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Abstract 

Recently, the credit crisis, originating in the US, has affected many countries. Has the credit risk not been appropriately 
evaluated and anticipated? The financial market has now developed derivatives and structured financial products that 
have become extremely complex. This paper looks at the extent to which credit derivatives have been growing in the 
financial market and the way credit derivatives can be, from a practical point of view, evaluated. We favor, what has 
been called, the firm value-based model of evaluating credit risk. We present a method and an algorithm whereby the 
asset price of a firm and its debt capacity can be computed. This is done by relating the asset-value to the debt-capacity 
in an explicit and novel way. It has a sound theoretical foundation and suggests practical and new methods for 
evaluating credit risk.  
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Introduction• 

In recent times there have been developed many 
instruments to transfer credit risk. These instruments 
are called credit derivatives. There have also been 
developed many models and methods to evaluate 
credit risk. They range from practical market 
methods to theory guided methods relying on firm 
value. In this paper, first, some well known 
instruments for transferring credit risk are discussed 
and then, second, firm value based models on 
evaluating credit risk are studied. Of course, there 
are other evaluation methods of credit risk, for 
example, intensity based models or credit rating 
models but here we want to focus on firm value 
based models. Those ones have a sound theoretical 
foundation and, they are based on the theoretical 
development of the 1970, put forward by Black and 
Scholes (1973) and Merton (1974). Further 
theoretical foundations of this approach can be 
found in Schönbucher (2003), Grüne and Semmler 
(2005) and Grüne, Semmler and Bernard (2006). 

1. The relevance of credit derivatives 

The market for credit derivatives was created in the 
early 1990s in London and New York and it is the 
fastest growing derivative market at the moment. 
Considering only the period between June 2001 and 
June 2004, the notional amounts outstanding in 
billions of US dollars were 695 and 4.477 
respectively according to a recent survey of the 
Bank for International Settlements, Switzerland (see 
Table 3 in the Appendix). That is a growth of more 
than 500 per cent in only three years. 

Participants in the market of credit derivatives can 
be divided into five major groups. Banks form the 
largest group with a fraction of about 47 per cent. 
The second largest group consists of insurances and 
re-insurances which cover about 23 per cent of the 
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market's notional outstanding. Other groups are 
hedge funds (8 per cent) and investment funds (5 
per cent) as well as industrials (4 per cent) of 
different branches. 

Table 1. Market share by instrument type  
(rounded numbers) 

Instrument Share (%) 

 Credit default swaps (including FtDs)   67  

Synthetic balance sheet CDOs   12  

Tranched portfolio default swaps   9  

Credit-linked notes, asset repackaging, asset swaps   7  

Credit spread options   2  

Managed synthetic CDOs   2  

Total return swaps   1  

Hybrid credit derivatives   0,2  

Source: Risk (Patel, 2002). 

When one takes a look at the derivative market with 
respect to instrument types, one can see that credit 
default swaps (CDS) represent about 67 per cent of 
all transactions made in that field (see Table 1). A 
reason for this may be the standards for "plain 
vanilla" CDSs developed by the International Swaps 
and Derivatives Association (ISDA), leading to lower 
transaction costs and simplifying the whole business. 
Further types are discussed later in this paper. 

Purposes for using credit derivatives are, as the 
types of instruments themselves, manifold. One can 
think of using credit derivatives as investments, for 
the credit risk management of bond portfolios, for 
hedging counterparty or country risk in isolated 
cases, as a funding opportunity for banks through 
the securitization of loan portfolios or for portfolio 
optimization for bond and loan portfolio managers. 
Referring to former times, a bank could only 
manage its credit risk at origination. During the 
whole lifetime of a loan the risk remained on the 
books until the loan was paid off or the obligor 
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defaulted. With the possibilities of these 
instruments, however, a bank and all the other 
previously mentioned institutions are able to 
conduct active risk management. Due to these 
features and the fact that credit is now a trading 
asset, the market of credit derivatives is growing 
and should keep growing in the future. 

After giving a short introduction about the important 
role credit derivatives play in the financial world 
today, the terminology of the general credit 
derivative is described. Next we provide an 
overview of different types of credit derivatives, and 
give an example to show how they are used to 
conduct active risk management. In the second part 
of the paper, we talk about the idea of firm's value 
models and their connection to credit derivatives. In 
particular the Black/Scholes-Merton model and 
Moody's KMV are discussed. 

As we have described previously1, the recent boom 
in US home mortgages has clearly demonstrated 
how the complex interplay of regulatory, tax, and 
other considerations can serve as catalysts, 
energizing an entire industry. Thus, the surge in 
US home prices can be seen as not only a function 
of housing needs and shifting demographics, but 
also as a consequence of the tax-deductibility, 
within certain limits, of mortgage interest 
payments for individuals, the lowering of default-
risk standards on the part of issuing institutions, 
and the development of new financial instruments, 
thus enhancing the leverage potential available to 
consumers. The securitization of these loans and 
the resulting market for mortgage-backed products 
that has evolved to trade them, have taken on a life 
of their own.  

Basel II and the regulatory structures thus 
spawned have significantly changed the 
environment in which, as Tavakoli (2001) has 
explained, banks and other large institutional 
players enter into agreements not only to gain 
economic advantage, but to manipulate the 
regulatory capital constraints under which they 
operate. This is similar to the position of a home 
buyer who purchases a home not because he 
either needs a place to live or believes that real 
estate is a good investment, but because home 
ownership will place him in a more favorable tax 
position. Since banks, at their core, are lending 
institutions that take credit risk, their goal is to 
seek an optimal return on regulatory capital. 

                                                      
1 See Semmler & Bernard (2007) for more material on this. 

Globalization, developments in the infrastructure of 
electronic trading and information systems, the 
rapid growth of several significant economies, and 
many other factors have created both the demand for 
and the deliverable capability of a wide variety of 
risk-related products. From sugar traders in Sao 
Paulo who are trying to preserve stability for their 
parent companies to currency desks attempting to 
maintain neutral positions in volatile times, the need 
for risk-related instruments is vast. 

The breadth of this market notwithstanding, the 
whole spectrum of dangers that challenge companies 
ultimately filter down to what appears in their 
financial statements. On the one hand, and in the 
interest of having an efficient market, regulators 
cannot, to a large degree, require that banks have one 
set of lending rules for one industry and another set 
of rules for another. Thus, lending and investing 
regulations are largely based on the financial 
positions of companies. In other words, one measures 
the competency of a firm by how well its interaction 
with existing conditions boils down to cash flows, 
return on assets, etc., and keeps it solvent. The ability 
to securitize and trade default risk adds a powerful 
device to the financier’s toolbox.  

Credit derivatives are a relatively new class of 
financial contracts that allow market participants 
to separate risks associated with financial 
products from the actual ownership of those 
underlying products. For example, in the simplest 
case, a purchaser of a bond expects to receive an 
income stream from that bond, but understands 
that there is a risk that the issuer of the bond may 
default. In the case of default, there may be some 
recovery value. 

A credit derivative allows the owner of the bond, 
or another party, to sell the default risk (to buy 
default protection) on the underlying security. 
Similarly, one can purchase the default risk (to 
sell default protection). In either case, there are 
several quantities that will critically determine the 
price of such a contract. First of all, there is the 
probability of default itself. Second of all, there is 
the expected recovery value, i.e., what amount 
may be realistically recovered in the event of 
default. Last, but not least, are technical 
marketplace considerations, e.g., liquidity issues, 
tax factors, etc. 

Obviously, there is nothing new in the phenomena 
of financial default, and banks have been dealing 
with it for centuries. What is new is the emergence 
of an increasingly liquid market for contracts that 
are based on such phenomena. Thus, there is a 
corresponding demand for ways to assess these 
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risks and value these contracts. However, in order 
to have a market, one needs counterparties, i.e., 
investors who are willing to pick up these products 
for their portfolios. 

It is natural to wonder not only what price a 
purchaser of risk might demand, but also why 
he/she would be interested in the first place. 
Obviously, purchasers may wish to gain exposure 
to certain classes of investments to which they do 
not have access, receive high interest rates, etc. 
However, the two most important reasons are 
correlation between assets and leverage. Basic 
portfolio diversification requires that uncorrelated 
or negatively correlated products be included. 
Credit derivatives open up whole classes of 
investments which may meet these needs. Further, 
and perhaps most importantly, most credit 
derivatives are structured in ways that allow for 
significant leverage. This is particularly attractive 
to hedge funds, which constitute a growing 
industry themselves. 

We can see how the growth of the market for credit 
derivatives shares many of the positive-feedback 
features with the mortgage-backed securities 
industry and the size of it is rapidly growing. 
Although the transactions are mostly off-balance 
sheet, making it difficult to obtain accurate data, the 
British Banker's Association estimated the credit 
derivatives market size reached $5 trillion by the 
end of 2004, almost $7 trillion by the end of 2005, 
and will be over $8 trillion by the end of 2006. It is 
clear, therefore, that the sheer size of this market has 
serious implications for macroeconomic analysis. 
Not only because of the amount of money flowing 
through it, but because, as the market becomes more 
and more liquid, of the informational content 
implicit in its valuations. 

2. Terminology 

A useful definition of credit derivatives is 
formulated by Phillip Schönbucher (2003): ''A 
credit derivative is a derivative security that has a 
payoff which is conditioned on the occurrence of 
a credit event. The credit event is defined with 
respect to a reference credit (or several reference 
credits), and the reference credit asset(s) issued by 
the reference credit. If the credit event has 
occurred, the default payment has to be made by 
one of the counterparties. Besides the default 
payment a credit derivative can have further 
payoffs that are not default contingent. This 
definition can be extended to include derivative 
securities whose payoffs are materially affected 
by credit events and derivatives on defaultable 
underlying securities.'' 

For most derivatives, one can use the following 
definitions: 

♦ A is the counterparty which receives a payment 
in the event of a default. 

♦ B is the counterparty which has to make the 
payment in the event of a default. 

♦ C is the reference credit. 

♦ Reference entity/reference credit is the issuer 
of the reference obligation/reference credit asset 
whose default triggers the credit event. 

♦ Reference obligations/reference credit asset is 
a set of assets issued by the reference entity. 

♦ Credit event/default event occurs, e.g., for the 
following reasons: 

- bankruptcy; 

- failure to pay with certain requirements; 

- obligation default; 

- ratings downgrade below given thresholds 
(only for ratings-triggered credit derivatives). 

♦ Default payment is the payment which has to 
be made by B if a credit event occurs.  

3. Some types of credit derivatives 

3.1. Total Return Swaps (TRS). In a total return 
swap (or total rate of return swap), A wants to 
change its entire payoff from a defaultable 
investment (e.g. a bond, denoted by C with the 
entire payoff B receives from its default-free Libor 
investment). 

There are several effects appearing from this 
contract. First, B is long the C-bond without having 
paid for this investment. Therefore B normally has 
to put collateral (this can be the C-bond, which 
legally still belongs to A), depending on its 
creditworthiness. Second, A has hedged its exposure 
to the C-bond and bears a certain counterparty risk 
now, but which should be minimized because of the 
collateral. 

Concerning the purpose of credit derivatives, A 
transmits the credit AND market risk of the 
reference credit C to B and ensures a risk-free 
Libor interest rate plus a certain spread, reflecting 
the creditworthiness of B. 

In this agreement1, called a Total Rate of Return Swap 
(TRORS), the underlying asset is a bond with fixed 
interest rate and maturity. Here, one party, the payer, 
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agrees to pay the coupon on the bond plus any increase 
in value in the price of the bond. The counterparty, the 
receiver, agrees to pay some floating rate, e.g., 

LIBOR, plus something extra, and any decrease in the 
price of the bond. The receiver also agrees to pay the 
par value of the bond in the case of default. 

Big Bank (Payer) Hedge Fund (Receiver)

LIBOR + Spread

Coupon Payments

Default Payment

Risky Country
Loan at High % Coupon Payments

TRORS

Price Difference
in Bond

 
Fig. 1. Typical TRORS diagram 

In the above illustration, it is presumed that the bank 
is interested, for business reasons, to make certain 
loans. However, it doesn’t like the risk profile of the 
country. At the same time, the hedge fund does not 
have the cash to make such a loan, but is enticed by 
the interest rate. Since, and this is a key reason why 
these contracts are growing in popularity, the hedge 
fund may only need to put up 5% collateral, it is 
able to leverage its position. Realistically, the bank 
may not hope to collect much from the hedge fund 
in the case of default; however, it can keep, at least, 
the collateral and the recovery value (assuming the 
hedge fund reneges). 

At the same time, we note that since the bank 
neither sells the bond, nor buys any asset, this is 
an off-the-balance-sheet transaction. Similarly, 
the hedge fund does normally have access to, and 
may not wish admit having exposure to, such 
asset classes. 

3.2. Credit Default Swaps (CDS). The most 
important difference between a TRS and a CDS is 
the matter of isolating credit risk. While a TRS 
transfers both credit AND market risk (whereas a 
certain risk remains for counterparty A because only 
the risk of one of the reference credit is transferred, 
not the whole default risk), the default risk of this 
type of credit derivative is completely isolated. 

In a credit default swap (or credit swap), B takes the 
default risk of A's defaultable asset and has to make 
a default payment of a credit event occurs. In 
exchange for this service, A pays a fee for the 
default protection. 

With respect to the default payment, there are 
several possibilities. A physical delivery requires the 
delivery of the reference assets against a repayment at 
par. When a cash settlement is arranged, B has to pay 
the difference between the post-default market value 
and the face value of the asset. A default digital swap, 
in contrast, demands a fixed amount of money, 
agreed to at the time of the contract. 

Since A and B can declare any asset of C they want, 
they are able to widen the range of assets so that the 
default risk of C is completely transferred. 

According to the International Swaps and 
Derivatives Association (ISDA), the following 
information should be part of a CDS contract: 

♦ the reference obligor and his reference assets; 

♦ the definition of a credit event that is to be 
insured; 

♦ the notional of the CDS; 

♦ the start of the CDS; 

♦ the maturity date; 

♦ the credit default swap spread; 

♦ the frequency and day count convention for the 
spread payments; 

♦ the payment of the credit event and its 
settlement. 

Here, a holder of a risky asset may desire protection 
from default risk for a period of time. For this 
protection, a premium is paid. 
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Insurer Holder of Risky Asset

Premium

Payment Contingent on Default
CDS

 
Fig. 2. Typical CDS diagram 

With a CDS, the credit event that defines default is 
subject to negotiation. It can be any sort of event 
ranging from a change in a spread to even a political 
event in a foreign country. 

The main point is that whatever the nature of the 
credit derivative is, the negotiable pricing criteria 
will be largely based on the probabilities of the 
defined credit event. As most of these contracts are 
written on financial transactions, modelers are 
particularly interested in those events that trigger 
traditional credit troubles, i.e., bankruptcy, change 
of rating, restructuring, etc. More specifically, in 
order to create effective strategies for the control of 
credit risk, understanding of the underlying 
dynamics, whether rooted in the firm’s financial 
structure or in the statistical properties of the 
phenomena, is essential. 

3.3. Collateralized debt obligations (CDO). 
Collateralized debt obligations belong to the group 
of exotic credit derivatives as their construction is 
very special. The aim of a CDO is to securitize a 
complete portfolio of defaultable assets like a basket 
of bonds or loans in order to sell these securities and 
the credit risk of the assets with them. 

The way a CDO is born looks like this: first, a 
portfolio of defaultable assets is set up and then sold 
to a company, exclusively created for this aim and 
denoted by special purpose vehicle (SPV). The 
second step is to divide the portfolio into several 
tranches in a way that every single tranche can be 
securitized and sold to investors with different risk 
aversions and different demands for the yield, 
respectively. The obligations sold by the SPV are 
collateralized by the underlying debt portfolio. 

 
Fig. 3. Collateralized debt obligation 

According to the tranche an investor owns, he or she 
is confronted with more or less risk. Assuming the 
investor has obligations of the first tranche, in the 
example given in Figure 1 he or she suffers already 
from the first 5 per cent of losses the portfolio gains. 
Since the risk of losing money is very high in this 
case, the yield one gets is correspondingly very 
high, too. Normally, it is a multiple of the average 
yield of the assets of the portfolio. An investor of 
the fourth tranche, in contrast, is only burdened with 
a loss when already more than 25 per cent of the 
assets of the portfolio defaulted. Of course, people 

investing in this tranche have a lower expected yield 
than the average expected portfolio yield. 

The Mortgage Backed Security (MBS) is a type of 
Collateralized Debt Obligations (CDO) in which the 
defaultable assets are mortgages instead of bonds or 
Credit Default Swaps. We note that the rise of this 
industry has exactly mirrored the housing boom as 
shown in the figure earlier. Let us go back to the 
MBSs and CDOs. MBSs operate by grouping 
together mortgages and using the interest income 
thus produced to compensate investors for taking 
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positions in which varying levels of default, called 
tranches, are guaranteed. The incentive to form such 
a structure is motivated primarily by the surplus 
cash generated – that not needed to compensate 
investors. The below diagram illustrates the basic 
mechanics and cash flows. A collection of 
mortgages with assumed default risk and assumed 
recovery value are grouped together. The monthly 
interest payments from those mortgages are income 
to the Special Purpose Vehicle (SPV) or “Trust.” 
Different tranches are assigned with attachment 
point in the following manner: If the number of 
defaults remains below the lower attachment point, 
the investors in that level simply collect the pre-
arranged premium. However, once the percentage 
exceeds the lower attachment point, defaults are 
paid out of the capital posted by the investors of that 
tranche. Once the upper attachment point is reached, 
the next tranche takes over since the lower tranche is 
effectively exhausted. Investors in the MBS will 
demand compensatory interest commensurate with 
the assumed default risks and recovery values. 
These are paid from the interest income from the 
mortgages. The difference between the two cash 
flows is profit to the SPV investors. As long as it is 
profitable to construct these instruments, liquidity in 
the mortgage market will be limited only by the 
default probabilities, the recovery values, and the 
rates obtainable elsewhere. 

3.4. Example of a CDS with real quotes. The 
following example should give an idea how a plain 
vanilla credit default swap looks in practice. Given 
the bid/offer quotes of a market maker in Table 2, 
one can think through several cases. 

Table 2. Credit default swap quotes (basis points) 

     Maturity  

 Company  Rating 3 years 5 years 7 years 10 years 

 Toyota 
Motor 
Corp  

AaI/AAA 16/24 20/30 26/37 32/53 

Merrill 
Lynch  Aa3/AA- 21/41 40/55 41/83 56/96 

Ford 
Motor 

Company  
A+/A 59/80 85/100 95/136 118/159 

Enron  BaaI/BBB+ 105/125 115/135 117/158 182/233 

Nissan 
Motor 

Co.Ltd.  
BaI/BB+ 115/145 125/155 200/230 244/274 

Looking at Toyota, the market maker is prepared to 
buy three-year default protection for 16 basis points 
per year and sell three-year default protection for 24 
basis points per year and so on (Hull, 2002). 

Suppose that a bank had several hundred million 
dollars of loans outstanding to Enron and was 
concerned about its exposure. It could buy a $100 
million five-year CDS on Enron from the market 
maker for 135 basis points or $1.35 million per year. 
This would shift part of the bank's Enron credit 
exposure to the market maker (Hull, 2002). 

Another possibility could be an exchange in the 
bank's credit risk. If the bank is interested in shifting 
part of its credit risk to another industry, it could, for 
example, sell a five-year $100 million CDS on 
Nissan for $1.25 million per year while buying a 
similar CDS on Enron at the same time. The net cost 
of this strategy would be 10 basis points or 
$100,000 per year. So the bank had changed part of 
its credit risk from Enron for a certain credit risk of 
Nissan. Due to the differences in these industries, 
one can say that the bank has diversified its credit 
exposure (Hull, 2002). 

4. Firm value based models and Black and 
Scholes 

So far we have talked about the characteristics of 
credit derivatives in general and how to use them as 
tools for active risk management. Now we will 
focus on the pricing of credit derivatives using a 
specific modeling approach: the approach of firm's 
value models. 

To be able to price credit derivatives, we have to 
know something about the default risk (credit risk) 
of the underlying asset. Modeling the default risk is 
the aim of credit derivatives pricing models such as 
intensity and spread-based models. Compared to 
those, firm's value models use a much more 
fundamental approach to valuing defaultable debt 
and in addition try to provide a link between the 
values of equity and debt of the firm. 

Firm's value models assume a fundamental process 
V, denoting the total value of the assets of the firm 
that has issued the bonds in question. V  is 
described as a stochastic process, influenced by the 
prices of all securities issued by the firm. A very 
important point of this type of model is that all 
claims on the firm's value are modelled as derivative 
securities with the firm's value as underlying. 

Black and Scholes 1973) and Merton (1974) were 
the first people modeling credit risk with what we 
know today as a firm's value model. Modeling credit 
risk means modeling default probability. In their 
consideration a default could only occur at maturity 
of the debt, i.e. if the difference firm value V minus 
outstanding debt at maturity is negative, a default 
happens, otherwise the firm continues to exist. 
Mertion (1974) explicitly treated the corporate 
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liability from the perspective of derivative pricing. 
We will come to another and more realistic view 
later. For further theoretical development see 
Schönbucher (2003), Grüne and Semmler (2005) 
and Grüne, Semmler and Bernard (2007). 
As already mentioned above, the value V  of the 
firm's assets is described as a stochastic process. 
Fischer Black, Myron Scholes and Robert C. 
Merton set up for V  the following geometric 
Brownian motion: 

VdWVdtdV σμ += ,                                                (1) 

or  dWdt
V
dV σμ += ,                                              (2) 

where the variable σ  is the volatility of firm value, 
the variable μ  is the expected rate of return and 

DW as a Wiener process (for the derivation of this 
equation see Hull, 2002, 11.3). 

From now on in this model, the prices of both debt 
),( tVB  and shares ),( tVS  are functions of the 

firm's value V  and the time t . What Black and 
Scholes (1973) and Merton (1974) did was a 
breakthrough. They showed that both equity and 
debt of the firm can be seen as derivative securities 
on the value V  of the firm's assets. The payoff 
structure of these derivative securities looks like this 
( D  is the exercise price): 

),(=),( VDmintVB ,                                                (3) 

,0)(=),( DVmaxtVS − .                                           (4) 

 
Fig. 4. Payoffs of shares and bonds at Tt =  for 60=D  

As we are interested in pricing equity and debts of 
the firm and credit derivatives, respectively, we set 
up a risk-neutral portfolio by hedging one bond with 
Δ -shares. The value of the portfolio is: 

),(),(= tVStVB Δ+Π .                                                (5) 

The change in value can be derived from Ito's 
lemma (see appendix 11A in Hull, 2002) and is: 
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To be fully hedged and to have a predictable return, 
the number of shares must be: 

VS
VB

∂∂
∂∂

−Δ
/
/= .                                                          (7) 

This leads to the well-known Black-Scholes partial 
differential equation: 

0=
2
1

2

2
22 SS

V
rVS

V
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t
Γ−

∂
∂

+
∂
∂

+
∂
∂ σ .               (8) 

Now we can compute the value of a share with the 
Black-Scholes formula BSC  for a European call 
option on V . The expiry date is denoted by T , the 
exercise price by D , the underlying volatility by σ  
and the interest rate by rf: 

),,;,(=),( f
BS rDtVCtVS σ ,                                    (9) 

)()(=),,;,( 2
)(

1 dNDedVNrDtVC
tTfr

f
BS −−

−σ ,    (10) 

where  
tT

tTrDVln
d

f
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⎟
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⎞

⎜
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⎛ −−+

σ

σ )(
2
1)/(

=

2

1               (11) 

and  tTdd −−σ12 = .                                        (12) 

Note that in the risk neutral case the V  in eq. (10) 
refers to the current value of the firm, but of 
course it is determined by the discounted future 
income stream of the firm. Yet in the risk free 
case we can have 
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A Gauss computer program for the above evaluation 
of corporate debt from the perspective of derivative 
pricing is available1. Schönbucher (2003) extends 
the model by also taking into account a safety 
covenant acting as a default barrier. He also 
introduces bankruptcy cost, and a time varying 
interest rate, following a Brownian motion, for 
example, co-varying with stock market shocks. The 
firm value approach tries to model the whole obligor 
at once through linking the debt and equity with a 
hedge. A large and important disadvantage of the 
model is that one does not observe the process V  
with its driving factors. 

5. Computing firm value and creditworthiness 

In Grüne and Semmler (2005) the firm value is 
derived from an intertemporal behavior of firms. 
There, however, only for the deterministic case. Yet, 
in Grüne, Semmler and Bernard (2007) the 
stochastic case is also considered. 

We give a formal presentation of the deterministic 
model. We can say in the bilaterial contract between 
a creditor and debtor there are two problems 
involved. The first pertains to the computation of 
debt and the second to the computation of the debt 
ceiling. The first problem is usually answered by 
employing an equation of the form 

0=(0)),()(=)( BBtftBtB −θ& , 

where )(tB  is the level of debt2 at time ,t  θ  is the 
interest rate determining the credit cost, and )(tf  is 
the net income of the agent. The second problem 
can be settled by defining a debt ceiling such as 

0)>(,)( tCtB ≤  

or less restrictively by 

∞
≥

<)(sup
0

tB
t

 

or even less restrictively by the transversality 
condition 

0.=)(lim tBe t

t

θ−

∞→
                                                 (13) 

The ability of an obligator to service the debt, i.e. 
the feasibility of a contract, will depend on the 
obligator's source of income. Along the lines of 

                                                      
1 Available upon request. 
2 Note that all subsequent state variables are written in terms of effi-
ciency labor along the line of Blanchard (1983). 

intertemporal models of borrowing and lending3 we 
model this source of income as arising from a stock 
of capital k(t), at time t, which changes with the 
investment rate j(t) at time t through 

( ) .=(0),)()(=)( 0kktktjtk σ−&                             (14) 

In our general model both the capital stock and the 
investment are allowed to be multivariate. As debt 
service we take the net income from the investment 
rate )(tj  at capital stock level )(tk  minus some 
minimal rate of consumption4. Hence 

( ) 0=(0),)(),())(=)( BBtjtkftBtB −θ& ,          (15) 

where )(tBθ  is the credit cost. Note that the credit 
cost is not necessarily a constant factor (a constant 
interest rate). We call )(kB∗  the creditworthiness of 
the capital stock k. The problem to be solved is how 
to compute ∗B . 

If there is a constant credit cost factor (interest rate), 

B
kBH ),(=θ , then, it is easy to see, )(kB∗  is the 

present value of k  or the asset price of k : 

( ) (0))(),(=)(
0

BdttjtkfeMaxkB t

j
−−∞∗ ∫ θ        (16) 

s.t.  

( ) skktktjtk =(0),)()(=)( σ−& ,                            (17) 

( ) .=(0),)(),()(=)( 0BBtjtkftBtB −θ&                  (18) 

The more general case is, however, that θ  is not a 
constant. As in the theory of credit market 
imperfections we generically may let θ  depend on k 
and B, see below5. Employing a dynamic model of 
the firm6 we can use the following net income 

                                                      
3 Prototype models used as basis for our further presentation can be found 
in Blanchard (1983), Blanchard and Fischer (1989) or Turnovsky (1995). 
4 In the subsequent analysis of creditworthiness we can set consumption 
equal to zero. Any positive consumption will move down the creditwor-
thiness curve. Note also that public debt for which the Ricardian equiva-
lence theorem holds, i.e. where debt is serviced by a non-distortionary 
tax, would cause the creditworthiness curve to shift down. In computing 
the ''present value'' of the future net surpluses we do not have to assume 
a particular interest rate. Yet, in the following study we neither elabo-
rate on the problem of the price level nor on the exchange rate and its 
effect on net debt and creditworthiness. 
5 The more general theory of creditworthiness with state dependent 
credit cost is provided in Grüne, Semmler and Sieveking (2004). Note 
that instead of relating the credit cost inversely to net worth, as in 
Bernanke, Gertler and Gilchrist (1998), one could use the two argu-
ments, k and B, explicitly. 
6 The subsequent model can be viewed as a standard RBC model where 
the stochastic process for technology shocks is shut down and technical 
change is exogenously occurring at a constant rate. 
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function that takes account of adjustment investment 
and adjustment cost of capital. 

γβα −−− kjjkjkf =),( ,                           (19) 

where 0>0,>0,> γασ  are constants1. In the 
above model 0>σ  captures both a constant growth 
rate of productivity as well as a capital depreciation 
rate. Blanchard (1983) used 2,=β  1=γ  to 
analyze the optimal indebtedness of a firm (see also 
Blanchard and Fischer, 1989, Chap. 2). 

The maximization problem (16)-(18) can be solved 
by using the necessary conditions of the 
Hamiltonian for (16)-(17). Thus we maximize  

dttjtkfeMax t

j
))(),((

0

θ−∞

∫  

s.t. (17).  

The Hamiltonian for this problem is 

),,,(max=),,,( λλ jxkHjxkH
j

 

)(),(=),,,( kjxjkfjxkH σλλ −+  

( ) ).,(==
.

jkfxx
k
Hx kλθσθ −++

∂
∂−  

We denote x  as the co-state variable in the 
Hamiltonian equations and λ  is equal to 12. The 
function .),( jkf  is strictly concave by assumption. 
Therefore, there is a function ),( xkj  which 
satisfies the first order condition of the Hamiltonian 

0=),( xjkf j + ,                                                    (20) 

1
1

)1(=),(= −
− ⋅

− β
γ βk

xxkjj                                       (21) 

and j is uniquely determined thereby. It follows that 
(k, x) satisfy  

kxkjk σ−),(= ,                                                    (22) 

)),(,()(= xkjkfxx k−+θσ .                                  (23) 

The isoclines can be obtained by the points in the (k, x) 
space for 2=β , where k = 0 satisfies  

γσ −+ 121= kx                                                         (24) 

and where x = 0 satisfies  

                                                      
1 Note that the production function αk  may have to be multiplied by a 
scaling factor. For the analytics we leave it aside here. 
2 For details of the computation of the equilibria in the case when one can 
apply the Hamiltonian, see Semmler and Sieveking (1998), appendix. 

γαγγγ αγϑϑϑ −−−−−
± −+±+ kkkkx 112221 421= ,  (25) 

where ).(2= 1 θσγϑ +−  Note that the latter isocline 
has two branches. 

If the parameters are given, the steady state – or 
steady states, if there are multiple ones – can be 
computed and then the local and global dynamics 
studied. We scale the production function by α 3. 

There is another solution technique which allows 
one to solve for firm value by using a dynamic 
programming approach. The alternative solution 
method uses the Hamilton-Jacobi-Bellman (HJB) 
equation. 

In this appendix we present the solution technique 
of how to find the solution of the HJB-equation. We 
describe an algorithm which enables us to compute 
the asset price of the firm for the HJB equation of a 
type such as (1) which will give us the present value 
borrowing constraint. We show how one can 
explicitly compute firm value using modern 
dynamic decision theory. 

The HJB-equation for our problem reads 

)])(([max= 2 kjkVkjjkV '

j
σθ γα −+−− − .   (26) 

Using the HJB equation we also can compute the 
steady state equilibria. 

For the steady state, for which kj σ−=0  holds, we 
obtain: 

θ
),(=)( jkfkV ,                                                     (27) 

θ

σσ

θ

γα )(
=),(=)(

22 −−−
∂
∂ kkk
kjkfkV

'
' .            (28) 

Using the information of (27)-(28) in (26) gives, 
after taking the derivatives of (26) with respect to 
j , the steady states for the stationary HJB equation: 

0=)(221
121

θ
γσσα γα

γ
−−

− −−−
+−−

kkjk .         (29) 

Note that hereby kj σ= 4. Given our parameters the 
equation may admit multiple steady states. 

                                                      
3 We have multiplied the production function by 0.30=a  in order to 
obtain sufficiently separated equilibria, and take c = 0 We employ the 
following parameters: 1.1,=α  0.3,=γ  0.15,=σ  0.1.=θ  
4 Note that this gives us the same equilibria as using the Hamiltonian 
approach. 
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We specify the company's technology parameters to be 
0.3=2,=0.7,=0.29,=0.15,= γβασ iiA and 0.1=θ . 

The remaining parameters are specified below. 

As for the numerical procedure an example was 
computed for different sk'  in the compact interval 
[0.2], using dynamic programming with control 
range [0,0.25]∈j . The dynamic programming 
algorithm (DP) used here is built on the HJB 
equation and is explained, see appendix, in Grüne 
and Semmler (2004). From this algorithm we obtain 
the figure below which approximates the present 
value curve )(kV  representing firm value. 

We have considered our deterministic formulation 
above. In this case, debt is issued, but with no 
default premium. Thus, the credit cost is given by 

BBkH θ=),( . We have used the above mentioned 
DP algorithm in order to solve the discounted 
infinite horizon problem (16)-(18). Figure 3 shows 
the corresponding value function representing the 
present value curve, )(kV . The present value curve 
represents the asset value of the company for initial 
conditions (0)k  and thus its creditworthiness. 

 
Fig. 5. Present value of company's capital assets 

The debt control problem is solved whenever debt is 
below the firm's asset value, so that we have 

0≥− BV . The optimal investment strategy is not 
constrained and thus the asset value which 
represents the maximum debt capacity V , is 
obtained by a solution for an unconstrained optimal 
investment strategy, represented by the present 
value curve in Figure 3. For initial values of the 
capital assets above or below *k , the optimal 
trajectories tend to the domain of attraction 

0.996=*k . For all initial conditions, the debt 
dynamics remain bounded as long 0≥− BV , thus 

allowing the company's equity holders to exercise 
the option of retiring the debt. Any initial debt 
above the present value curve will be explosive and 
the company will lose its creditworthiness, since it 
will not be able to pay its obligations. 

For the more general case where a default premium 
is to be paid we can use the following function to 
represent risk premia: 

)(

)(
)(

=))(),((

2

1 tB

tk
tN

tBtkH θ

α

α
μ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

. 

For the models (16)-(18) with a risk premium 
included in the company's borrowing cost, it is not 
possible to transform the model into a standard 
infinite horizon optimal control problem. This 
results because debt is now an additional constraint 
on the optimization problem. Hence, we need to use 
another method firm value and one can undertake 
experiments for different shapes of the credit cost 
function representing different alternative functions 
for the risk premium. An important class of 
functions for risk premia is defined by the steepness 
of the slope defined by the parameter 2α , for 
details, see Grüne, Semmler and Bernard (2007). 
There are also results reported as to what extent the 
value of this company is affected by a default 
premium. Overall, when investments are undertaken 
(by firms, households, or investors in real estate), 
this is often accompanied by extensive borrowing 
and, as it often turns out, by overleveraging. Our 
approach can determine the exact debt capacity, i.e., 
the degree of leveraging, the economic agent can 
afford and the lender should pay attention to. 

6. Moody's KMV 

Due to the difficulties in computing the present 
value for firm value models1 in practice, a practical 
implementation has been developed which comes 
with solutions to this problem. The KMV model, 
named after the founders Kealhover, McQuown and 
Vasicek (2001), models credit risk and the default 
probability of a firm as follows. This structure is 
useful in seeing how our approach can be 
implemented. 

6.1. The distance-to-default. The model states that 
there are three main elements determining the 
default probability of a firm: 

♦ Value of assets is the market value of the firm's 
assets. 

                                                      
1 A more practical methodic of computing firm value is proposed in 
Benninga (1998, chs. 2-3). 



Investment Management and Financial Innovations, Volume 5, Issue 4, 2008 

 

85 

♦ Asset risk is the uncertainty or risk of the asset 
value. This is a measure of the firm's business 
and industry risk. 

♦ Leverage is the extent of the firm's contractual 
liabilities. It is the book value of liabilities 
relative to the market value of assets.  

As in equations (3) and (10) the default risk of the 
firm increases when the value of the assets 

approaches the book value of the liabilities. The 
firm defaults when the market value of the assets is 
smaller than the book value of the liabilities. 

The model specifies the financial structure of the 
firm in terms of assets, current debt, long-term debt, 
and preferred shares. Next, the default point (DPT), 
the asset value where the firm defaults, is computed. 
It is assumed that this point is above the size of its 
short-term debt. 

 
Source: Journal of Banking & Finance (2000). 

Fig. 6. Classic KMV model 

The distance-to-default (DD) is the number of standard 
deviations between the mean of the distribution of the 
assets value and the default point (DPT). 

σ
DPTVEDD −

=
]1[ , 

where E (V1) = expected asset value in 1 year, DPT 
= (short-term debt) + 1/2 (long-term debt), and σ = 
volatility of asset returns (in dollars). 

The last stage in this procedure is to construct a 
large list of firms and calculate their respective DDs 
and note the EDF as a function of DD. Thus an 
estimate of EDF based on valuation, capital 
structure, and the market as a whole is achieved. 
Once the EDF for a particular firm is determined, 
one can price, for example, a CDS using the same 
discounted expected value methodology as 
described in the beginning of this paper. 

According to Peter Crosbie and Jeff Bohn (2003) 
who wrote the paper Modelling Default Risk for 
Moody's, their studies do not confirm this thesis in 
general. Not all the firms which reach the point 
where the asset value goes below the book value of 
their liabilities default. There are many which 
continue to serve their debt. The reason for this can 
be found in the long-term liabilities which enable 
the firms to continue their business until the debt 
becomes due. The firms may also have credit lines 
at their disposal. 

Crosbie and Bohn draw the conclusion that the 
default point, the asset value at which the firm will 
default, generally lies somewhere between total 
liabilities and short-term liabilities. The relevant net 
worth of the firm is therefore defined as: 

Point][Default Assets] of Value[Market =Net Worth][Market − .                       (30) 

If the market net worth of a firm is zero, the firm is 
assumed to default. To measure the default risk, one 
can combine all three elements determining the 

default probability in a single measure of default 
risk, the distance-to-default: 

Value]Asset   theofDeviation  Standard One of [Size
Net Worth][Market =Default]-to-[Distance ,                                                    (31) 
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]Volatility[Asset 
Point][Default Assets] of Value[Market =

Value]Asset   theofDeviation  Standard One of [Size
Net Worth][Market − .              (32) 

The distance-to-default is the number of standard 
deviations the asset value is way from default. The 
default probability can then be computed directly 
from the distance-to-default if the probability 
distribution of the asset value is known. 

6.2. The probability of default. Crosbie and Bohn 
(2003) give 6 variables that determine the default 
probability of a firm over some horizon, from now 
until time H (see Figure 6): 

1) the current asset value; 

2) the distribution of the asset value at time H; 

3) the volatility of the future assets value at time H; 

4) the level of the default point, the book value of 
the liabilities; 

5) the expected rate of growth in the asset value 
over the horizon; 

6) the length of the horizon, H. 

 
Fig. 6. Crosbie-Bohn model 

The probability of default (expected default 
frequency or EDF value) can be computed with the 
aid of the measure we calculated above and data on 
historical default and bankruptcy frequencies. The 
database that Mody's uses consists of more than 
400,000 company-years of data and more than 4,900 
incidents of default or bankruptcy (see Figure 4). 
From these data, a frequency table can be generated 
which relates the likelihood of default to the 
distance-to-default measure. 

For example, a firm that is 7 standard deviations 
away from default has an expected default 
frequency (EDF value) of 5 per cent which leads to 
a rating of AA. In this case, Moody's analyzes the 
default history of the fraction of firms which were 7 
standard deviations away from the default point and 

defaulted over the next year. According to Crosbie 
and Bohn (2003), Moody's tested the relationship 
between distance-to-default and default frequency 
for industry, size, time and other effects and has 
found that the relationship is constant across all of 
these variables. 

Those relationships can be developed in 
mathematical terms. According to the Black-Scholes 
model and as above in equation (1) presumed, the 
market value of the firm's underlying assets is 
described by the following stochastic process: 

dzVdtVdV AAAA σμ += ,                                        (33) 

where AA dVV ,  are the firm's asset value and change 
in asset value; Aσμ,  are the firm's asset value drift 
rate and volatility; dz  is a Wiener process. 

The probability of default is that the market value of 
the firm's assets will be less than the book value of 
the firm's liabilities by the time the debt matures: 

]=|[= 0
AAt

t
At VVXVPrp ≤ = 

     ]=|[= 0
AAt

t
A VVlnXlnVPr ≤ ,                             (34) 

where tp  is the probability of default by time t ; 
t

AV  is the market value of the firm's assets at time 
t ; tX  is the book value of the firm's liabilities due 
at time t . 

The change in the value of the firm's assets is 
described by (16), so the value at time t

AVt, , given 
that the value at time 0 is AV , is: 

εσ
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2
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2
,                       (35) 

where μ  is the expected return on the firm's asset; 
ε  is the random component of the firm's return. 

Equation (18) describes the asset value path shown 
in Figure 3. Combining (17) and (18), one can write 
the probability of default as: 
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or  
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Since the Black-Scholes model assumes that ε  is 
normally distributed, one can write the default 
probability as: 

⎥
⎥
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Since the distance-to-default measure is nothing else 
than the number of standard deviations that the firm 
is away from default, one can write this measure 
with the Black-Scholes notation as: 
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Given an example that we compute a distance-to-
default from equation (22) that equals 3.0, the 
probability of default using equation (21) will then 
be 13 basis points or 13 per cent. In practice, this 
distance-to-default measure is adjusted to include 
several other factors which play a role in measuring 
the default probability. 

7. Empirical evidence for firm value based 
models 

There are several advantages and disadvantages that 
firm value based models have in practice. The 
predictions of firms value based models on the 
dynamics of share and debt prices of firms, are 
discussed briefly in this section. After a few empirical 
papers are discussed the general importance of these 
models will be evaluated. 

While the majority of firm value based models 
predict a hilly shape for the term structure of credit 
spreads, Litterman and Iben (1991) showed that this 
is only true for rating classes of firms with bad 
rating. For other classes, like investment-grade 
rating classes, they observed increasing credit 
spreads rather than hilly ones. 

The aim of another empirical work, the one by 
Lardic and Rouzeau (1999), was to reproduce the 
risk ranking of obligors using firm value models. 
The test was designed not to study the real market 
value of the firms but to derive the risk level of 
firms in such a way that allowed to differentiate 
between riskier and less risky assets. The results 
however showed that the models were not able to 
reproduce the risk ranking of obligors. Instead, they 
were only able to recognize changes in the credit 
quality of the same obligor. 

Longstaff and Schwartz (1995) investigated credit 
spread movements. With their tests using Moody's 

corporate bond yield averages, they found that there 
is a negative correlation between spreads and rates, 
meaning that firm value based models cannot be 
used for hedging purposes. 

Concerning the pricing accuracy of firm value based 
models, Eom et al. (2000) run a test where they 
priced corporate bonds using the current share prices 
and balance sheet data of firms that issued the 
bonds. According to this test where the dynamics of 
the spreads were not included, it was found that 
there are pricing errors in all models. 

Approximating data on fundamental is an essential 
strength of firm value based models, but defining 
the actual firm value can be a complex issue. The 
problems can quickly become too complex to be 
handled by empirical tests. Despite all the 
complications one has to deal with when using firm 
value models, a more practical approach like 
Moody's KMV shows that one can obtain acceptable 
results and a better pricing performance with some 
pragmatic approach (see section 7). 

Conclusion 

Recent events in the credit market, that has 
experienced an extensive credit crisis, raises the 
question of whether credit risk has not been 
appropriately evaluated and anticipated. Among 
financial economists it is still debated whether the 
current credit crisis is a liquidity crisis or arising from 
an insolvency problem, Semmler (2006, ch. 4). Yet, in 
either case, proper evaluation of credit risk is needed. 

The financial market had developed derivatives 
and structured financial products that have 
become extremely complex. We have looked at 
the extent to which credit derivatives have been 
growing in the financial market and the way credit 
derivatives can be, from a practical point of view, 
evaluated. We favor what has been called the firm 
value based model of evaluating credit risk. It has 
a sound theoretical foundation and suggests 
practical methods to evaluate credit risk. There 
have also been developed many models and 
methods to evaluate credit risk. They range from 
practical market methods to theory guided ones 
relying on firm value. In this paper, first some 
well-known instruments for transferring credit 
risk are discussed and then, second, firm value 
based models on evaluating credit risk are 
studied. Of course, there are other evaluation 
methods of credit risk, for example, intensity 
based models or credit rating models. They may 
also give us great insight of how credit risk is 
evolving. Yet, our approach has a sound 
theoretical foundation and is based on the 
theoretical development of the 1970, put forward 
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by Black and Scholes (1973) and Merton (1974). 
Further theoretical foundations of this approach 
can be found in Schönbucher (2003), Grüne and 
Semmler (2005) and Grüne, Semmler and Bernard 
(2007). This approach can also be applied to the 
recent US real estate and subprime mortgage 

problems, see Bernard and Semmler 2008. 
Generally, we suggest that Brownian motion not 
be the sole dynamic model, but, instead, compute 
asset value directly. The practical dimension of 
our approach makes it suitable for real-world 
implementation. 
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Appendix 

The numerical solution of the model 

We here briefly describe the dynamic programming algorithm as applied in Grüne and Semmler (2004) that enables us 
to numerically solve the dynamic model as proposed in section 3. The feature of the dynamic programming algorithm 
is an adaptive discretization of the state space which leads to high numerical accuracy with moderate use of memory. 

Such algorithm is applied to discounted infinite horizon optimal control problems of the type introduced in section 3. In 
our model variants we have to numerically compute )(xV  for 

dtuxfexV r

u
),(max=)(

0

−∞

∫  

s.t. ),(= uxgx& , 

where u  represents the control variable and x  is a vector of state variables. 

In the first step, the continuous time optimal control problem has to be replaced by a first order discrete time 
approximation given by 
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where ux  is defined by the discrete dynamics 

),()(=1)(,=(0) iihhh uxhgixixxx ++  
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and 0>h  is the discretization time step. Note that 
0

)(= N∈iijj  here denotes a discrete control sequence. 

The optimal value function is the unique solution of a discrete Hamilton-Jacobi-Bellman equation such as 

(1))}()(1),({max=)( hho
j

h xVhuxhfxV θ++ , 

where (1)hx  denotes the discrete solution corresponding to the control and initial value x  after one time step h . 
Abbreviating 

(1))}()(1),({max=))(( hho
j

hh xVhuxhfxVT θ−+  

the second step of the algorithm now approximates the solution on grid Γ  covering a compact subset of the state space, 
i.e. a compact interval ][0, K  in our setup. Denoting the nodes of Γ  by Pixi 1,...,=, , we are now looking for an 

approximation Γ
hV  satisfying 

))((=)( i
hh

i
h XVTXV ΓΓ  

for each node ix  of the grid, where the value of Γ
hV  for points x  which are not grid points (these are needed for the 

evaluation of hT ) is determined by linear interpolation. We refer to the paper cited above for the description of 
iterative methods for the solution of (A5). Note that an approximately optimal control law (in feedback form for the 
discrete dynamics) can be obtained from this approximation by taking the value jxj =)(*  for j  realizing the 

maximum in (A3), where hV  is replaced by Γ
hV . This procedure in particular allows for the numerical computation of 

approximately optimal trajectories. 

In order to distribute the nodes of the grid efficiently, we make use of a posteriori error estimation. For each cell lC  of 
the grid Γ  we compute 

|)())((|max:= kVkVT hhh
lck

l
ΓΓ

∈
−η . 

More precisely we approximate this value by evaluating the right hand side in a number of test points. It can be shown 
that the error estimators lη  give upper and lower bounds for the real error (i.e., the difference between jV  and Γ

hV ) 
and hence serve as an indicator for a possible local refinement of the grid Γ . It should be noted that this adaptive 
refinement of the grid is very effective for computing steep value functions and models with multiple equilibria, see 
Grüne and Semmler (2004). 


