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Abstract 

A structural model is proposed to analyze linkages between large, medium and small capitalization securities traded on 
the Australian Stock Exchange. Small stocks fail to react instantaneously to the information transmitted by large and 
medium cap firms, and take several weeks to absorb this information in an entirely lagged adjustment process. In con-
trast, medium firms respond to the information conveyed by large cap securities with about 80 percent instantaneous 
and 20 percent lagged adjustment. Large stocks are the quickest to respond to new information but slightly overshoot 
in their immediate reaction to the news transmitted by medium cap firms. A number of trading strategies are con-
structed on the basis of the uncovered patterns in order to test for the possibility of arbitrage profits. Although the 
excess returns generated by these strategies are typically positive, they are statistically insignificant, suggesting that 
the discovered signals are too weak to be successfully used for trading purposes. 
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Introduction© 

I investigate temporal links between three size-
sorted portfolios composed of securities traded on 
the Australian Stock Exchange, namely large, me-
dium and small capitalization stocks. While a num-
ber of international studies have delved into the 
tendency of small cap firms to lag large capitaliza-
tion stocks, this paper adds to the current literature 
in three important ways. First, the existing literature 
(see, for example, Lo and MacKinlay, 1990; 
Jegadeesh and Titman, 1995; and Kroner and Ng, 
1998) examines lagged portfolio spillovers in isola-
tion of their contemporaneous interactions. This 
approach is incomplete because only a fraction of 
such linkages is expected to occur with a lag. In this 
paper, I propose a new method to assess relative 
significance of both the simultaneous interactions as 
well as the lagged spillovers. Second, in contrast to 
the existing literature, which examines the lead-lag 
effect from a large market, typically the U.S., point 
of view, this paper provides new empirical evidence 
from Australia, a relatively small equity market. 
Third, I apply and extend a new empirical technique 
in the context of size-sorted portfolio spillovers.  

The tendency of small capitalization indices to re-
spond to price changes in large cap portfolios with a 
lag, but not vice versa, has been termed the lead-lag 
portfolio effect by Lo and MacKinlay (1990). Al-
though there is a significant number of studies that 
map out the lagged price discovery processes, they 
fail to account for instantaneous adjustments that 
may occur between portfolios of different capitaliza-
tions. Thus, extending the analysis to include both 
instantaneous as well as lagged adjustments will 
provide additional insights into the issue. For exam-
ple, finding that small firms respond to price 
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changes of large stocks with no instantaneous and 
100 percent lagged adjustment conveys considera-
bly more information than simply knowing that 
lagged adjustments are statistically significant. 
However, this kind of decomposition is difficult to 
achieve in empirical work, primarily due to the en-
dogeneity problem1. 

Put in the context of size-sorted portfolios the en-
dogeneity issue implies that, if two price indices are 
determined jointly, it is difficult to unbiasedly esti-
mate their unrestricted contemporaneous regression 
coefficients. In this paper, I apply and extend a rela-
tively new econometric technique known as the 
structural GARCH (Generalized Autoregressive 
Conditional Heteroscedasticity) model, which over-
comes the endogeneity issue. The structural 
GARCH model, which was originally proposed by 
Rigobon and Sack (2003), achieves parameter iden-
tification through a time varying nature of condi-
tional variances. This allows one to estimate the 
entire contemporaneous regression coefficient ma-
trix, provided certain regularity conditions are met. 
However, the structural GARCH model lacks the 
ability to identify or “name” structural shocks, with-
out placing some rather stringent restrictions on its 
parameters. This represents a significant shortcom-
ing in the current application where a decomposition 
of a portfolio’s responses to news transmitted by 
other portfolios’ returns requires such identification. 
To this end, I use an approach suggested by Dungey 
et al. (2009) that extends the basic Structural 
GARCH framework and provides a way to link 
structural shocks with observable portfolio variables 
and is based on a variance decomposition technique. 

                                                      
1 The endogeneity issue, which is frequently encountered in the de-
mand-supply type of equations, refers to the bias encountered when 
trying to estimate the unrestricted matrix of contemporaneous coeffi-
cients in a system of jointly determined equations.  
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I find that even after accounting for contemporane-
ous interactions, small capitalization stocks still lag 
large and medium cap portfolios. In fact, the small 
stocks fail to even partially respond to the news 
conveyed by the large and medium cap indices con-
temporaneously. Over the sample period of Decem-
ber 1987-April 2003, 100 percent of the total re-
sponse of small stocks, to the information conveyed 
in price changes of large cap firms, occurred with a 
lag. The large and medium capitalization indices 
also exhibited some lagged adjustments, but of 
much smaller magnitudes. The lagged response of 
the large cap index over a period of ten weeks fol-
lowing a 1 percent change in medium size stocks is 
about -0.03 percent, while the instantaneous re-
sponse amounts to 0.25 percent. These findings 
suggest that large firms achieve most of its adjust-
ment contemporaneously, but slightly overshoot in 
their immediate reaction. Similarly, medium size 
stocks exhibit a small lagged response to a 1 percent 
change in the large cap index, which accounts for 
about 20 of the total adjustment.  

As a measure of the economic significance of the 
above reported lagged adjustments, I employ a se-
ries of filter trading strategies constructed on the 
basis of the uncovered patterns. While the filter 
rules generate positive excess returns over a buy and 
hold strategy, the returns are statistically indifferent 
from zero even before taking trading fees into ac-
count. This leads us to conclude that although we 
find statistically significant lead-lag patterns in the 
Australian data, the uncovered patterns are too weak 
to be used profitably as trading signals in an invest-
ment strategy. 

The rest of the paper is organized as follows: Sec-
tion 1 reviews some relevant literature on the lead-
lag effect in size-sorted portfolios. The econometric 
methodology is discussed in Section 2, while Sec-
tion 3 details the dataset and presents empirical re-
sults. Conclusions are provided in the final section. 

1. Literature review: lead-lag effect in size-sorted 
portfolios  

The study of time series properties of security prices 
has its roots in the seminal work of Louis Bachelier 
(1900). Bachelier’s hypothesis, nowadays better 
known as the random walk hypothesis1, has been 
studied and tested on a wide range of financial vari-
ables, and size-sorted portfolios are not an excep-
tion. Lo and MacKinlay (1988) were amongst the 
first to test Bachelier’s hypothesis in the portfolio 
context using five size-sorted indices comprised of 
stocks listed on the NYSE and AMEX. They 
strongly rejected the random walk hypothesis in 

                                                      
1 This hypothesis essentially asserts that future stock market returns are 
unpredictable. 

portfolio data and found that portfolio returns ex-
hibit strong positive serial correlations, even though 
individual returns are on average weakly and nega-
tively autocorrelated. Lo and MacKinlay hypothe-
sized that this inconsistency was due to cross-
autocorrelations between individual security re-
turns. In a related study, Lo and MacKinlay (1990) 
reported substantial differences in the behavior of 
small and large capitalization portfolios. They dem-
onstrated that returns for small stocks were more 
predictable than those of large firms. Further, they 
also presented evidence that suggested the existence 
of a lead-lag structure between small and large capi-
talization stocks that was asymmetric in nature: 
small stocks appear to lag large firms, but not the 
other way around. 

Following in the steps of Lo and MacKinlay 
(1990), a number of more recent studies examined 
the lead-lag relationship in several different stock 
markets as well as over different time periods. For 
instance, Fargher and Weigard (1998) investi-
gated the impact of technological and regulatory 
changes on the lead-lag effect and found that the 
effect diminished in the more recent past. They 
explained their findings using the argument of 
improved market efficiency and better dissemina-
tion of information. McQueen et al. (1996) studied 
the asymmetric responses to good and bad news. 
Small firms appear to respond with a lag to good, 
but not bad news. That is, adverse information 
seemed to be impounded in the price change of 
small firms instantaneously. Evidence was also 
found to support the lead-lag hypothesis in Asia-
Pacific markets. Chang et al. (1999) reported 
asymmetric cross-autocorrelations in six Asian 
markets including Hong Kong, Japan, Singapore, 
South Korea, Taiwan and Thailand. However, 
they confirmed McQueen et al.’s asymmetric re-
action to good news only for Taiwan. Chang et al. 
did not find sufficient evidence to infer that the 
degree of cross-autocorrelation had weakened 
since 1987. 

A number of papers have also extended the litera-
ture by examining the portfolio lead-lag effect in 
the context of conditional variances. For example, 
Conrad et al. (1991) found evidence of GARCH 
volatilities and volatility spillovers in the US size-
sorted portfolios. Further, similar to the findings 
reported by Lo and MacKinlay, Conrad et al. re-
ported asymmetric spillovers in conditional vari-
ances. The direction of asymmetry is the same; 
volatility spilling over from large to small firms. 
In a later study, Kroner and Ng (1998) confirmed 
Conrad et al.’s findings using several different 
types of M-GARCH models. Reyes (2001) re-
ported similar findings in size-sorted indices 
listed on the Tokyo Stock Exchange.  
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2. Econometric specification: a structural 
GARCH model 

A structural GARCH specification is essentially a 
simultaneous equations model (SEM), or a structural 
vector auto-regression (SVAR) in which structural 
innovations are characterized by GARCH processes 
(Rigobon and Sack, 2003). This is not an unrealistic 
assumption given that the reduced form innovations 
which are often found to display GARCH behavior, 
are linear combinations of the structural shocks. 

A tri-variate structural GARCH model used in the 
current application can be specified in the follow-
ing way:  
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where tr  is a ( )3 1×  matrix of size-sorted portfolios, 
ordered from the largest capitalization index to the 
smallest, tu  is a vector of structural innovations with 
the following properties: tu ⎜ℑt-1∼(0,Gt) and its con-
ditional variance matrix Gt is a diagonal matrix of 
order (n×n), such that .ggG ttt ′=  Further, tε  is an 
(n×1) vector of Normal (0,In) variables. The condi-
tional covariance matrix for the structural process is 
therefore specified as: 

Var(B0rt⎜ℑt-1)=Vart-1(B0rt)=Et-1(gtetet′gt′)=Et-1(gtIngt′) 

=Et-1(Gt)=Gt,       (2) 

while the reduced or “observed” form conditional 
covariance matrix can be seen to be a linear combi-
nation of the structural covariance elements: 
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In order to complete the above model, Gt is specified 
as a GARCH ( ),p q  process:  
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where ( )tGdiag  represents a column vector that 
consists of the main diagonal elements of Gt, “⋅” is 
the element by element multiplication operator, ω  
is a ( )3 1×  vector of constants, α ’s and β ’s are 

( )3 3×  parameter matrices.  

Although an unrestricted SVAR model similar to 
the one presented in Eq. (1) cannot be estimated 
directly1, Rigobon and Sach (2003) show that in the 
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case of the structural GARCH model, i.e. when 
structural innovations exhibit GARCH variances, 
the model is identified, up to row permutations of 
the original model. This implies that although we 
can estimate the parameters we cannot assign names 
to the structural innovations, e.g. large, medium or 
small firm shocks. 

2.1. “Naming” of structural shocks. Because I 
wish to compare instantaneous and lagged re-
sponses in one size sorted portfolio for given 
changes in the other portfolios, one at a time, I use 
a variance decomposition approach developed in 
Dungey et al. (2009) that extends the Rigobon and 
Sack (2003) approach and overcomes the issue of 
identifying shocks, i.e. linking structural shocks 
and observable variables. In particular, I name a 
structural innovation after that size-sorted portfolio 
which receives the largest portion of its variation 
from the innovation. For example, the observed 
variance of any of the three portfolios 2

ih  (i = 1, 2, 
3) can be decomposed as follows: 
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where 2
ig ’s (i = 1, 2, 3) represent the variances of 

structural shocks tu , and ,α ,β γ , are the coeffi-
cients implied by Eq. (3). The identification of 
shocks is then achieved by computing percentage 
contributions of each structural shock iu to every 

size-sorted portfolio variance 2
ih  (i = 1, 2, 3). For 

example, the contributions to the large firm portfolio 
variance can be calculated as follows: 
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The decision rule then becomes: name the struc-
tural shock iu  (i = 1, 2, 3) after the large firm 
portfolio if 

1 1, ,i jr u r uVD VD> for all i j≠ . For exam-

ple, if the structural shock number one accounts 
for 40 percent of the variation in the large cap 
index, while the shocks two and three account for 
30 percent of the variation each, we would name 
the structural shock one the large firm portfolio 
shock2.  

                                                      
2 This method, however, would not work if a shock was found to con-
tribute the most variation to more than one observable variable. 
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2.2. A decomposition of portfolio responses into 
contemporaneous and lagged components. 
Once the structural shocks have been identified 
(i.e. named) I decompose the total cumulative 
response of each size-sorted portfolio, to a 1 per-
cent change in each of the three portfolios, into 
instantaneous and lagged components by conduct-
ing impulse-response analyses. I provide an im-
pulse of 1 percent change to each of the size-
sorted portfolios, one at a time via their structural 
shocks, and then compute the resulting instanta-
neous and lagged responses in the portfolios. This 
approach is feasible only in a structural frame-
work and would not be possible in a regular vec-
tor autoregression setting1. 

To illustrate this approach I re-write Eq. (1) in its 
vector moving average form: 
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The instantaneous response of a size sorted portfolio 
i to a 1 percent change in portfolio j can be seen as: 
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where je  is a ( )3 1×  elementary vector that has 1 in 
position j and 0 elsewhere. Similarly the sum of the 
lagged responses is equal to: 
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3. Data summary and empirical findings  

The dataset consists of daily observations on the 
closing price, dividends paid and market capitali-
zation for 466 securities listed on the Australian 
Stock Exchange (ASX) and included2 in the All Ordi-
naries Share Price Index.  I use Wednesday closing  

                                                      
1 A regular vector autoregression impulse-response function exhibits 
only lagged responses. 
2 As of October 26, 2002, the All Ordinaries is a capitalization weighted 
index that accounts for more than 90 percent of the total market capi-
talization in Australia. 

prices and dividend payments to calculate simple 
weekly returns for each stock over the period De-
cember 1987-April 20033. Three size-sorted port-
folios are constructed that consist of twenty 
stocks of large, medium and small market capi-
talization respectively. Weekly returns rather than 
daily are used in order to lessen market micro-
structure effects such as large bid-ask spreads, 
non-synchronous trading and complications aris-
ing from seasonality problems, namely the day-
of-the-week effect.  

The reason for choosing to limit the number of 
firms in each portfolio to twenty securities is to 
keep the number of securities in each index the 
same. The Small Cap Index published by the ASX 
consists of 200 securities, the ASX Mid Cap In-
dex contains 50 issues, while the ASX Large Cap 
Index only 20. Having more stocks in the Small 
and Mid Cap Indices means that idiosyncratic 
risks are diversified over a larger number of secu-
rities in those portfolios. This in turn can make 
small capitalization stocks appear to exhibit 
smaller risk profiles on average when compared 
to medium and large capitalization stocks, an un-
realistic scenario. Further, the number of stocks 
included in each index is to a large extent deter-
mined by the total number of large capitalization 
securities listed on the Australian Stock Ex-
change. The ASX is a relatively small market and 
the top twenty firms account for more than 60 
percent of the total market capitalization. These 
twenty stocks clearly distinguish themselves from 
the rest of the market by their size and including 
more than twenty stocks in the large capitalization 
portfolio would likely result in a blend of large 
and medium capitalization firms.  

While I form the large capitalization portfolio 
from the twenty largest firms listed on the ASX, 
the medium capitalization portfolio includes the 
first twenty stocks above 11 percent of the cumu-
lative sample market value. The small capitaliza-
tion index is composed of the first twenty stocks 
above 3.5 percent of the cumulative market value. 
Therefore, the large stock portfolio mirrors the 
ASX published Large Cap Index while the cut-off 
points for the medium and small capitalization 
portfolios roughly coincide with the median cu-
mulative market values of the ASX published 
Medium and Small Cap indices. 

I construct the portfolios as equally-weighted indices 
of their constituent securities and rebalance them every 

                                                      
3 This time period was chosen due to limitations the author had in 
accessing the data. 
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six months in order to maintain the appropriate firm 
size in each portfolio. Further, I control for the non-
synchronous trading problem (Fisher, 1966) by 
computing weekly portfolio returns using only those 
securities that are actively traded on the last two 
trading days before Wednesday of each week. This 
procedure was shown to eliminate the effect of stale 

prices by Mech (1993). Table 1 presents summary 
statistics for the three portfolios. Consistent with the 
findings of Lo and MacKinlay (1990) in the US, 
Australian medium and small firm portfolios show 
statistically significant serial correlations, according 
to the large Q-statistics, while the large cap index 
shows no discernable serial correlation pattern.  

Table 1. Summary statistics for the size-sorted portfolios 

 Median 
(%) 

Volatility  
(%) ρ(1) ρ(2) ρ(3) ρ(4) Q(4) JB 

1r  0.20 2.06 0.020 0.025 0.020 -0.026 1.68 
(0.79) 

40.64 
(0.00) 

2r  0.29 1.80 0.157 0.065 0.020 0.000 23.11 
(0.00) 

30.44 
(0.00) 

3r  0.31 2.31 0.238 0.132 0.040 -0.027 60.29 
(0.00) 

58.30 
(0.00) 

2
1r  1.62 7.60 0.131 0.123 0.089 0.084 37.58 

(0.00)  

2
2r  1.28 5.42 0.106 0.048 0.138 0.072 29.84 

(0.00)  

2
3r  2.28 9.74 0.166 0.022 0.015 0.020 22.73 

(0.00)  

Note: 1r , 2r and 3r are weekly portfolio returns on the large, medium and small capitalization portfolios. ρ’s represent autocorrela-
tion coefficients while Q(5) is the Ljung-Box Q-statistics calculated on the first five ρ’s, 5% critical value for the Q-statistic is 11.07. 

After squaring the returns, all three series appear 
to be strongly autocorrelated, which is indicative 
of time varying conditional volatility. The median 
weekly return and volatility estimates are greatest 
for the small firm portfolio. 

3.1. Empirical findings. Table 2 presents the 
estimates of the structural mean equation 
parameters, see Eq. (1). The large capitalization 
index seems to absorb most of relevant 
information contemporaneously. None of the 
coefficients on the lagged explanatory variables 
are statistically significant at any conventional 
level of significance, with the exception of the 
small cap index lagged two periods. In contrast, 
the medium capitalization index appears to lag 
large firms while the small firms lag both the 
large and medium size portfolios. These findings 
are largely in line with the lead-lag hypothesis 
proposed by Lo and MacKinlay (1990), and 
international literature reviewed in Section 1. 

As Table 2 suggests, the large firm portfolio re-
sponds instantaneously to the information con-
veyed by the medium capitalization index, at the 5 
percent level of significance. Similarly, the me-
dium cap index shows a partial immediate ad-
justment to the news transmitted by the return on 
the large cap portfolio. In contrast to these two 
portfolios, the small capitalization index does not 
respond contemporaneously to either of the other 
two indices, at any conventional level of statisti-
cal significance.  

This finding, combined with what we observe in 
lagged responses, not only supports the partial-
adjustment hypothesis but also suggests that small 
firms fail to even partially adjust to the informa-
tion conveyed by large and medium firms con-
temporaneously. The entire adjustment process of 
the small capitalization index occurs with a time 
lag, a finding that has not been previously re-
ported in the literature.  

Diagnostic tests reported in Table A.1 of the Ap-
pendix indicate that the fitted model provides a 
good representation of the data. In particular, the 
tests find no residual autocorrelation or GARCH 
effects, while standardized residuals also appear 
to be normally and independently distributed. 

3.2. The relative significance of contemporaneous 
versus lagged adjustments. This section presents 
the newly developed decomposition of the lead-
lag effect into the instantaneous and lagged com-
ponents. Having conducted the variance decom-
position analysis and identified1 structural shocks 
as large, medium and small firm shocks, I present 
a decomposition of the lead-lag effect (see Table 3). 

                                                      
1 The variance decomposition analysis reveals that the first, second 
and third structural shocks account for the 96%, 87% and 88% 
percent of the variation in the large, medium and small firms, re-
spectively. Complete variance decomposition analyses are available 
upon request from the author. 



Table 2. Structural GARCH estimates – mean equations 
Dependent variable: 

Large capitalization index - 1tr  

Dependent variable: 

Medium capitalization index - 2tr  

Dependent variable: 

Small capitalization index - 3tr  

 Coeff. t-stat p-value  Coeff. t-stat p-value  Coeff. t-stat p-value 
Const. 0.19 2.879 0.004 Const. 0.11 2.044 0.041 Const. 0.05 0.522 0.602 

2tr  0.24 2.304 0.021 1tr  0.25 3.060 0.002 1tr  0.31 1.190 0.234 

3tr  0.04 0.185 0.853 3tr  0.11 0.970 0.332 2tr  0.11 0.448 0.654 

1 1tr −  -0.02 -0.347 0.729 1 1tr −  0.07 2.266 0.024 1 1tr −  0.09 1.748 0.081 

2 1tr −  -0.04 -0.872 0.384 2 1tr −  0.05 1.180 0.238 2 1tr −  0.15 2.793 0.005 

3 1tr −  -0.01 -0.134 0.893 3 1tr −  0.04 1.259 0.208 3 1tr −  0.08 2.015 0.044 

1 2tr −  0.02 0.459 0.646 1 2tr −  -0.01 -0.366 0.714 1 2tr −  0.10 2.328 0.020 

2 2tr −  0.06 1.300 0.194 2 2tr −  0.04 0.842 0.400 2 2tr −  0.11 2.030 0.043 

3 2tr −  -0.08 -2.605 0.009 3 2tr −  0.00 -0.023 0.982 3 2tr −  0.05 1.168 0.243 

Note: 1r , 2r and 3r are weekly portfolio returns on the large, medium and small capitalization portfolios. t-statistics and p-values reported are based on robust Bollerslev-Wooldridge (1992) standard 
errors. A lag length of two (i.e. p = 2) was chosen according to the AIC and Hannan-Quinn selection criteria and residual diagnostic tests. Residual diagnostic tests reported in Table A.1 of the Appendix 
give favorable assessment to the fitted model. 
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Table 3. Decomposition of portfolio responses into contemporaneous and lagged parts 
 INITIAL IMPULSE IS GIVEN BY 1% SHOCK TO 
  Large cap index Medium cap index Small cap index 

Large cap index 1.00 % 0.25 % 0.00 % 
Medium cap index 0.24 % 1.00 % 0.00 % Contemporaneous response 

Small cap index 0.00 % 0.00 % 1.00 % 
Large cap index 0.02 % 0.00 % 0.00 % 

Medium cap index 0.07 % 0.02 % 0.00 % 
Lag 1  
response 

Small cap index 0.13 % 0.17 % 0.08 % 
Large cap index -0.03 % -0.03 % -0.10 % 

Medium cap index -0.01 % -0.01 % -0.03 % Sum of responses for lags 2-10 

Small cap index 0.17 % 0.16 % -0.02 % 

Note: The table presents a summary of the impulse-response function, where the impulses are given by structural shocks calibrated 
to represent 1% changes in the large, medium and small capitalization portfolios.  

As evident from the above table, a 1 percent change 
in the large cap index results in an immediate effect 
of 0.24 percent in the medium cap index, while a 1 
percent impulse to medium capitalization firms pro-
duces a similar 0.25 percent increase in the large cap 
portfolio. Interestingly, changes neither to the large 
nor to the medium cap firms are capable of produc-
ing instantaneous changes in small cap stocks, but 
result in strong lagged responses. 

The total lagged response of the small cap index to a 
1 percent change in large firms can be broken down 
into a 0.13 percent response within a week of the 
initial shock, and 0.17 percent adjustment over the 
next nine weeks. The lagged reaction of the medium 
cap stocks to a 1 percent change in large firms is 
smaller, with about 0.07 percent change in the first 
week following the initial shock, and -0.01% effect 
over the subsequent nine week period. Small firms 
cause neither instantaneous nor one-week-after-the-
shock effect in large and medium cap firms. How-
ever, there are marginal responses of -0.03 percent 
and -0.02 percent in medium and large cap portfo-
lios respectively, over the time span of two to ten 
weeks following an impulse to small companies. 

3.3. Filter rule profitability tests. I test the infor-
mation spillover patterns uncovered and described 
above for their economic significance via a series 
of filter rule tests. I focus on statistically significant 
lagged spillovers found in the small cap index 
equation1 (see Table 2) as they have the best 

chance of generating returns in excess of those 
produced by a buy and hold strategy. 
Since the estimated coefficients on the lagged large 
and medium cap index returns are positive a buy 
signal for the small cap index is generated if the 
lagged return on the large and/or medium cap index 
exceeds a certain value, and a sell signal is gener-
ated if the return falls below the same threshold. A 
number of threshold levels ranging from 0.5 percent 
to 2 percent are considered as triggers for trading in 
the small capitalization stocks following these three 
events: 1) previous week’s large capitalization re-
turn exceeds/falls below the threshold, 2) previous 
week’s medium capitalization return exceeds/falls 
below the threshold, and 3) both medium and large 
capitalization returns exceed/fall below the thresh-
old in the previous week. In addition, the investor is 
assumed to be invested in Australian 90-day Treas-
ury Bills when not holding a position in small 
stocks.  

I assess the effectiveness of the above described 
trading system by computing excess returns of 
this strategy over a passive “buy and hold” in-
vestment strategy for a number of holding periods 
ranging from one to five weeks. Table 4 below 
presents the outcomes of these filter trading rules 
for a holding period of three weeks2. In addition, 
Table 4 also reports results of a statistical test for 
the significance of excess returns being different 
from zero.  

Table 4. Filter rule profitability tests12 

RULE Annual excess return over a “buy and  
hold” strategy (%) 

Null hypothesis:  
excess annual return = 0  
t-statistic and (p-value) 

Number of trading signals 

a. Large cap > |2%| 1.98 0.399 and (0.689) 239 
b. Mid cap > |2%| 1.48 0.294 and (0.768) 191 1 

c. Large & Mid cap >|2%| -0.45 -0.088 and (0.929) 88 

                                                      
1 Filter rules were also applied to the other two portfolios but resulted in lower trading profits. They are available from the author upon request. 
2 The results for other holding periods do not change the conclusions reached based on the results presented here. Trading profits for other holding 
periods are available upon request. 
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Table 4 (cont.). Filter rule profitability tests 

RULE Annual excess return over a “buy and  
hold” strategy (%) 

Null hypothesis:  
excess annual return = 0  
t-statistic and (p-value) 

Number of trading signals 

a. Large cap > |1.5%| 2.79 0.571 and (0.568) 332 
b. Mid cap > |1.5%| 4.18 0.832 and (0.405) 299 2 

c. Large & Mid cap > |1.5%| 1.42 0.283 and (0.777) 161 
a. Large cap > |1%| 3.56 0.698 and (0.485) 472 
b. Mid cap > |1%| 5.59 1.109 and (0.268) 426 3 

c. Large & Mid cap > |1%| 3.21 0.647 and (0.518) 293 
a. Large cap > |0.5%| 5.45 0.985 and (0.325) 617 
b. Mid cap > |0.5%| 6.06 1.229 and (0.219) 591 4 

c. Large & Mid cap > |0.5%| 4.78 0.967 and (0.334) 484 

Note: Holding period is assumed to be 3 weeks. Excess returns for holding periods less than three weeks have been calculated but 
they are typically smaller than the returns reported here. The statistical test is performed by regressing excess returns on a constant, 
and using the Newey-West (1987) HAC consistent covariance estimates to calculate test statistics. 

As Table 4 shows, profitability of the trading strate-
gies and the number of generated trade signals vary 
considerably across different rules. As expected, 
less stringent rules generate more trading signals. 
However, it also appears that the less restrictive the 
trading rule is, the higher the annual excess returns 
it produces.  

The smallest excess return is associated with the 
strategy 1.c. of Table 4, which trades when both 
large and medium stocks move by more than 2% in 
absolute value. On the other hand, the greatest annual 
excess return is generated by the strategy 4.b that gen-
erates a buy signal when medium size stocks’ return 
exceeds 0.5 percent, and a sell signal when the me-
dium cap index falls by more than 0.5 percent.  

Although some annual excess returns appear rather 
large, a formal statistical test is presented in column 
three of Table 4. None of the twelve trading strategies 
implemented here provides an annual return, in excess 
of a buy and hold strategy, that is statistically different 
from zero. Further, subtracting trading fees, which 
amount to about 4.0 percent1 for a round trip brokerage 
fee, would make these results even more in favor of a 
simple buy and hold strategy.  

Conclusions 

A structural method is proposed to investigate in-
formation spillovers among three size-sorted port-
folios constructed from the securities listed on the 

Australian Stock Exchange. The main advantage of 
this approach over the existing models is that it 
broadens the lead-lag analysis into an investiga-
tion of the contemporaneous versus lagged infor-
mation spillovers. Specifically, it allows us to 
quantify relative importance of the contempora-
neous and lagged information spillovers for each 
size-sorted portfolio. 

It appears that not only does the small capitalization 
index lag the large and medium size firms with sta-
tistical significance, as reported by the existing lit-
erature, but that it fails to even partially adjust to 
their returns contemporaneously. On the other hand, 
over 80 percent of the total adjustment to new in-
formation completed by large and medium size 
firms occurs instantaneously. This is a new and in-
teresting finding that indicates a degree of segmen-
tation in the Australian stock market based on the 
market capitalization.  

In order to test the uncovered patterns for profitabil-
ity I construct a series of filter rule trading strate-
gies. Even though the filter rules typically forecast 
the sign of the small portfolio return correctly, the 
excess returns are not statistically different from 
zero, at any conventional level of significance. The 
economically irrelevant lagged responses found here 
will likely perpetuate in the future as they do not 
generate profitable arbitrage opportunities that 
would eliminate them. 

References1 

1. Bachelier, L. (1900), ‘Theory of speculation’, reprinted in P. Cootner (ed) The random character of stock market 
prices, MIT Press, Cambridge, 1964.  

2. Chang, E., G. McQueen, and J. Pinegar (1999), ‘Cross-autocorrelation in Asian stock markets’, Pacific-Basin 
Finance Journal, vol. 7, pp. 471-493. 

3. Conrad, J., M. Gultekin, and G. Kaul (1991), ‘Asymmetric predictability of conditional variances’, Review of Fi-
nancial Studies, vol. 4, pp. 597-622. 

4. Dungey, M., G. Milunovich, and S. Thorp (2009), “Unobservable shocks as carriers of contagion”, Journal of 
Banking & Finance, doi: 10.1016/j.jbankfin.2009.11.006 

                                                      
1 Round trip discount brokerage fees amount to about 0.20% of the traded value in Australia. Each portfolio consists of 20 securities. 



Investment Management and Financial Innovations, Volume 6, Issue 4, 2009 

 208

5. Fargher, N. and R. Weigand (1998), ‘Changes in the stock price reaction of small firms to common information’, 
The Journal of Financial Research, vol. 21, pp. 105 - 121. 

6. Fisher, L. (1966), ‘Some New Stock Market Indices’, Journal of Business, vol. 39, pp. 191-225. 
7. Jarque, C.M., and A.K. Bera (1980), ‘Efficient tests for normality, homoscedasticity and serial independence of 

regression residuals’. Economics Letters, vol. 6 (3), pp. 255-259. 
8. Jegadeesh, N. and S. Titman (1995), ‘Short-horizon return reversals and the bid-ask spread’, Journal of Financial 

Intermediation, vol. 4, pp. 116-132. 
9. Judge, G.R., W.E. Hill, H. Griffiths, Lutkepohl, and T-C. Lee (1982), Introduction to the Theory and Practice of 

Econometrics, 2nd Ed., John Wiley & Sons: New York, NY. 
10. Kroner, K. and V. Ng (1998), ‘Modeling asymmetric comovements of asset returns’, The Review of Financial 

Studies, vol. 11, pp. 817 - 844.  
11. Ljung, G., and G. Box (1979). ‘On a Measure of Lack of Fit in Time Series Models’, Biometrika, vol. 66, pp. 265-270. 
12. Lo, A., and C. MacKinlay (1988), ‘Stock market prices do not follow random walks: Evidence from a simple 

specification test’, Review of Financial Studies, vol 1, pp. 175-205. 
13. Lo, A., and C. MacKinlay (1990), ‘When are contrarian profits due to stock market overreaction?’, Review of 

Financial Studies, vol 3, pp. 175-205. 
14. McQueen, G., M. Pinegar, and S. Thorley (1996), ‘Delayed reaction to good news and the cross autocorrelation of 

portfolio returns’, Journal of Finance, vol. 51, pp. 889-919. 
15. Mech, T. (1993), ‘Portfolio return autocorrelation’, Journal of Financial Economics, vol.  34, pp. 307-344.  
16. Newey, W., and K. West (1987), ‘A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Con-

sistent Covariance Matrix’, Econometrica, vol. 55, pp. 703-708. 
17. Reyes, M.G. (2001), ‘Asymmetric volatility spillover in the Tokyo Stock Exchange’, Journal of Economics and 

Finance, vol. 25, pp. 206-213.  
18. Rigobon R. (2003), ‘Identification Through Heteroskedasticity’, The Review of Economics and Statistics, vol. 85, 

777-792. 
19. Rigobon, R. and B. Sack (2003), ‘Spillovers Across U.S. Financial Markets’, NBER Working Paper No. 9640. 

Appendix 

Table A.1. Residual diagnostic tests 
 Standardized 

residual one Standardized residual two Standardized residual three 

   Statistic (p-value)  Statistic (p-value) Statistic (p-value) 
Autocorrelation in  residuals: 

Ljung-Box (1979) test  
H0: No autocorrelation 

      

Lag 1 0.396 (0.529) 0.199 (0.656) 0.017 (0.896) 
Lag 2 0.403 (0.817) 0.995 (0.608) 0.086 (0.958) 
Lag 3 0.480 (0.923) 1.146 (0.766) 0.107 (0.991) 
Lag 4 0.482 (0.975) 1.146 (0.887) 0.116 (0.998) 
Lag 5 0.765 (0.979) 1.314 (0.934) 0.199 (0.999) 

GARCH in residuals:  
Ljung-Box (1979) test  

Autocorrelation in squared residuals 
H0: No autocorrelation 

      

Lag 1 0.087 (0.768) 0.132 (0.717) 0.026 (0.871) 
Lag 2 1.552 (0.460) 0.560 (0.756) 0.619 (0.734) 
Lag 3 2.753 (0.431) 0.706 (0.872) 0.688 (0.876) 
Lag 4 2.775 (0.596) 0.712 (0.950) 0.735 (0.947) 
Lag 5 2.815 (0.729) 1.107 (0.953) 1.552 (0.907) 

Normality in residuals: 
Jarque-Bera (1980) test 

H0: Normality 
4.570 (0.102) 5.600 (0.061) 0.118 (0.113) 

Independence of residuals: 
BDS Test 

H0: Independence 
0.080 (0.936) -0.685 (0.494) 0.152 (0.879) 

Diagnostic tests presented in the above table were conducted on a vector of standardized residuals tε  as described in 
Eq. (1). None of the null hypotheses can be rejected at 5% significance level, while only one hypothesis (Normality of 
Standardized Residual Two) can be rejected at 10%. Overall, these results are strongly in favor of the estimated model. 


