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Abstract 

We develop a continuous-time evolutionary market model where prices are endogenously generated by supply and 
demand. Investment strategies are assumed to be fix-mix, which means that the relative budget shares are constant in 
time. The model is therefore a hybrid. While given portfolio rules remain constant over time, assets, market-clearing 
and in particular market shares of the individual portfolio strategies evolve in continuous time. Our main goal is to 
understand the wealth dynamics which describes the evolution of market shares. We study its asymptotic properties 
and identify evolutionary stable investment strategies. These strategies prevent entrants to the financial market from 
gaining wealth in the long run and furthermore, in the existence of a small diversified number of mutant strategies, 
drive the invading strategy out of the market. Our definition of evolutionary stability is therefore a close adaptation of 
Maynard-Smith and Price’s (1973) original definition of an ESS [8].  
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Introduction© 

The Darwinian principle “Survival of the Fittest” is 
classically used by evolutionary biologists to 
explain the origination and evolution of species. The 
two key principles in Darwin’s theory are mutation 
and selection. It is now more and more recognized 
that the dynamic of many economic systems relies 
on these exact principles. Full rationality, which is 
missing in the biological context, has mostly 
disappeared as a key assumption in economic 
models. Mutation can be explained by the existence 
of noise traders or traders which rationally decide to 
try out a new strategy, which they believe is 
superior to the market strategy. The process of 
selection can be understood as a process of 
adaptation and imitation, rather than a process of 
inheritance in evolutionary biology. On the other 
hand, the bankruptcy of a company using a 
particular market strategy very much corresponds to 
the case of extinction of an inferior species and it 
can be argued that among all economic systems, 
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financial markets are probably the ones which 
closest resemble biological systems. 

Evolutionary financial market models in discrete 
time have been considered in Blume and Easley [2], 
Evstigneev, Hens and Schenk-Hoppe [3], [4], [6], 
and Farmerand Lo [5]. The main point in setting up 
an evolutionary financial market model is the 
specification of an evolutionary dynamic which 
determines the market shares of the relevant trading 
strategies over time. In general such a dynamic will 
depend on the stochastic payoffs, dividends or 
prices of the underlying assets, as well as the trading 
strategies, which are assumed to be adapted to the 
underlying information structure. The models 
developed by Evstigneev, Hens and Schenk-Hoppe 
assume that stochastic dividends resp. payoffs of the 
underlying assets are exogenously given, but that in 
contrast to other models the asset prices are 
determined by the trading strategies and a market 
clearing condition. In this article we use a similar 
approach as in Evstigneev, Hens and Schenk-Hoppe 
but set up a model in continuous time rather than in 
discrete time. The choice of continuous time brings 
with it the usual technical problems which lie in the 
analytical formulation of the model, in particular in 
a probabilistic framework, but has the major benefit, 
that methods from classical analysis such as partial 
differential equations and stochastic calculus 
become applicable and provide powerful tools for 
the problems solution. We therefore think that it is 
necessary to adapt discrete time evolutionary 
finance models to a continuous time framework. In 
this article we present a first step into this direction 
by considering a model in which the trading 
strategies are assumed to be of such a type, that the 
relative budget shares are constant in time.The same 
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type of trading strategies has been used in 
Evstigneev, Hens and Schenk-Hoppe [4]. The model 
can then be considered as a hybrid. While given 
portfolio rules remain constant over time, assets, 
market-clearing and in particular market share of the 
individual portfolio strategies evolve in continuous 
time. The case of more general strategies will be 
considered in future work. Nevertheless, we set up a 
continuous time stochastic dynamic for this model 
which describes the evolution of market shares in a 
population of finitely many trading strategies. 
Mathematically our dynamic presents a random 
differential equation. A mathematical treatment of 
such objects can be found in Arnold [1] or Soong [9], 
to which we also refer at times. Under this dynamic 
and the assumption of ergodic dividend processes we 
show that the portfolio rule which invests according to 
expected relative dividends is evolutionary stable and 
hence that a market consisting entirely of traders using 
this rule can not be invaded by a small number of 
traders using different rules. Additionally we derive 
the optimal strategy for invasion into a market which 
is not yet dominated by the evolutionary stable 
strategy and hence not yet evolutionary mature. The 
structure of the article is as follows. In section 2 we 
set up a discrete time market selection dynamic with 
variable time discretization tΔ , while in section 3 we 
determine the corresponding continuous time dynamic 
by considering the limit of this dynamic for 0tΔ → .  
In section 4 we derive the evolutionary stable strategy 
and the optimal invasion strategy. The main 
conclusions of the article are summarized in section 5.  

1. The discrete model 

In this section we adapt the discrete time 
evolutionary finance model developed by 
Evstigneev, Hens and Schenk-Hoppe [3] in a way 
that we introduce time steps of arbitrary length tΔ  
as opposed to time steps of fixed length equal to 
one. Furthermore we interpret payoffs of assets as 
consumptions goods rather than dividends or real 
payoffs. This has the nice benefit that our model and 
conclusions are also valid in a general 
macroeconomic context, where assets simply need 
to be replaced by production units. The re-
formulation of the model allows us to study the limit 
behavior of the resulting dynamic for 0tΔ → . 
More precisely, we consider an economy consisting 
of 1k K= ,...,  assets which all produce the same 
consumption good. The price of this consumption 
good at time t  is denoted by 0

tp . The amount of the 
consumption good produced by asset k  in the 
period [ )t t t, + Δ  is denoted by k

t tD +Δ . A potential 
investment strategy is given by 0( )t t K tλ λ, ,, ..., , where 

0tλ ,  represents the consumption at time t  in units of 

the consumption good, and t kλ ,  is the fraction of the 
wealth, which the investor assigns to the purchase of 
the k -th asset in period [ )t t t, + Δ . We note that t kλ ,  
is determined at the beginning of the period 

)[ ttt Δ+, , while k
t tD +Δ  is determined at the end. This 

justifies the choice of sub-indices. We assume that our 
economy is influenced by 1i I= ,...,  investment 
strategies ( )i

t tλ  but that all these strategies use the 
same consumption rate 0c > , i.e.  

0
i
t c tλ , = Δ    (1) 

for all i . In general the trading strategies may 
depend in a nontrivial way on time and the state of 
the economy. In this article we assume, however, 
that the investment strategies are constant in time. 
More precisely we assume that  

(1 )i i
t k k c tλ λ, = − Δ     (2) 

for all t  with constants i
kλ  satisfying 

1
1K i

kk
λ

=
=∑  

and 0 1i
kλ< <  for  .,...,1 Ii =  Our investment 

strategies are therefore completely diversified. The 
factor 1 c t− Δ  which represents the consumption 
has been introduced in order to guarantee that 

0
1K i

t kk
λ ,=

=∑ . Note that the expression in equation 

(2) depends on the size tΔ  of the time step and we 
therefore use the notation  

( ) (1 )i i
k kt c tλ λΔ := − Δ    (3) 

Finally we denote with i
t tw +Δ  the wealth generated 

by the i -th investment strategy and with  
1 I

t t t t t tw w w⎛ ⎞
⎜ ⎟+Δ +Δ +Δ⎝ ⎠

= , ,L  

the wealth vector at time t t+Δ . Market clearing 
prices k

t tp +Δ  for the assets 1k K= ,...,  are 
determined from the following condition:  

( )k
t t k t tp t wλ+Δ +Δ= Δ    (4) 

Let us then denote with  

tk

i
t

i
k

tk

i
t

i
k

k
t

i
t

i
ki

kt w
w

wt
wt

p
wt

λ
λ

λ
λλ

θ =
Δ
Δ

=
Δ

=
)(
)()(

,     (5) 

the number of units of asset k  held by portfolio rule 
i  during the period [ )t t t, + Δ . Then we obtain the 
following wealth equation:  

0

1
( )

K
i k i
t t t t t t k t t t k

k
w p D t wλ θ⎛ ⎞

⎜ ⎟+Δ +Δ +Δ +Δ ,⎝ ⎠
=

= + Δ∑    (6) 
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which is analogous to equation (2.7) in Evstigneev, 
Hens and Schenk-Hopp é  [3]. Now it follows 
directly from the market clearing condition on 
consumption goods that  

0

1 1 1

I K I
k i i

t t t t t k t t
i k i

p D c twθ+Δ +Δ , +Δ
= = =

= Δ .∑∑ ∑     (7) 

Noting that  

1
1

I
i
t k

i
θ ,

=

=∑
     

(8) 

 

we obtain from (7) that  
0
t t t t t tp D c tW+Δ +Δ +Δ= Δ ,   (9) 

where  

1 1

K I
k i

t t t t t t t t
k i

D D W w+Δ +Δ +Δ +Δ
= =

≡ , ≡ .∑ ∑
  

(10) 

As in Hens and Schenk-Hopp é  [6] we assume that 
0tD ≥  for all times t  and all states ω . In order to 

compare different strategies, it is more convenient to 
consider market shares of portfolio rules instead of 
the amount of the actual wealth. Denoting by  

i
i t

t
t

wr
W

=  

the market share of portfolio rule i , we conclude 
easily from (5) and (9) that  

1

( )
K

i k i
t t t t k t t t k

k

r c td t rλ θ⎛ ⎞
⎜ ⎟+Δ +Δ +Δ ,⎝ ⎠

=

= Δ + Δ ,∑  (11) 

where  
k

k t t
t t

t t

Dd
D

+Δ
+Δ

+Δ

≡    (12) 

is the relative dividend payment of asset k  and 
1( )I

t t t t t tr r r+Δ +Δ +Δ ′≡ , ,L . Let us introduce the 
following notation  

i i
t t k kI K K I

θ λ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟,⎝ ⎠ ⎝ ⎠× ×

Θ = ,Λ = .  

Then we infer from (11) that  

[ ] ( )1(1 )t t t t ttr c t dId c t −
+Δ +Δ= Δ Θ− − Δ Θ Λ  (13) 

where 1( )K
t t t t t td d d+Δ +Δ +Δ ′≡ , ,L  and Id  represents 

the I I×  identity matrix.  

Remark 1. Under our assumptions a minor 
modification of the proof of Proposition 1 in [3] 

shows that the market share dynamic (13) is well-
defined and in particular the matrix 

(1 ) tId c t− − Δ Θ Λ  is invertible for every 0tΔ > .    

2. A continuous time evolutionary market 
model 

In this section we establish a continuous-time 
evolutionary market model by considering the limit of 
(13) for 0tΔ → . We will use the following notation:  

( ) ., ΛΘ≡=
× tIIjiA α  

It then follows from Lemma A1 in the technical 
appendix that the market share dynamics (13) can be 
expressed as  

1
11 1

1

21 2 2

1

1 ( 1) ( 1)

( 1) 1 ( 1)
1 1 1

( 1) ( 1) ( 1)

( 1) ( 1) 1 ( 1)

t I

I
I t I Ii

t t

i I

I I i I I

c t a z c t a

c t a z c t a
r

c t a c t a c t a

c t a c t a c t a

, Δ ,

, Δ ,
+Δ

, , ,

, , ,

+ Δ − Δ −

Δ − + Δ −
=

Δ − Δ − Δ −

Δ − Δ − + Δ −

L L

M M M L M

L L

L L

L L

M M M L M

L L     

(14) 

where 1( )i
t t I t t tz z dΔ Δ × +Δ= ≡ Θ . On account of  

1

1
I

i
t

i

zΔ
=

= ,∑  

it follows from equation (14) and equation (23) in 
the technical appendix that  

1

0
lim ii

t t
t

B
r

B+

,
+Δ

Δ →
=    (15) 

where  

2 1 22 2

1 2

1 1 1
1

1

I
i j I I

I I II

a a a
B b

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

, ,,⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟,⎝ ⎠ × ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟, ,,⎝ ⎠

− − −
≡ = ,

− − −

L

L

M M L M

L

 

and 1 iB ,  is the algebraic cofactor of the element 1 ib ,  
in the matrix B . The following Proposition is useful 
under two aspects. First, it establishes that our 
construction of the wealth dynamic has a continuous 
time limit, and, second, it establishes an alternative 
formula for the market share vector tr .  

Proposition 1. We have the following relationship 
for the limit of the market shares dynamics with 
respect to 0tΔ →   

1

0
lim 1ii i

t t t
t

B
r r i I

B+

,
+Δ

Δ →
= = , = , , .L    (16) 
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From the point of classical evolutionary game 
theory, in particular with hindsight of the definition 
of an evolutionary stable strategy (ESS) in the sense 
of Maynard Smith and Price (1973) we can often 
restrict our analysis to the case of only two 
strategies, i.e. 2I = . The situation is then 
interpreted in a way that the market is dominated by 
one particular strategy, potentially the ESS strategy, 
and due to be invaded (or not) by another strategy. 
Such a restriction does not allow us to explain any 
features which relate to co-evolution, in which two 
strategies influence each other positively and are 
jointly driving out a third one, which is individually 
superior than the first two. We admit that a 
discussion of co-evolutionary market dynamics is 
necessary at some point, but for now keep up with 
the existing line of classical evolutionary game 
theory models.  

By means of Proposition 1 we are now able to 
determine the random differential equation which 
describes the evolution of market shares in 
continuous time. As indicated, we focus on the 
particular case 2I = .  

Proposition 2. Assume that the relative dividend 
processes 0( ) 1k

t td k K> , = , ,L  are exogenously 
given processes with continuous paths, then the 
stochastic market shares 1

tr  and 2
tr  corresponding 

to two investment strategies satisfy the following 
random differential equations  

( )1

1 1 2 1

1 2

1 1 2 1

1 1 1
(1 )1 10

1 2 2 1 (1 )1

1
k
t k

k t k t

k k

k t k t

K d
r rkt t

tK

r rk

dr cz cr c r
dt a a

λ
λ λ

λ λ
λ λ

+ −=

, , + −=

−−
= =

+

∑
∑     

(17) 

( )2

1 2 2 2

1 2

1 2 2 2

2 1 2 2
(1 )1 20

1 2 2 1 (1 )1

1
k
t k

k t k t

k k

k t k t

K d
r rkt t t

tK

r rk

dr dr cz cr c r
dt dt a a

λ
λ λ

λ λ
λ λ

− +=

, , − +=

−−
= − = = .

+

∑
∑    

(18) 

Both equalities hold a.s.   

Equations (17) and (18) describe the selection 
process inherent in our market model. The mutation 
feature will be implicitly assumed in our definition 
of evolutionary stability which will follow in the 
next section. Equations (17) and (18) are well 
defined in the sense that solutions for arbitrary 
initial conditions exist and are unique in the mean 
square sense.  

Proposition 3. There exists a unique mean square 
solutions in the sense of Arnold and Song [1], [9] 
for both random differential equations (17) and (18) 
and arbitrary initial conditions 1 2

0 0 [0 1]r r, ∈ , .   

The following Corollary which follows from the 
uniqueness part or Proposition 3 guarantees that 

there are no sudden deaths or bankruptcies in our 
economy.  

Corollary 1. The hyperplane is invariant under the 
dynamic (17) and (18). This means that given 

00 =ir , i = 1,2, then 0i
tr =  for all 0t ≥ ; and given 

0 0 1 2ir i> , = , , then 0i
tr >  (a.e.) for all 0t ≥ . 

Therefore there are no sudden deaths or 
bankruptcies in our economy.   

3. Evolutionary stability of the market 

We assume in this section that the relative dividend 
processes 0( ) 1k

t td k K> , = , ,L  are first-order 

stationary and ergodic, i.e. ( )K
t kE d d=:  is time-

independent for all 1k K= , ,L  and  

∫∞→
=

T
K
tT

k dtd
T

d
0

1lim  

holds with probability 1. Under this assumption we 
show that a portfolio rule which invests according to 
the relative expected dividends payed by the assets 
is evolutionary stable and hence can not be invaded 
by other fix-mix strategies. For discrete time 
evolutionary market models similar results have 
been obtained in Hens and Schenk-Hopp é  [3]. The 
assumption on first order stationarity is satisfied for 
example if the relative dividend process follows a 
martingale, which economically represents a 
reasonable assumption. The second condition above 
corresponds to the fact that ergodicity of stochastic 
processes intuitively describes the property that no 
sample helps to meaningfully predict values that are 
very far away in time from that sample and that the 
time path of the stochastic process is not sensitive to 
initial values. For technical reasons we further 
assume that the expectations of the relative dividend 
processes 1k k Kd , = , ,L  are all strictly positive.  

As noted in the proof of Corollary 1, there exist two 
fixed points (1,0) and (0,1) in (17) and (18) 
respectively. By matters of symmetry we can 
without loss of generality restrict our discussion on 
stability below to the stability of the fixed point 
(1,0) of (17) and (18), which corresponds to the 
solution 1 21 0 0t tr r t= , = , ≥ . Obviously we have 

1 21t tr r= −  and therefore it is sufficient to study 
equation (18) exclusively. We think of the portfolio 
rule 1λ  as the incumbent market strategy which is 
due to be invaded by the portfolio rule 2λ .  

Definition 1. The exponential growth rate 2 1( )g λ λ;  
of the portfolio rule 2λ ’s wealth share in a market 
dominated by the portfolio rule 1λ  is defined via  
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2
2 1

2
0

1( ) lim log T

T

rg
T r

λ λ
→∞

⎛ ⎞
; ≡ .⎜ ⎟

⎝ ⎠
    (19) 

The existence of the limit in Definition 1 strongly 
depends on the ergodicity assumption on the relative 
dividends. We omit the technical details. Using the 
exponential growth rate as a substitute for real 
payoffs in classical game theory and applying a 
dynamical picture rather than a static one, the direct 
implementation of Maynard Smith and Price’s idea 
of an evolutionary stable strategy [8] leads us to the 
following definition:  

Definition 2. A portfolio rule ESSλ  is called 
evolutionary stable, if the following conditions hold:  

1) for any fix-mix portfolio rule ESSλ λ≠  we 
have ( ) 0ESSg λ λ; ≤ ; 

2) if ESSλ λ≠  and ( ) 0ESSg λ λ; =  then there 
exists a fix-mix portfolio rule mutλ  s.t. 

( ) 0 ( )mut mut ESSg gλ λ λ λ; > ≥ ; .  

The first condition says that under the market 
selection process, a potential invader can not grow if 
the market is in evolutionary equilibrium. The 
second condition says, that in the presence of a 
mutation process, the potential invader is in fact 
driven out of the market by the ESS strategy. The 
connection between various static versions of ESS 
and their stability properties, when applying some 
sort of evolutionary dynamic has been widely 
studied. See for example Weibull [10] for a good 
overview of the classical theory. As our market 
shares do not correspond to payoff in the classical 
sense and our definition of ESS is not standard, 
these results do not apply directly to our case. It was 
shown in [6] in a discrete time framework that the 
growth rate determines the local stability of the 
fixed point (1 0),  in (17), (18). This proof can be 
adapted to cover the case of continuous time random 
dynamical systems by making use of the stochastic 
Hartman-Grobmann Theorem (Arnold [1], p. 377). 
We omit the details. We find the following theorem:  

Theorem 1. The portfolio rule λ∗  defined by 

k kdλ∗ ≡  with ( )k
tk dd = E  is an evolutionary stable 

portfolio rule.   

Having determined the evolutionary stable market 
rule, we now turn to a slightly different problem. In 
a market which has not yet reached evolutionary 
equilibrium, what is the best rule to invade the 
market. Such a result is in fact highly interesting 
when the aim is to set up a different market dynamic 
in which agents switch strategies according to their 
success in the sense of an adaptive dynamics (see 
Hofbauer, [7], chapter 9) rather than strategies 
competing for capital which is the line taken in this 
article. We find the following theorem:  

Theorem 2. Provided that the portfolio rule 2λ  
dominates the market, the best portfolio rule to 
invade the market invλ  is given by  

2

2
1

1k kinv
k K

i ii

d k K
d

λ
λ

λ
=

= , = , , .
∑

L     (20) 

The exponential growth rate of 2λ ’s wealth share is 
2( ) 0invg λ λ; ≤  and 2( ) 0invg λ λ; =  if and only if 

2λ λ∗= .   

Conclusions 

In this article we derive a continuous time version of 
the evolutionary market models introduced in 
Evstigneev, Hens and Schenk-Hopp é  [3] and [6]. 
We think that a continuous time approach, though 
technically more demanding and difficult to handle, 
bears in prospect the benefits of analytical 
techniques such as partial differential equations and 
stochastic calculus. Our model presents a first step 
into this new direction and is elementary in a way 
that we concentrate ourselves on so called fix-mix 
strategies. Nevertheless the model is accurate and 
provides interesting insights. The evolutionary 
stable investment strategy among all fix-mix 
strategies as well as an optimal market invasion 
strategy are derived. The restriction on fix-mix 
strategies will be relaxed in future research work. 
Nevertheless, though simple in its structure our model 
is powerful enough as to explain the well known 
market strategy “invest according to expected 
dividends” from an evolutionary point of view and 
therefore our model indicates the right way to go.  
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Appendix A 

Lemma A1. The market shares dynamics (13) is given by  

( )

2 1 22 2

1 2

(1 )
1 1 1

( 1) 1 ( 1) ( 1)

( 1) ( 1) 1 ( 1)

t t t
t t

I

I I II

Id c t A d
r

c t a c t a c t a

c t a c t a c t a

∗
+Δ

+Δ

, ,,

, ,,

− − Δ Θ
=

Δ − + Δ − Δ −

Δ − Δ − + Δ −

L

L

M M L M

L
        

(21)

 
where “∗” represents the matrix adjoint operator.  

Proof. We conclude from (13) and Cramer’s rule that  

[ ]
[ ] ( )(1 )

(1 )
t

t t t t t
t

Id c t
r c t d

Id c t

∗

+Δ +Δ

− − Δ Θ Λ
= Δ Θ

− − Δ Θ Λ
   

(22) 

and furthermore from (5) that  

1 1

1 1 1
I I

i
t k i j

i i

a j Iθ , ,
= =

= , = , = , , .∑ ∑ L   (23) 

Hence the sum of each column in the matrix [ ](1 ) tId c t− − Δ Θ Λ  is equal to c tΔ . Finally, the lemma can be 
directly derived from the properties of the determinant function.  

Proof (Proposition 1). We assume w.l.o.g that 2I = . The general case can be proved similarly, but is notational much 
more demanding. It follows directly from (17) that  

1
1 2

2
2 21

2 1 2 2

( 1)
1 ( 1)

1 1
( 1) 1 ( 1)

t

t
t t

z c t a
z c t a

r

c t a c t a

Δ ,
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+Δ
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and thus from 1 2 1t tz zΔ Δ+ =  that  
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From the last equation we obtain  
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Noting that  
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and  
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from which the statement of the proposition follows.  

Proof (Proposition 2). It follows from equation (25) and de L’ Hopital’s theorem that  
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Thus (17) follows from both (28) and the definition of tzΔ . Equation (18) can be verified analogously. 

Proof (Proposition 3). Clearly it is sufficient to prove there exists a unique mean square solution to (18). To reach this 
goal, define the function  
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then the random differential equation (18) can be written as  
2

0 0( ) [0 1]dX f X X r
dt

= , = ,∈ , .   (30) 

Noting that the function ( )f ⋅  is continuously differentiable in [0 1],  and (0) (1) 0f f= = , we infer that the phase 
space of (30) is a subset of interval [0 1],  for every ω∈Ω . For this reason, thanks to Theorem 5.1.2 in Soong (1973) 

[9], we only need to show that the function 2f L: Ξ →  satisfies the following mean square Lipschitz condition:  
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 (31) 

where Ξ  represents the set of all random variables with values in [0,1] and 2L  the corresponding space with norm 
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1

22( )X X= E . In order to prove (31), we note that since [0 1]X ∈ ,  we have  
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For every X Y, ∈Ξ , we have  
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Define  
1 2 1 2min{ 1 } max{ 1 }m k k M k kk K k Kλ λ λ λ λ λ≡ , | = , , , ≡ , | = , , ,L L          (34) 

where 0 1m Mλ λ< ≤ < . Accordingly, after lengthy but elementary calculations, it follows from (32) and (33) that  
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Thus (31) is satisfied with  
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Proof (Theorem 1). The linearization of (18) at (1 0),  is given by  
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Therefore, in a small neighborhood of (1,0), it follows from (37) and our assumption on ergodicity of the relative 
dividend processes that the exponential growth rate is given by  
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If 1 1k k k Kdλ = , = , ,L , then 2 1( ) 0g λ λ; =  no matter how the portfolio rule 2λ  is chosen. Nevertheless we see 

that condition 1 in Definition 2 is satisfied for λ∗ . Now if dλ λ∗≠ = , then there must exist a 0 {1 }k K∈ , ,L  such 
that  
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Consequently we can choose a fix-mix portfolio rule mutλ  as follows: Let 
0

mut
kλ  be sufficiently close to 1 and all 

0
mut
k k kλ , ≠  be very small. In this way we obtain a fix-mix portfolio rule which satisfies  
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and hence condition 2 of Definition 2 is also satisfied. 

Proof (Theorem 2). Maximization of the growth rate for the invading rule is equivalent to minimizing the growth rate 
of the incumbent rule. Essentially we then have to solve the following nonlinear programming problem:  
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Since the target function is concave and the constraint convex, there exists a unique global optimal solution to (39). 
Defining the Lagrangian function  
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It follows that  
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Consequently we conclude from 
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=∑  that the unique optimal solution to (39) is given by  
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By virtue of the optimality of x∗ , we infer that  
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2 2( ) ( ) 0g x g dλ λ∗; ≤ ; = .   (43) 

Furthermore we show that 2( ) 0g xλ ∗; <  if 2 dλ ≠ . In order to reach this goal, we only need to prove x d∗ ≠  

(thanks to the uniqueness). In fact, if on the contrary, x d∗ =  we obtain from (20) and  
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that  
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However this is a contradiction to the assumption of 2 dλ ≠ . Thus 2( ) 0g xλ ∗; < . 


