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The use of chaos theory predicting the EURIBOR index 
Abstract 

In this paper the chaos theory is used to predict the EURIBOR time series index from the reconstruction of its attractor. 
A non linear time series technique is applied using data of one week EURIBOR rate. For this purpose the optimal delay 
time and the minimum embedding dimension using the method of False Nearest Neighbors were found. From 
reconstruction of the corresponding strange attractor a 30 time steps out of sample prediction of the EURIBOR index is 
achieved. It indicates that the specific method could be used to facilitate the decision making process (especially for 
investment purposes), which requires as an important input the future rate or EURIBOR, since it could predict it for 
more than 6 months ahead. 
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Introduction 

Chaos theory has been applied in a wide variety of 
fields, e.g. physics, engineering, ecology and eco-
nomics. The economist interest in chaotic system is 
focus on the ability of forecasting such a time series. 
Chaotic systems are deterministic systems governed 
by a low number of variables which display a quite 
complex behavior. These systems are unpredictable 
in the long term due to their ability to amplify even 
a very small initial perturbation of initial conditions.  

In this paper a non linear time series technique is 
applied, using EURIBOR rate for one week index 
data from 30-12-1998 to 9-11-2007, in order to 
characterize and predict the time series. The paper is 

organized in two steps. In a first step state space 
parameters as the time delay and embedding dimen-
sion have been obtained for the above mentioned 
time series in order to carry out their analysis in the 
reconstructed state space. In a second step out of 
sample time series prediction is achieved using the 
reconstructed state space. 

1. Time series 

The EURIBOR time series index is presented as a 
signal x = x(t) as shown in Figure 1. It covers data 
from 30-01-1998 to 9-11-2007, representing the 
official EURIBOR rate for one week time. The 
sampling rate was Δt = 1 week and the number of 
data are N = 2277. 

 
Fig. 1. Time series of EURIBOR index 

2. State space reconstruction• 

From our data we construct a vector y(t(i)), i = 1 to 
N, in the m dimensional phase space given by the 
following relation (Kantz & Schreiber, 1997; 
Takens, 1981) 
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This vector represents a point to the m dimensional 
phase space in which the attractor is embedded each 
time, where τ is the time delay τ = iΔt while Δt = 1 
day. The term x(t(i)) represents a value of the exam-
ined scalar time series in time, corresponding to the 
i-th component of the time series. Use of this 
method reduces phase space reconstruction to the 
problem of proper determining suitable values of m 
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and τ. The choice of these values is not always sim-
ple, especially when we do not have any additional 
information about the original system and the only 
source of data is a simple sequence of scalar values, 
acquired from the original system. The dimension, 
where a time delay reconstruction of the phase space 
provides a necessary number of coordinates 
(Strozzi, 2002) is called embedding dimension m.  

2.1. Time delay τ. Using the average mutual infor-
mation we can obtain τ, less associated with linear 
point of view, and thus more suitable for dealing 
with nonlinear problems.  

The average mutual information may be expressed 
by the following formula (Fraser & Swinney, 1986, 
Abarbanel; 1996): 
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where P(x(t(i)), x(t(i+τ))) is the joint probability 
density for the values x(t(i)) and x(t(i+τ)), while 
P(x(τ)) expresses the probability density of the value 
x(τ(i)). In general, I(τ) expresses the amount of in-
formation (in bits), which may be extracted from the 

value in time t(i) about the value in time t(i+τ). A 
value of τ, suitable for the phase space reconstruc-
tion, is usually considered the position of the first 
minimum of I(τ) (Kantz & Schreiber, 1997). In this 
case τ = 48 time steps as shown in Figure 2.  

 
Fig. 2. Mutual information I vs time delay τ 

2.2. Embedding dimension m. After obtaining the 
satisfactory value of τ, the embedding dimension m 
is to be determined in order to finish the phase space 
reconstruction. For this purpose the method of False 
Nearest Neighbors (Kennel et al., 1992) is used. 
More specifically, the method is based on a fact that 
when embedding dimension is too low, the trajec-
tory in the phase space will cross itself. If we are 
able to detect these crossings, we may decide 
whether the used m is large enough for correct re-
construction of the original phase space (i.e. when 
no intersections occur) or not. When intersections 
are present for a given m, the embedding dimension 
is too low and we have to increase it at least by one. 
Then, we test the eventual presence of self-crossings 
again (Kennel et al., 1992, Abarbanel, 1996). The 
practical realization of the described method is 
based on testing the neighboring points in m-
dimensional phase space. Typically, certain amount 
of points is taken in the phase space and finds the 
nearest neighbor to each of them. Then distances for 
all these pairs are computed as well as their dis-

tances in (m+1)-dimensional phase space. The rate 
of these distances is given by 
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where yi(m) represents the reconstructed vector, 
belonging to the i-th point in the m-dimensional 
phase space and index n(i) denotes the nearest 
neighbor to the i-th point. If P is greater than some 
value Pmax, we call this pair of points false nearest 
neighbors (i.e. neighbors, which arise from trajec-
tory self-intersection and not from the closeness in 
the original phase space). In the ideal case, when the 
number of false neighbors falls to zero, then the 
value of m is found. For this purpose the rate of 
false nearest neighbors is computed in the recon-
structed phase space using the formula  

,Aτm)i(nτmi Rxx ≥− ++       (4) 

where RA is the radius of the attractor, 
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is the average value of time series. 

When the following criterion  

maxPP ≥ ,                               (7) 

is satisfied then it can be used to distinguish be-
tween true and false neighbors (Abarbanel, 1996). 
The dimension m is found when the percent of 
false nearest neighbors decreases below some 
limit, typically set to 1% (Kugiumtzis et al., 
1994), thus Pmax=10 is chosen. Matlab code is 
used to calculate the mutual information I and the 
quantity P. Figure 3 shows the situation for the 
system (the percent of false nearest neighbors 
number vs. total neighbors number is displayed). 
The percentage of false neighbors that is under 
the above limit is achieved for m = 6. 
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Fig. 3. Percent of false nearest neighbor’s number % FNN vs m 

3. Time series prediction  

The next step is to predict evolution of the examined 
quantity by computing weighted average of evolu-
tion of close neighbors of the predicted state in the 
reconstructed phase space (Miksovsky & Raidl, 
2001; Stam et al., 1998; Hanias et al., 2007). The 
algorithm described by Sugihara and May for 
nonlinear forecasting with small modifications is 
used. Given a starting point in the time series x(t) 
we would like to predict x(t + 1), x(t + 2), x(t + 3) 
etc. a number of steps ahead, and compare the pre-
dictions, which we will designate Px(t + n), with the 
actual time series. Now for each vector y(i) we lo-
cated the m + 1 nearest neighbor in the m-
dimensional state space. We will designate the kth 
nearest neighbor vectors of y(i) as NNk,j. The k index 
indicates the number (from 1 to m + 1) of the near-
est neighbor; the j index is the time index in the 
original time series. We excluded nearest neighbors 
with time indices j when [i – j] < 3τ autocorrelation 
time. This procedure is called "within-sample" pre-
diction. Sugihara and May used "out-of-sample" 
prediction. For a time series of length N, out-of-

sample prediction requires i > 0.5 x N and j < 0.5 x 
N+ constant. There are no fundamental differences 
between the two procedures, only within sample 
prediction may be more suitable for short data sets. 
Now the predicted value for n steps ahead prediction 
was given by 
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In our case we choose m = 6, τ = 48 from our previ-
ous analysis and we put k = 5 the number of 
neighbors which specifies number of points (nearest 
neighbors of the state the prediction is done from) 
that are used for the prediction and n = 7, 15, 30 the 
number of steps forward – the prediction is done by 
this number of steps ahead. Figure 4 presents the 
prediction for n = 7 days ahead. 
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Fig. 4. Actual and predicted time series for n = 7 time steps ahead 

Figure 5 presents the prediction for n = 15 days ahead. 

 
Fig. 5. Actual and predicted time series for n = 15 time steps ahead 

Figure 6 presents the prediction for n = 30 days ahead. 

 
Fig. 6. Actual and predicted time series for n = 30 time steps ahead 

Figures 4, 5 and 6 exhibit that after 30 steps ahead 
the predicted line is distancing itself substantially 

from the original one, showing that predictions un-
der this precise method are not so valid.  
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Table 1 presents the actual predicted values for n = 30.  

Table 1. Actual values and predicted out of sample 
values 

Actual values and predicted out of sample values for n = 30 

Actual values Predicted values 

4.137 4.11048 

4.101 4.13805 

4.107 4.14463 

4.089 4.13312 

4.088 4.12699 

4.115 4.08596 

4.119 4.13466 

4.136 4.1308 

4.082 4.09873 

4.036 4.09817 

4.051 4.09535 

4.081 4.07331 

4.095 4.10501 

4.097 4.09253 

4.093 4.10618 

4.09 4.18814 

4.099 4.2219 

4.113 4.08508 

4.117 4.1072 

4.113 4.11989 

4.117 4.11817 

4.125 4.10958 

4.123 4.10748 

4.12 4.10988 

4.109 4.10622 

4.103 4.11178 

4.102 4.10973 

4.101 4.10759 

4.102 4.10726 

4.103 4.11021 

4.099 4.12087 

Until 2227 real data  

N/A 4.11954 

N/A 4.11302 

N/A 4.11364 

N/A 4.11368 

N/A 4.11351 

N/A 4.11352 

N/A 4.11359 

Conclusion 

In this chaotic analysis, non-linearity was discov-
ered in EURIBOR data, and the analysis presented 
here examines this question further. The minimum 
embedding dimension is estimated to be 6. This 
means that the system is a high dimension chaotic 
system. From reconstruction of the system’s strange 
attractor we achieved a 30 time steps out of sample 
prediction of the EURIBOR index. 
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