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Abstract 

The aim of this paper is to measure operational risk in financial institutions when historical data are available starting 
from a fixed threshold. 

To quantify the operational risk we apply the Loss Distribution Approach (LDA), a frequency/severity approach 
widely used in the actuarial models. Risk measures like Value at Risk (VaR) and Expected Shortfall (ES) are used for 
determining the risk capital necessary to cover the operational risk. 

The dependence among the events in the operational risk management has been taken into account using copula 
functions. We employed for this purpose the Student copula, which is widely used in financial modelling. 

Extreme Value Theory (EVT) has been used to model the right tail of the severity of loss distributions.  

The Expectation and Maximization (EM) algorithm has been applied to estimate the parameters of the frequency and 
severity of loss distributions when only their left truncated distributions are available. 

We conclude then with a numerical application of the proposed model which aims at evaluating the risk capital for a 
single financial institution. To this scope we have used, as empirical observations, the OpData® dataset supplied by 
OpVantage®. In order to estimate the risk capital, we calculate the Value at Risk of the simulated operational loss 
distribution. 
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Introduction• 

With the regulatory spotlight on operational risk 
management, there has been ever increasing atten-
tion devoted to the quantification of operational risk. 

The operational risk potential devastating power has 
been shown by many large operational losses; some 
of the best known operational risk incidents are the 
$9 billion loss of Banco National due to credit fraud 
in 1995, the $2.6 billion loss of Sumimoto Corpora-
tion due to unauthorized trading activity in 1996, the 
$1.7 billion loss and subsequent bankruptcy of Or-
ange County due to unauthorized trading activity in 
1998, the $1.3 billion trading loss causing the col-
lapse of Barings Bank in 1995, the $0.75 billion loss 
of Allied Irish Bank in 2002, the loss of $2 million 
of Prudential Insurance of America in 2002. 

The new regulatory framework in banking sector 
(Basel II) and the project of the new solvency re-
gime in insurance sector (Solvency II) recognize the 
importance of operational risk by requiring its ex-
plicit treatment with the determination of a specific 
capital requirement. 

There is no generally accepted definition of opera-
tional risk in the financial community. In this paper 
we refer to the definition proposed by the Basel 
Committee on Banking Supervision in 2001: “the 
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risk of loss resulting from inadequate or failed in-
ternal processes, people and systems or from exter-
nal events”. This definition has been adopted for the 
insurance sector until now. 

In this categorization operational risk includes the 
following event types: business disruption and sys-
tem failures; clients, products and business practice; 
damage to physical assets; employment practice and 
workplace safety; execution delivery and process; 
external fraud; internal fraud. 

In this paper, we develop a comprehensive model to 
quantify the capital charge necessary to cover the 
operational risk in a financial institution. 

The proposed model belongs to the class of the 
“Loss Distribution Approach” (LDA). LDA is a 
frequency/severity model widely used in many 
fields of the actuarial practice and comes from Basel 
II methodology framework for operational risk es-
timation (advanced models). 

In this model the frequency and severity of loss distri-
butions are determined for each of the events of loss 
identifying the best fitting distribution of empirical 
data (see Moscadelli, 2004; De Fontnouvelle, 2003, 
2004); then we apply copula functions to reflect the 
dependence amongst the different events dealing with 
operational losses (see, for example, Di Clemente-
Romano, 2003; Reshetar, 2004). The operational risk 
capital charge is estimated by quantifying the Value at 
Risk and Expected Shortfall of the joint distribution of 
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losses (see Rockafellar-Uryasev, 2000; 2002), esti-
mated using Monte Carlo simulation. 

In order to better estimate the possibly fat tails of 
the severity distributions, the Extreme Value Theory 
(Embrechts et al., 1997, 2001, 2003, 2004, 2005) is 
also included in model. 

The paper includes an application aimed at the 
evaluation of operational risk capital charge. 

The numerical example has been carried out using 
the OpData dataset supplied by OpVantage that is 
the largest dataset existing on the market concerning 
operational losses. 

In the OpData dataset only operational risk losses ex-
ceeding $1 million are collected. This limitation may 
be overcome using appropriate algorithms to solve the 
problem of estimating the severity/frequency distribu-
tion with truncated data. In our model we adopt the 
EM algorithm (see Bee, 2005; Chernobai, 2006). 

The main tools we proposed in this paper (copula func-
tions, EM algorithm and Extreme Value Theory) are 
widely used in financial and actuarial practice. Never-
theless, we used them simultaneously in order to capture 
all the features of operational risk modelization. 

The paper has the following structure: 
Section 1 is devoted to the methodology overview; 
here we describe our model of evaluation. In par-
ticular, section 1.1 deals with the Loss Distribution 
Approach and explains the structure of a typical 
model of this family; introduces copula functions to 
model dependencies amongst different risk types, 
gives a brief overview of the risk measures (VaR 
and Expected Shortfall) chosen to quantify the capi-
tal charge needed to cover the operational loss risk 
and introduces the Extreme Value Theory. 
Section 1.2 is dedicated to the distribution estima-
tion with truncated data and presents the EM algo-
rithm that is used in the following section 2. 
Section 2 illustrates a numerical application. The 
model is developed using the OpData dataset as 
input data. The methodology procedures and algo-
rithms described in section 1 are applied on empiri-
cal data to test the model application. The results 
represent the quantification of the operational risk 
capital charge in a hypothetical financial institution. 
1. Model description 

In this section we describe the “technical blocks” 
that compose our model. 

In particular, we present the main characteristics of 
the Loss Distribution Approach (LDA), some useful 
risk measures to quantify the operational risk capital 
charge and some basic elements about copula func-
tions and Extreme Value Theory; we also introduce 

the EM algorithm that is a useful tool to manage 
truncated datasets. 

1.1. An overview of Loss Distribution Approach, 
copula function and Extreme Value Theory 
(EVT). As already said in the introduction, our model 
may be considered a Loss Distribution Approach 
(LDA) for the quantification of operational risk. 

To apply the Loss Distribution Approach we need to 
determine the loss frequency and the loss severity 
distributions for each event type. The aggregate 
distribution for each event type is then obtained as 
the convolution of the frequency and the severity of 
loss distributions. 

Let us denote Ni the loss frequency for event type i, 
and Yik the loss severity associated to the k-th event 
for event type i and with F the probability distribu-
tion of the aggregate losses. 

In the Loss Distribution Approach framework, the 
aggregate annual loss Yi, for event type i , can be 
obtained as the sum of the stochastic number Ni of 
events occurred in one year with severity Yik: 

0

iN

i i k
k

Y Y
=

=∑
.
       (1) 

We assume the following: 

 losses Yik are i.i.d. random variables; 
 loss frequencies and loss severities are inde-

pendent random variables. 

The analytical expression for Gi(y) cannot be de-
rived in general. Therefore, we must employ a 
Monte Carlo simulation in order to generate a high 
number of simulated aggregated losses. 

In order to correctly apply tail risk measures such as 
Value at Risk (VaR) or Expected Shortfall (ES), we 
must efficiently estimate the tails of severity distri-
butions. Indeed, severities data have generally heavy 
tailed distributions. In this situation, Extreme Value 
Theory (EVT) permits to take into account large 
losses in a correct way. 

We recall here that if we fix a confidence level 
(0,1)α ∈ , the Value at Risk (VaR) and the Ex-

pected Shortfall (ES) for the loss random variable X 
at probability level α  with cdf FX(x) is defined as: 

( ){ }αςF:RςminVaR Xa ≥∈= ,    (2) 

[ ]ES |E X X VaRα = > .     (3) 

In the first definition, the VaRα  turns out to be the 
left endpoint of the nonempty interval consisting of 
the values ς  such that ( )XF ς α= . Besides we 
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deduce that the probability that VaRX α≥  equals 
1 α− . Consequently, the ESα  is defined as the 
conditional expectation of the losses which are 
greater to VaRα . 

In this model we also use the EVT approach which is 
useful to correctly estimate heavy tails distributions. 

EVT aims at describing the distributions of rare 
events by focusing on the tail of the distribution. 

EVT is then a powerful tool for managing losses 
due to rare events and inadequacy of internal con-
trols (Low Frequency High Impact Events). 

In general, extreme events can be treated in the two 
following ways: 

 by considering the maximum (or the minimum) 
of the analyzed random variable in consecutive 
periods (for example months or years) in which 
the time horizon has been subdivided (“Block 
Maxima” method); 

 by considering the value that the random vari-
able assumes over a given threshold (“Peaks 
Over Threshold method”, POT). 

In the rest of the paper, we will consider exclusively 
the POT method. 

Traditionally, the total capital charge for operational 
risk is obtained by summing capital charges for each 
event type. This procedure implies a perfect de-
pendence between each event type (in other words, 
aggregate losses coming from different event types 
are comonotonic random variables). This unrealistic 
assumption implies the overestimation of the total 
capital charge. The utilization of a more realistic 
dependence structure, through copula functions, 
produces a lower capital charge (diversification 
effect). To this aim we choose the t-Student Copula. 

When we consider more than two marginal distribu-
tions, the Archimedean family is no more efficient 
because this copula has only one parameter (thus the 
same dependence structure between each couple of 
marginal distributions is assumed). The t-Student 
Copula is then more appropriate as the tail dependence 
is captured (through the degrees of freedom). For these 
reasons, t-Student Copula is widely used in literature.  

The main characteristics of the t-Student Copula are 
here briefly described. 

Its parameters are the correlation matrix R and the 
degrees of freedom υ .  

Let X  be a vector with a n− variate standardized 
Student’s t-distribution with υ  degrees of freedom, 

and covariance matrix R
υ
υ

2−
 (for 2υ > ). It can 

be defined in the following way: 

:X Y
S
υ

=        (4) 

where 2
υχ~S  (the chi-square distribution) and the 

random vector ( )R,N~Y n 0  are independent. 

The copula of vector Y  is the t-Student Copula with 
υ  degrees of freedom. The analytical representation 
is the following: 

( ) ( ) ( )( )nυυ
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where 
jjii
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=  for { }, 1, ,i j n∈ L  are the 

correlations. We also indicate with n
R,υt  the multi-

variate cumulative distribution function of the ran-

dom vector 
Y

S
υ ⋅

, where the random variable 

2
υχ~S  and the random vector Y  are independent. 

Besides, tυ  (cdf of the standard univariate Student 

distribution) denotes the margins of n
R,υt . 

Finally, the t-Student Copula has the following density: 
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If we choose a t-Student Copula, the degree of free-
dom υ  can be evaluated with a log likelihood esti-
mator. 

Once the marginal distributions have been chosen, 
this can be accomplished through a Maximum Like-
lihood Estimation (MLE). 

To generate pseudo-random numbers from the t-
Student Copula we use the following algorithm: 

 find the Cholesky decomposition A of the corre-
lation matrix R; 

 simulate n independent random variates 
( )nz,,zz K1=  from the standard normal distri-

bution; 

 simulate a random variate s  from 2
υχ  distribu-

tion, independent of z; 

 determine the vector zAy ×= ; 

 set y
s
υx = ; 

 determine the components 
( ) 1, ,i iu t x i nυ= = K . The resultant vector is 

1 ,( , , )T n
n Ru u Cυ∝K . 

An exhaustive description of copula functions and 
related algorithms described above can be found in 
Mashal & Naldi (2002) and Di Clemente & Romano 
(2003). 

1.2. EM algorithm. In order to face the truncation 
data problem, a large amount of tools are available 
in the literature (such as EM algorithm or techniques 
that use the truncated Maximum Likelihood estima-
tor). In this paper, we choose the EM algorithm. 
This methodology, applied to the lognormal distri-
bution, appeared first in a paper of Chernobai et al.. 
(A note on the estimation of the frequency and se-
verity distribution of operational losses, 2006) and 
can be also found in subsequent papers (Bee, 2005). 

The model is designed keeping in mind the availability 
of truncated data. In the operational risk losses data-
bases we can find in the markets the lower losses are 
generally not reported. For internal databases the 
threshold is generally $ 10,000 while for external data-
bases this threshold is generally $ 1,000,000. 

The problem of determining the parameters of the 
distribution which represents empirical loss fre-
quencies and loss severities is obviously influenced 
by the presence of “truncated data”. 

If the database consists of truncated data the tradi-
tional best fitting techniques based on maximum 

likelihood estimation or percentile matching, cannot 
be applied. In this case it is necessary to apply some 
specific tools such as the so called EM algorithm to 
evaluate the parameters of the unknown complete 
distribution. 

To this aim, the conditional distributions and maxi-
mum likelihood estimation techniques involving 
truncated data are considered. 

We assume the standard hypothesis that the severity 
distribution follows a lognormal distribution. Some 
recent empirical studies showed that severity distribu-
tions can be also modelled by stableα −  distribu-
tions (Rachev et al., 2007) or “g-and-h” distributions 
(Embrechts et al., 2006; Dutta&Perry, 2007). These 
distributions are suitable for estimating heavy tails. 

The maximum likelihood estimation in presence of 
incomplete data can be carried out using the EM 
algorithm (Expectation-Maximization) (see Demp-
ster et al., 1977). 

The estimation of the parameters of the complete 
distribution is done by maximizing the loglikelihood 
function (see Frachot et al., 2003). 

Let ( , )NTY N y=  be the observed incomplete sam-

ple, where NTN  denotes the number of observed 

data and 1 2( , , , )
NTNy y y y= K  is the observed data 

vector. We also denote by ( , )TX N x=  the missing 

data, where TN  represents the number of missing 

data and 1 2( , , , )
TNx x x x= K  is the vector of miss-

ing data. 

The complete data will then assume the following 
form: 

( , , , )T NTZ X N Y N=  with { }:i iy z z s= ≥ ; 

{ }:i ix z z s= < ; { }# :NT i iN z z s= ≥ ; 

{ }# :T i iN z z s= <  and s is the truncation threshold 
(see Bee, 2005) 

Let us denote: 

( )l l θ=  the loglikelihood function for Y ; 

θ  the parameters vector we have to estimate; 

( )C Cl l θ=  the loglikelihood function for the com-
plete data; 

The two steps of the algorithm are: 

1) E-step: estimate the expected conditional value of 
the loglikelihood function ( )C Cl l θ=  for the ob-
served sample y and the current value for θ . 
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Let us denote 0θ  the initial value of the vector parame-
ters (determined arbitrarily), we must then estimate: 

{ }
00( ; ) ( )CQ E l yθθ θ θ= .     (8) 

2) M-step: the previous expression must be maxi-
mized with respect to θ : 

1 0 0( ; ) max ( ; )Q Qθ θ θ θ= .     (9) 

We repeat the procedure by substituting 0θ with 1θ . 

These two steps are then repeated until convergence 
occurs. 

We describe now the EM algorithm in the hypothe-
sis of lognormal distribution. 

Given a sample 1 2, , ,
NTNw w wK  coming from a 

lognormal truncated distribution with parameters μ  
and 2σ  ( NTN  is the number of observed data) we 

determine 2log( ) ( , )i iy w N μ σ= ≈  in order to 
transform the data into a normal distribution. 

The complete distribution function is: 

2 2

1

( , ; ) ( , ; )
N

C i
i

L z L zμ σ μ σ
=

=∏ ,  (10) 

where Rμ∈ , +∈Rσ 2  and 2( , ; )iL zμ σ  is the 

normal distribution function estimated in iz . 

The observed distribution function is: 
21

2 2 2

1 1
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1 ( *) 2

iNT NT
yN N
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i i

L s y L s y e
s
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σμ σ μ σ
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with Rμ∈ , +∈Rσ 2 , * ss μ
σ
−

= . 

In the implementation of EM algorithm, for calcu-
lating: 

2 2

1

( , ; ) ( , ; )
N

C i
i

L z L zμ σ μ σ
=

=∏ .  (12) 

we use the fact that the joint distribution of Y , TN  
and X  can be expressed in the following way: 

( ) ( ) ( ) ( ), , ,T T Tf y N x f y f N y f x N y= ⋅ ⋅
 

As the function ( )f y  is already known, it remains 
to determine TN y  and ,Tx N y . 

Given the complete data set Z  from a normal dis-
tribution with parameters μ  and 2σ , it has been 
proved (McLachlan, Krishnan, 1996) that TN y  
follows a negative binomial distribution with pa-
rameters NTN  and Pr( ) 1 ( *)K Z s s= > = −Φ .  

Consequently, the expected conditional value is:

( ) 1
T NT

KE N y N
K
−

= ⋅ .   (13) 

The distribution of the missing data X  is a right 
truncated normal distribution with density function:  

21
21 1( )

( *) 2

x

Xf x e
s

μ
σ

πσ

−⎛ ⎞− ⎜ ⎟
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Φ
, x s< . (14) 

The estimation of ( )2 ( ) 2( ), ; , , ,t t
i iE L s x yμ σ μ σ⎡ ⎤

⎣ ⎦  

is rather easy due to the fact that the loglikelihood 
function is linear in X  and 2X , so that we have to 
estimate: 

( )( ) 2( )
1 2, , , , ,

NT

t t
NE X y y yμ σ K ,  (15) 

( )2 ( ) 2( )
1 2, , , , ,

NT

t t
NE X y y yμ σ K .  (16) 

The estimation of (15) and (16) can be performed 
thanks to the known formulas for the expected value 
and the variance of the right truncated normal distri-
bution. 

We set ( ) ( )
( )

*
*

*
s

s
s

φ
α =

Φ
 so that: 

( ) ( )( ) ( ) ( ) *( ),t t t tE X y sθ μ σ α= − ⋅ ,                     (17) 

( ) ( ) ( )( ) ( ) 222 ( ) 2( ) ( ) ( ) ( ) ( ), 1 * * * ,t t t t t tE X y s s s E X yθ σ α α θ⎡ ⎤ ⎡ ⎤= ⋅ − ⋅ − + ⎣ ⎦⎢ ⎥⎣ ⎦
.                (18) 

Finally, the E-step is given by: 

( ) 1ˆ|T T NT
KE N y N N

K
−

= = ⋅
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( ) ( )( ) ( ) ( ) *( ),t t t tE X y sθ μ σ α= − ⋅
 

( ) ( ) ( )( ) ( ) 222 ( ) 2( ) ( ) ( ) ( ) ( ), 1 * * * ,t t t t t tE X y s s s E X yθ σ α α θ⎡ ⎤ ⎡ ⎤= ⋅ − ⋅ − + ⎣ ⎦⎢ ⎥⎣ ⎦  
Now the M-step requires the formulas for the maximum likelihood, in the case of normal distribution, for 
the missing data coming from (17) and (18): 

( )( 1) ( ) ( )
( )

1

1 ,
NTN

t t t
i Tt

iNT T

y N E X y
N N

μ θ+

=

⎛ ⎞
= + ⋅⎜ ⎟+ ⎝ ⎠

∑ ,       (19) 

( ) ( )22( 1) 2 ( ) 2 ( ) ( 1)
( )

1

1 ,
NTN

t t t t
i Tt

iNT T

y N E X y
N N

σ θ μ+ +

=

⎛ ⎞
= + ⋅ −⎜ ⎟+ ⎝ ⎠

∑ .     (20) 

The parameters are then obtained by iterating (17), 
(18), (19) and (20) until convergence. 

2. A model application 

An application of the model described above has 
been developed with the aim to calculate the opera-
tional risk capital charge in a financial institution 
(bank or insurance company). 

The input data are derived from OpData, an opera-
tional losses database supplied by OpVantage, a 
division of Fitch Risk Management. 

The data are collected from public sources and in 
the database only losses, whose amounts exceed a 
truncation threshold of $ 1 million, are registered 
during the period of 1972-2006. 

In this application we consider the database for the 
period of 1994-2006, since from 1972 to 1994 it is not 
statistically significant. The database contains world-
wide firms and we selected a sub-sample correspond-
ing to the sector “financial services” with firms whose 
total assets are reported. With these restrictions, the 
sub-sample we used contains 1.025 records. 

In the OpData, operational losses are categorized 
according to the Basel Committee’s event types 
classification:  

1) business disruption and system failures; 
2) clients, products and business practice; 
3) damage to physical assets; 
4) employment practice and workplace safety; 
5) execution delivery and process management; 
6) external fraud; 
7) internal fraud. 

Due to the lack of the loss data in event types 1) and 
3), we have taken into account five event types’ data. 

For each loss the following information is available: 

 classification by event type; 
 firm name; 

 loss event description; 
 loss amount in local currency; 
 loss amount in dollars; 
 loss amount in current value dollars (based on 

CPI); 
 loss data; 
 country; 
 total assets of the firm. 

The model consists of the following steps: 

 estimation of the parameters of frequency and 
severity distributions, for each event type by ap-
plying the EM algorithm. The frequency of loss 
arising from each event type is assumed to be a 
Poisson distribution while the lognormal distri-
bution is used to model the severity of loss; 

 estimation of the aggregate loss distribution, for 
each event type, via Monte Carlo simulation; 

 quantification of operational risk capital charge, 
for each event type, through risk measure as 
Value at Risk and Expected Shortfall; 

 quantification of the total operational risk capi-
tal charge under different hypotheses: 
- perfect dependence (comonotonicity) among 

event types. The total capital charge is then 
obtained by summing capital charges for each 
event type and it results overestimated; 

- independence between event types. This as-
sumption leads to underestimation of the to-
tal capital charge; 

- realistic dependence structure through a t-
Student copula. 

For efficiently modelling the right tail of the severity 
distribution we repeat the above steps using Extreme 
Value Theory (Di Clemente-Romano, 2003; Embrechts, 
2003, 2005; Moscadelli, 2004). Therefore we model the 
severity distribution using the lognormal distribution (in 
the left tail and in the centre) and the Generalized Pareto 
Distribution (GPD) for the right tail. 

The database at our disposal is structured as follows: 
for each year we know the determination k of the 
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random variable N “number of loss events in one 
year” and consequently we have at our disposal k 
determinations of the random variable Yi. 

Then, for each financial institution, we normalize 
its loss amount yik by dividing it by the total asset 

A: ˆ ik
ik

yy
A

= ; in this way we shall obtain results 

that are expressed as percentages of the total as-
sets of the firm. 

We apply then the EM algorithm to estimate the 
parameters of frequency and severity distributions 
(see Table 1). 

Table 1. Parameters estimation of severity and frequency distributions for each event type 

Event type Severity (lognormal) Frequency (Poisson) 

1. Clients, products and business practices 10.425μ = − ; 2.286σ =  37.130λ =  

2. Employment practices and workplace safety 12.139μ = − ; 2.066σ =  6.686λ =  

3. Execution, delivery and process management 11.456μ = − ; 2.039σ =  6.678λ =  

4. External fraud 10.824μ = − ; 1.975σ =  13.741λ =  

5. Internal fraud 10.692μ = − ; 2.143σ =  18.971λ =  
 

The aggregate loss distribution, for each event type 
i , is obtained as a convolution of the frequency and 
severity distributions with the Monte Carlo simula-
tion method. 

We can estimate operational losses at firm level, for 
each event type i , by dividing aggregated losses by 
the number of firms that suffered from event type i . 

We consider Value at Risk and Expected Shortfall as 
the capital amount needed to cover operational risk. 

Capital charges, at different confidence levels, for 
each event type are reported in Tables 2 and 3 
(Monte Carlo simulation with 100,000 replications). 
We remind that Value at Risk and Expected Short-
fall estimation is reported to unitary capital loss. 

Table 2. Value at risk for event type 

Event type VaR 95% VaR 99% VaR 99.9% 

1. Clients, products and business practices 0.000564 0.001309 0.004634 

2. Employment practices and workplace safety 0.000045 0.000116 0.000411 

3. Execution, delivery and process management 0.000051 0.000133 0.000477 

4. External fraud 0.000092 0.000210 0.000637 

5. Internal fraud 0.000178 0.000431 0.001260 

TOTAL 0.000929 0.002199 0.007419 

Table 3. Expected shortfall for event type 

Event type ES 95% ES 99% ES 99.9% 

1. Clients, products and business practices 0.001209 0.002871 0.009721 

2. Employment practices and workplace safety 0.000103 0.000243 0.000735 

3. Execution, delivery and process management 0.000121 0.000301 0.001043 

4. External fraud 0.000183 0.000398 0.001127 

5. Internal fraud 0.000366 0.000807 0.002224 

TOTAL 0.001982 0.004620 0.014850 
 

Finally, we model the dependence structure among 
event types by using a t-Student Copula. 

The MLE estimation for the optimal degrees of 
freedom of the copula gives υ = 5. 
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Fig. 1. The estimation of the optimal degrees of freedom 

To apply the chosen copula we must estimate the 
correlation matrix of the risk events. 

We cannot use an empirical correlation matrix (i.e., 
inferred from historical data) due to database trunca-
tion; for this reason, we consider a theoretical corre-
lation matrix based on qualitative considerations. 

The following table shows the correlation matrix. 

Table 4. Qualitative correlation matrix (medium 
correlation = 0.35, high correlation = 0.55) 

Qualitative 
correlations 

among events 
1 2 3 4 5 

1 1     

2 medium 1    

3 high medium 1   

4 zero zero high 1  

5 high zero high medium 1 

The aggregate loss distribution with copula function is 
obtained through algorithms presented in section 1.1. 

In Table 5 the total operational risk capital charge 
for the t-Student Copula dependence structure to-
gether with the Comonotonicity and Independence 
cases are shown. 

Table 5. Operational risk capital charge (% of total asset A) 

OR capital charge VaR 95% VaR 99% VaR 99.9% ES 95% ES 99% ES 99.9% 

Comonotonicity 0.000929 0.002199 0.007419 0.001982 0.004620 0.014850 

t-Student copula 0.000836 0.001932 0.005991 0.001694 0.003793 0.010647 

Independence 0.000755 0.001566 0.004839 0.001437 0.003139 0.009965 
 

As it is expected, considering the dependencies 
among event types in case of application of t-
Student Copula, the operational risk capital charge, 
expressed as a percentage of the total asset, is al-
ways between the minimum values, which corre-
spond to the assumption of independence, and the 
maximum values, which are obtained if perfect de-
pendence (comonotonicity) is assumed. 

The results obtained may be refined with the Ex-
treme Value Theory, which can be used for model-
ling more efficiently the right tail of the severity 
distribution. 

A right tail analysis suggests that only for the event 
type Internal Fraud, the lognormal distribution under-
estimates the large loss probability (see Figure 2). 

 
Fig. 2. Lognormal distribution (line), empirical distribution (dots) 

We may “correct” the observed underestimation by 
modelling the right tail with the Generalized Pareto 
Distribution (POT method). 

In order to fit the GPD on our data we perform the 
following steps: 

 find the appropriate threshold k ; 
 determine loss excesses (loss amounts over the 

threshold minus the threshold); 
 estimate GPD parameters ξ  and σ  from the 

excesses. 

According to Figure 2, the large loss probability is 
underestimated by lognormal distribution over the 
threshold 0.0007174 (95-th percentile). 

Maximum Likelihood Method has been used to esti-
mate GPD parameters (see Table 6). 

Table 6. GPD parameters internal fraud 

k  ξ  σ  

0.0007174 0.817819 0.001319 

The best fitting between GPD (ξ, σ) and empirical data 
are reported in Figure 3. 
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Lognormal 
GPD 

 
Fig. 3. Internal fraud. Lognormal distribution (dark line), empirical distribution (dots),  

generalized Pareto distribution (clear line) 

The results are reported in Table 7. 

Table 7. Operational risk capital charge with EVT (% of total asset A) 

OR capital charge VaR 95% VaR 99% VaR 99.9% ES 95% ES 99% ES 99.9% 

Comonotonicity 0.000940 0.002368 0.009648 0.002263 0.005923 0.024049 

t-Student copula 0.000849 0.002132 0.008214 0.001972 0.004917 0.017879 

Independence 0.000782 0.001749 0.006577 0.001684 0.004133 0.016445 
 

Comparing the results of Table 7 with those one in 
Table 5, we can appreciate the importance of choos-
ing the appropriate probability distribution to fit the 
right tails. 

Conclusions 

The application is developed using operational risk 
data of financial institutions, based in different 
countries, with different business dimension and 
risk profile. 

For this reason we have to interpret it mainly as an 
exercise to check the model feasibility and to under-
stand the difficulties that the evaluator may encoun-
ter in practice. But, at the same time, the model re-
sults allow us to emphasize the importance of con-
sidering the dependence among the events and its 
impact on the operational risk capital charge. 

A similar comment is valid for the technical con-
sideration of the fat tails of the severity of loss 
distributions. 

In addition, we find that the possibility of quantify-
ing the risk capital when only left truncated loss 
distributions are available is relevant from the prac-
tical point of view. 

It is well known that the most common concern of 
risk managers is the lack of empirical data. With this 
model, we intend to suggest that, as first approach, 
the financial institutions could start to collect opera-
tional risk data over a fixed threshold. 

A last consideration: we calculate (Tables 5 and 
7) the operational risk capital charge as a percent-
age of the total asset at different confidence lev-
els. This means that the single financial institution 
could measure its own operational risk capital 

charge simply by multiplying this percentage by 
its total asset. 

We could think that this kind of evaluation be car-
ried on, for example, at the country level and the 
results utilized as a benchmark. 

To improve the performances of the LDA model 
proposed in this paper and to achieve a more precise 
monitoring of the operational risk, it is important to 
focus on the role played by the operational loss da-
tabase that the financial institution can use in order 
to estimate its operational losses. 

In particular, databases concerning operational loss 
data are quite rare and not easily traceable in the 
market. We highlight that a "good quality" database 
can increase the significance of the final results of 
the risk analysis. 

Due to the fact that some particular operational 
losses are rare events (i.e., for the category low fre-
quency/high impact events) it's obvious that a finan-
cial institution cannot use only its own data (i.e., 
data concerning its own operational losses) to esti-
mate the parameters of the LDA model but it must 
integrate its own data with databases sold by spe-
cialized data-provider. 

These databases should contain not only the relevant 
information about the loss events (amount, date, event 
type and so on) but also a detailed description of the 
main characteristics of the entity that suffered the op-
erational loss like, for example, the activity sector, the 
size, the geographical location and the main indicators 
of the balance sheet at the loss event date. 

If databases share this particular structure, each valuator 
may assess its technical bases in "tailor made" manner 
that is the best way to perform valuation in this field. 
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