula in the factor innovations and using 
stable marginal distributions for those innovations. 

Table 17. ARMA(1,1)-GARCH(1,1) stable 
distributed innovations 

ei ai,0 ai,1 bi, 1 α0 α1 β1 

i = 1 7.93E-06 0.113 -0.149 2.00E-07 0.871 0.062 

i = 2 -1.23E-05 -0.249 0.131 2.78E-07 0.892 0.036 

i = 3 -3.84E-06 0.556 -0.490 1.76E-07 0.835 0.066 

i = 4 3.37E-06 -0.528 0.623 4.15E-08 0.840 0.061 

i = 5 4.75E-05 -0.696 0.678 4.40E-07 0.000 0.318 

i = 6 5.44E-05 -0.659 0.609 2.00E-07 0.834 0.071 

i = 7 3.23E-05 0.529 -0.530 4.03E-06 0.000 1.000 

i = 8 1.60E-04 -0.874 0.821 3.86E-06 0.019 0.935 

i = 9 4.35E-05 -0.917 0.890 8.19E-06 0.099 0.000 

i = 10 2.65E-05 -0.941 0.900 2.00E-07 0.954 0.000 

i = 11 -8.66E-06 -0.868 0.837 2.48E-06 0.233 0.000 

i = 12 2.77E-06 0.251 -0.317 8.70E-06 0.356 0.000 

i = 13 -4.71E-04 -0.992 1.000 5.04E-07 0.466 0.534 

i = 14 2.17E-04 0.150 -0.466 1.17E-06 0.493 0.507 

i = 15 -1.24E-06 0.766 -0.943 6.36E-07 0.735 0.265 

i = 16 6.85E-04 -0.881 0.898 5.21E-06 0.000 1.000 

i = 17 -2.82E-07 0.749 -0.726 1.29E-06 0.602 0.000 

i = 18 4.63E-07 0.593 -0.514 4.36E-06 0.469 0.000 

0.591275  0.155343  0.119897  0.244183  -0.168410  0.065424  0.239456 

0.155343  0.575963  0.037945  0.240159   0.116046  0.034315  -0.085000 

0.119897  0.037945  0.595065  0.041207  -0.039040  0.044453  -0.079760 

0.244183  0.240159  0.041207  0.587961   0.043619  0.094310  0.090417 

0.168410  0.116046 -0.039040  0.043619   0.595625 -0.053620 -0.102840 

0.065424  0.034315  0.044453  0.094310  -0.053620  0.911118 -0.015520 

0.239456 -0.085000 -0.079760  0.090417 -0.102840 -0.015520  0.549806 

=Σν
ˆ

.
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Going back to our PCA model, using Eq. (1), we 
have 250 sample residuals ei,t for every i = 1,..., 18 
based on the first 250 observations. We fit in each 
individual series ei,t the stable innovations and 
generate scenarios for ei,251. This scenario generation 
is done independently for every i and also 
independently of the factor-innovations generations 
not by applying skewed t copula but by fitting the 
α -stable distribution on individual series of e. 

We finally calculate the value of the return ri,t as in 
Eq. (1) for every asset on the next day, i.e., 251 day, 
by using the estimated parameters of pi and qi,j, the 
generated values of factor returns fj,t, and the 
generated value of the small uncorrelated noise ei,t. 

In this way, we can generate the price returns of 
each energy futures with 3 types of energy and 6 
different maturities. 

2.5. Portfolio selection based on the price return 
model. By using the simulations of energy futures 
price returns, we obtain the winner and loser 
portfolios for energy futures. As the winner portfolio, 
we introduce the maximization of the STARR ratio 
for energy futures portfolio. The details are illustrated 
in Appendix C. In contrast, as the loser portfolio we 
employ the average weighted portfolio of energy 
futures prices. The realized portfolio wealth and total 
return of winner and loser portfolios are illustrated in 
Figures 8 and 9, respectively. Note that the wealth is 
defined as )1(1 i

n
i r+Π = . 

 
Fig. 8. Realized wealth of winner and loser portfolios 

Figure 8 illustrates that the realized wealth of the 
winner portfolio almost exceeds that of the loser one 
except time around 270 and 470. In addition, Figure 9 
illustrates that the realized total returns of the winner 
portfolio are more than those of the loser one except 
the same periods. Figures 8 and 9 imply that the 
STARR based portfolio, i.e., the winner portfolio, can 
generate more profit than the equally weighted 
benchmark portfolio, i.e., the loser portfolio, as long 
as judging from the simulation results. 

 
Fig. 9. Realized total return of winner and loser portfolios 

Additionally, we also conduct another simulation. The 
results of two simulations are tabulated in Table 18. 

Table 18. The results of simulations 

Simulation №1 Simulation №2 

Measures Values 

(daily, 
%) 

Relative 

difference 

Values 

(daily, 
%) 

Relative 

difference 

Benchmark 

Average 
mean 
return 

0.107 0.191 0.106 0.179 0.090 

Estimated 
ETL (99%) 3.471 -0.418 3.493 -0.414 5.961 

STARR 
(99%) 3.085 1.046 3.033 1.011 1.508 

Estimated 
standard 
deviation 

0.862 -0.535 0.861 -0.535 1.852 

Sharpe 
Ratio 12.424 1.559 12.312 1.536 4.855 

Note that the relative difference is defined by the 
ratio of the value of simulation minus that of 
benchmark over the value of benchmark. 

Table 18 suggests that STARR ratios of the two are 
3.085 and 3.033, respectively and they are greater 
than that of benchmark of 1.508. Thus, the 
performance of the winner portfolios in energy 
futures markets by using the STARR ratio is likely 
to be better than that of loser portfolio by using the 
average return, as long as we employ the data in this 
paper. 

Judging from Sharpe ratios as in Table 18, two 
simulations perform better than the benchmark with 
the relative differences of 1.559 and 1.536, 
respectively. On the other hand, from STARR ratios 
as in Table 18, two simulations perform better than 
the benchmark only with the differences of 1.046 
and 1.011, respectively. The differences come from 
the risk measures: the standard deviation for the 
Sharpe ratio on one hand, and the ETL for the 
STARR ratio on the other hand. The standard 
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deviation captures the risk of the portfolio by 
assuming that the price returns follow normal 
distributions, while the ETL does it by assuming 
that they do not necessarily follow normal ones. 
Thus, the estimated standard deviations evaluate the 
portfolio risk less than the estimated ETLs. Taking 
into account that price returns of energy futures 
have the stable distributed innovations, the STARR 
ratio may be more appropriate than the Sharpe ratio. 
It leads to the usefulness of the STARR ratio so as 
to obtain higher performance portfolio than the 
average in energy markets appropriately. 

Conclusions and directions for future research 

This paper has examined the portfolio optimization 
of energy futures by using the STARR ratio that can 
evaluate the risk and return relationship for skewed 
distributed returns. We have modeled the price 
return for energy by using the ARMA(1,1)-
GARCH(1,1)-PCA model with stable distributed 
innovations that reflects the characteristics of 
energy: mean reversion, heteroskedasticity, 
seasonality, and spikes. Then, we have proposed the 
method for selecting the portfolio of energy futures 

by maximizing the STARR ratio. The empirical 
studies by using energy futures prices of WTI crude 
oil, heating oil, and natural gas traded on the 
NYMEX have compared the price return models 
with stable distributed innovations to those with 
normal ones for energy futures. We have show that 
the models with stable distributed innovations are 
more appropriate for energy futures than those with 
normal ones. In addition, we have offered some 
arguments that the stable innovations may come 
from price spikes in energy futures markets. Then, 
we generate the price returns by using the proposed 
ARMA(1,1)-GARCH(1,1)-PCA model with stable 
ones and choose the portfolio of energy futures. The 
results have illustrated that the selected portfolio 
performs better than the average weighted portfolio. 
It implies that the STARR ratio may work well in 
selecting the winner portfolio of energy futures. 

This paper did not examine the performance of the 
long and short trading strategy in order to focus on 
the method for selecting the winner portfolio in 
energy futures markets. We leave it to the direction 
for our future research. 
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Appendix A. α -stable distribution 

The log-returns of energy prices are well known for having high skewness and kurtosis. So it is difficult to model such time 
series appropriately by using the normal distribution. α -stable distribution is often introduced as a tool to model such high 
skewness and kurtosis. Unfortunately, it does not have distribution function and density in closed form. Stable distributions 
are introduced by their characteristic function as follows, 
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where F(t) denotes the characteristic function of the stable law: 
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The parameter α  describes the kurtosis of the distribution with 20 ≤< α . The smaller α  is, the heavier is the tail of the 
distribution. The parameter β  describes the skewness of the distribution, 11 ≤≤− β . If β  is positive (negative), then the 
distribution is skewed to the right (left). μ  and σ  are the shift and scale parameters, respectively. If α  and β  equal 2 and 
0, respectively, then the α -stable distribution reduces to the normal one. 

Appendix B. The algorithm 

In the beginning, knowing the number of observations N (N = 812) and return series Rt
i, we determine coefficients a 

and b of the ARMA(1,1) model: tttt bRaaR εε +++= −− 11110 . Then, for that purpose we have to solve the system 
of equations: 
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If parameters a and b are found, we perform the next steps. We, then, restore empirical values of residuals )( tεε =  

from the ARMA(1,1) model: tttt bRaaR εε +++= −− 11110  based on found coefficients a and b: 

11110 −− −−−= tttt bRaaR εε .  (B4) 

After we have found the residuals from ARMA(1,1), we finally apply the GARCH(1,1) model for them, obtain 
innovations and check the hypotheses for normality and stability for the innovations of the GARCH(1,1) model of the 
residuals from the ARMA(1,1) model. We determine parameters of stable distribution for the sequence of innovations: 
α  is the index of stability ( ]2,0(∈α ), β  is the skewness parameter ( ]1,1[−∈β ), σ  is the scale parameter 

( +∈ Rσ ), and μ  is the shift parameter ( R∈μ ). 

Appendix C. Optimization problem solving for energy futures 
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where zpl is the weight of asset l in the portfolio of n assets, r (p) is the total random return of the portfolio consisting of 
n assets: lpl

n
l

p rzr 1
)(

=Σ= , where rl is the random daily return of asset l, lpl
n
l

pp RzrER 1
)()( )( =Σ==  is the total 

expected (daily) return of the portfolio of n assets, where Rl represents mean return (expected value of rl-vector of 
dimension equal to 250 working days), and n is set to 18 such that zpl > 0 where zpl is the weight of individual asset l in 
the portfolio of n assets: 
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n = 18.  (C8) 


