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Loss-ALAE modeling through a copula dependence structure 
Abstract 

After having described the mathematical background of copula functions we propose a scheme useful to apply a par-
ticular family of copulas – the Archimedean copulas – to indemnity payments and loss expenses of an insurance com-
pany with the aim of obtaining their joint probability distribution. The joint distribution is used to calculate – via Monte 
Carlo simulation – the premia of a reinsurance strategy in presence of policy limits and insurer’s retentions. Results 
coming from this strategy are compared with those obtained from the independence hypothesis. We also describe the 
procedures needed to estimate the parameters of our model. Calculations and estimates are based on a large dataset of 
an anonymous Italian non-life insurance company. Empirical results show that the correct way to model dependence 
through copula functions permits to avoid the undervaluation of reinsurance premia. Finally, we observe that the rela-
tive simplicity in estimating the right copula from empirical data and the use of algorithms able to be programmed also 
on a common PC makes this probabilistic instrument easy to be used by insurers and reinsurers to improve their valua-
tion “ability” and to realize more efficient and precise estimation of their assets and liabilities. 

Keywords: copula functions, indemnity claims, reinsurance, stochastic simulation.  
JEL Сlassification: G15, G22. 
 

Introduction© 

Copula functions were introduced in 1959 by Abe 
Sklar in the framework of “Probabilistic metric 
Spaces”. From 1986 on copula functions are inten-
sively investigated from a statistical point of view 
due to the impulse of Genest and MacKay’s work 
“The joy of copulas” (1986). 

Nevertheless, applications in financial and (in par-
ticular) actuarial fields are revealed only in the end 
of the 90s. We can cite, for example, the papers of 
Frees and Valdez (1998) in actuarial direction and 
Embrechts concerning financial applications 
(Embrechts et al., 2001, 2002). 

Copula functions allow to model efficiently the 
dependence structure between variates, that’s why 
they are assumed in these last years to be an in-
creasingly important tool for investigating prob-
lems such as risk measurement in financial and 
actuarial applications.  

In particular, in non-life insurance many proc-
esses involve dependent variables. One important 
example is the relationship between Loss and 
ALAE whose dynamic has been investigated also 
by Klugman & Parsa (1999). 

In our paper we propose a procedure useful to 
apply copula functions to indemnity claims with 
the aim of building a reinsurance strategy in pres-
ence of policy limits and insurer’s retentions. 

The article has the following structure: in section 
1 we describe the mathematical background of 
copula functions and introduce the measure of 
dependence; we present also a list of the most 
used copulas and their main characteristics (ex-
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haustive features are revealed in the appendix); in 
section 2 we propose a scheme useful for fitting 
copulas to insurance company indemnity claims. 
Results are used to calculate the premia of the cited 
reinsurance strategy and these premia are com-
pared with those coming from the independence 
hypothesis. The last section highlights the main 
results of the application and concludes. 

1. Copula functions: main definitions and 
properties 

Definition 1.1. A bi-dimensional copula (“2-
copula”) is a function C  that satisfies the following 
properties: 

domain [ ] [ ],,, 1010 ×       (1) 

,),u(C)u,(C 000 ==       (2) 

u)u,(C),u(C == 11  for every u [ ]10,∈  
C is a function 2-increasing that is to say    (3) 

)v,u()u,v(C)u,u(C)v,v(C 21212121 +≥+  
for every [ ] [ ]101021 ,,)u,u( ×∈ ; ∈)v,v( 21  
[ ] [ ]1010 ,, ×  such that 10 11 ≤≤≤ vu  and  

10 22 ≤≤≤ vu . 

Consequences:  

 C  is a distribution function with uniform mar-
ginals. Indeed, let’s take two uniform variates 

1U  and ,U 2  and construct the vector 

1 2( , )U U U= .  
We then have: 

{ }.uU,uUPr)u,u(C 221121 ≤≤=  

From property (2) we get: 

{ } { } .U,uUPruU,UPr 000 2121 =≤≤=≤≤  
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Moreover: 
{ } { } .uU,uUPruU,UPr =≤≤=≤≤ 11 2121  

i.e. the marginals of the joint distribution are 
uniform. 

From property (3) we get finally: 
{ }

0212121

21222111

≥+−
−=≤≤≤≤

)u,u(C)v,u(C)u,v(C
)v,v(CvUu,vUuPr

 

that means C  is indeed a probability distribution. 
 Consider now two uni-dimensional probability 

distributions, 1F  and 2F , and a bi-dimensional 
copula C . It is clear that 

( )1 2 1 1 2 2( , ) : ( ), ( )F x x C F x F x=  
represents a bi-dimensional distribution with 
marginals 1F  and 2F . 

Indeed, )X(FU iii = defines a uniform distri-
bution: 

{ } { }
{ } .u))u(F(F)u(FXPr

u)X(FPruUPr

iiii

iii

==≤

=≤=≤
−− 11

 

Besides marginals are: 
1 1 2 1 1 1 1( ( ), ( )) ( ( ),1) ( )C F x F C F x F x∞ = =

1 2 2 2 2 2 2( ( ), ( )) (1, ( )) ( )C F F x C F x F x∞ = = . 

Fortunately, the last result can be inverted; this con-
duces to the following fundamental theorem demon-
strated by Sklar: 

Theorem 1.1. Let F  be a bi-dimensional distribu-
tion, with marginals 1F  and 2F . Then there exists a 
2-copula C  such that 

)).x(F),x(F(C)x,x(F 221121 =  
If the marginals 1F  and 2F  are continuous, then the 
copula C  is unique. 

The previous representation is called canonical rep-
resentation of the distribution. Sklar’s theorem is 
then a powerful tool to construct bi-dimensional 
distributions by using uni-dimensional ones which 
represent the marginals of the given distribution. 
Dependence between marginals is then character-
ized by the copula C . Note moreover, that the con-
struction of multidimensional non-Gaussian models 
is particularly hard. An approach using copulas 
permits to simplify this problem; moreover, one can 
construct multidimensional distributions with differ-
ent marginals. 

1.1. Copulas examples. We present here the copu-
las involved in the paper. 

 Frank copula. Frank copula is given by: 

.
e

)e()e(log);u,u(C
uu

⎥
⎦

⎤
⎢
⎣

⎡
−

−⋅−
+⋅−= −

⋅−⋅−

1
1111 21

21 ϑ

ϑϑ

ϑ
ϑ

 
 Archimedean copulas. Let φ  be a continuous, 

decreasing and convex function 
:[0,1] [0, ]φ → +∞  with (1) 0φ =  and 
( ) ( ) (0)u vφ φ φ+ ≤ . We define an Archimedean 

copula with generator φ  in the following way: 

( )1( , ) ( ) ( )C u v u vφ φ φ−= +  with , [0,1]u v∈ . 

If we take ( ) ( log )t t ϑφ = −  with [1, )ϑ∈ +∞  we get 
the Gumble copula. Otherwise, in the case 

1( ) tt
ϑ

φ
ϑ

− −
=  with { }[ 1, ) \ 0ϑ∈ − +∞  we get the 

Clayton copula: 

( )( )1/
( , ) max 1 ,0C u v u v

ϑϑ ϑ
ϑ

−− −= + − . 

If we take tlog)t( −=φ  we get the product cop-

ula C⊥. 

If we take 
1
1

−
−

−= −

−

ϑ

ϑ

φ
e
elog)t(

t

 we get Frank 

copula. 

If we take: ))u(log()t( ϑφ −−−= 11  we get Joe 

copula ( )1/
( , ) 1C u v u v u v

ϑϑ ϑ ϑ ϑ− − − −= − + − ⋅ . 

Finally, Genest and MacKay show that the copula 
C  is Archimedean if it admits partial derivatives 
and if there exists an integrable function 

: (0,1) (0, )ξ → +∞  such that: 
( , ) ( , )( ) ( )C u v C u vv u
u v

ξ ξ∂ ∂
⋅ = ⋅

∂ ∂
 

for every , [0,1] [0,1]u v∈ × . 
In such a case the generator of the copula is: 

1
( ) ( )

t
t u duφ ξ= ∫  with 0 1t≤ ≤ . 

The density of the Archimedean copula is: 

[ ]3
''( ( , )) '( ) '( )( , )

'( ( , ))
C u v u vc u v

C u v
φ φ φ

φ
⋅ ⋅

= − .  

Besides, we can define multidimensional Archi-
medean copulas setting 

( )1
1 1( , , ) ( ) ( )n nC u u u uφ φ φ−= + +K L  

with the additional condition for the generator φ : 

1( 1) ( ) 0
k

k
k

d u
du

φ−− ≥ ,  
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for 1k ≥ . We obtain, for example, the multidimen-
sional Gumble copula 

( ) ( )( )[ ].ulogulogExp)u,...,u(C
/

nn

ϑϑϑ 1

11 −+⋅⋅⋅+−−= . 

1.2. Concordance order. We shall now study some 
aspects linked to the dependence between variat es. 

Definition 1.2.1. The distribution F  belongs to the 
Fréchet class 1 2( , )F Fℑ  if and only if the marginals 

of F  are 1F  and 2F . 

The extremal distributions F −  and F +  in 
1 2( , )F Fℑ  are defined as: 

{ }
{ }

1 2 1 1 2 2

1 2 1 1 2 2

( , ) max ( ) ( ) 1,0

( , ) min ( ), ( ) .

F x x F x F x

F x x F x F x

−

+

= + −

=
 

F −  and F +  are also called Fréchet lower bound 
and Fréchet upper bound. We can associate to them 
the copulas 

{ }
{ }

1 2 1 2

1 2 1 2

( , ) max 1,0

( , ) min , .

C u u u u

C u u u u

−

+

= + −

=
 

The following relations hold 

1 2 1 2 1 2( , ) ( , ) ( , )F x x F x x F x x− +≤ ≤  
for every 2

21 R)x,x( ∈  and for every 

1 2( , )F F F∈ℑ  or in terms of copulas: 

1 2 1 2 1 2( , ) ( , ) ( , )C u u C u u C u u− +≤ ≤ . 
We define now a partial order relation for the set of 
copulas. 

Definition 1.2.2. We say that the copula 1C  is less 

than the copula 2C  ( 1 2C Cp ) if and only if 

1 1 2 2 1 2( , ) ( , )C u u C u u≤  
for every 1 2( , ) [0,1] [0,1]u u ∈ × . 

The order “p ” is called concordance order and 
corresponds to the first order stochastic domina-
tion for distribution functions. It turns out to be a 
partial order, indeed not every copula can be con-
fronted. The following still hold: C C C− +p p  
and C C C− ⊥ +p p . So that we can give the fol-
lowing: 

Definition 1.2.3. The copula C  represents a posi-
tive (negative) dependence structure if 
C C C⊥ +p p  (if ,CCC ⊥− pp respectively). 

Remark. A parametric copula ( ) =ϑ,u,uC 21  
( )21 u,uCϑ is said to be totally ordered if we have 

2 1
C Cϑ ϑf  for every 2 1ϑ ϑ≥  (positively ordered 

family) or 
2 1

C Cϑ ϑp  (negatively ordered family). 

We define besides the positive quadrant dependence 
(“PQD”) in the following way: 

Definition 1.2.4. Two variates 1 2,X X  are called 
PQD if they satisfy: 

{ } { } { }22112211 xXPrxXPrxX,xXPr ≤⋅≤≥≤≤
for every 2

21 R)x,x( ∈ . In terms of copulas: 

1 2( , )C u u C⊥f . 

We define analogously the negative quadrant de-
pendence (“NQD”) by assuming that 

1 2( , )C u u C⊥p . 

1.3. Measure of dependence. We introduce now 
another dependence concept. Recall that: 

{ }012121 ,uumax)u,u(C −+=−  

{ }2121 u,umin)u,u(C =+  
with the relation 

1 2 1 2 1 2( , ) ( , ) ( , )C u u C u u C u u− +≤ ≤ . 
If we denote ),(UU 10≈ the following also hold: 

{ }2121 1 uU,uUPr)u,u(C ≤−≤=−  
{ }2121 uU,uUPr)u,u(C ≤≤=+  

One can prove the following: 

Theorem 1.3.1. Suppose that the bivariate ( , )X Y  

has a copula C−  or C+ . So there exist two mo-
notonous functions RR:v,u →  and a variate Z  
such that ( )( , ) ( ), ( )X Y u Z v Z=  with u  increasing 

and v  decreasing in the case of the copula C− ; u  and 
v  decreasing in the case of the copula C+ (the con-
verse is true). 

Using this result we can introduce the following: 

Definition 1.3.1. If the couple ( , )X Y  admits cop-

ula C+ , the variates X  and Y  are called co-
monotonous; in the case of a copula C− they are 
called countermonotonous. 

When the distributions 1F  and 2F  are continuous, 
the last theorem can be strengthened in the follow-
ing manner: 

( )C C Y T X−= ⇔ =  with )F(FT 1
1

2 1−⋅= −  
decreasing; 

( )C C Y T X+= ⇔ =  with 1
1

2 FFT ⋅= −  
increasing. 

We conclude with a list of suitable properties which 
should satisfy a good dependence measure between 
variates: 
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Definition 1.3.2. A dependence measure δ is an 
application which associates to a couple of variates 

)Y,X(  a real number )Y,X(δ such that: 

)X,Y(δ)Y,X(δ =  (symmetry),    (4) 

11 ≤≤− )Y,X(δ  (normalization),    (5) 

1=)Y,X(δ ,       (6) 

if and only if X , Y  are comonotonous; 

1−=)Y,X(δ ,       (7) 

if and only if X , Y  are countermonotonous; 
for every monotonous application T:R→R we have:  

)Y,X(δ)Y),X(T(δ = for T  increasing, 
)Y,X(δ)Y),X(T(δ −= for T  decreasing.   (8) 

Linear correlation satisfies properties (4) and (5); we 
shall see later on (see the appendix) that rank corre-
lation satisfies also properties (6) and (8). 

Remark. We may want to introduce a property of 
the form 0=)Y,X(δ  if and only if X  and Y  are 
independent, unfortunately it can be proved that 
such a property is incompatible with (8). These re-
sults can be found in Roncalli (2000) and in Em-
brechts et al. (2001, 2002). 

2. An application to indemnity claims 

In this section we apply Archimedean copulas to the 
estimation of the joint probability distribution of 
losses and expenses of an Insurance Company. The 
section is divided into four parts. 

In the first part we briefly present the input data of 
the application; in the second we describe the meth-
ods used to fit the marginal distribution functions; in 
the third part we compare some copulas to individu-
ate the most appropriate to represent the dependence 
of the empirical data; in the fourth part, after having 
identified the joint distribution of the two variables, 
we examine the expected value of the payment of a 
reinsurance strategy. The valuation of the reinsurer’s 
expected payment is made in different hypotheses: 

 using the joint distribution coming from the 
estimated copulas; 

 in the usual condition of independence between 
the two variables. 

The results coming from the two hypotheses are 
compared. 

2.1. The input data. The data of the application 
comprise about 5.880 liability claims provided by an 
anonymous Insurance Company; these claims are a 
significative sample of the whole set of claims of 
the Company that are about 16.000. 

Each claim consists of: 

 an indemnity payment (Loss), X ; 
 an allocated loss adjustment expense 

(ALAE1), Y . 

The main features of the sample data are summa-
rized in Table 1. 

Table 1. Descriptive statistics of losses and expenses 
 Losses Expenses 

Mean 10,496 3,289 
Standard deviation 40,132 11,899 
Min 75 120 
Max 2,075,300 380,430 
Median 4,100 1,340 
Mode 1,000 670 
Kurtosis 1,301 314 
Skewness 29 15 
25th percentile 1,489 850 
50th percentile 4,100 1,340 
75th percentile 10,588 2,470 
95th percentile 29,505 7,000 

Figure 1 and Figure 2 show the frequency distribu-
tion of the empirical data for X  and Y . 

 
Fig. 1. Frequency distribution of Loss  

 
Fig. 2. Frequency distribution of ALAE 

The next figure is a scatter plot of Loss versus ALAE 
on a logarithmic scale; the correlation coefficient ρ  
between the two variables is 0,3471 while the Kendall 
τ is 0,3750. 

                                                      
1 ALAE are company expenses specifically attributable to the settlement 
of an individual claim (lawyers fees, claim investigation expenses, etc.). 
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Fig. 3. Plot of ALAE vs Loss on a logarithmic scale 

The figure and the correlation coefficients suggest a 
strong relationship between X  and Y . 

2.2. The fitting of the marginal distributions. To 
apply a copula function we need to identify the ap-
propriate marginals for X  and Y . 

We can fit different distributions to our empirical 
data1 and choose the best fit by the use of classical 
statistics. 

In this step maximum likelihood estimation (MLE2) 
was used with 21 different theoretical distribu-
tions checked; only a few of them have satisfied 
both the Kolmogorov-Smirnov (KS) test and the 
Chi Square test. 

                                                      
1 Many statistical packages are able to realize the necessary calculations. 
2 MLE method is one of the fundamental general methods for construct-
ing estimators of unknown parameters in statistical estimation theory. 
Suppose one has, for an observation X  with distribution Pϑ  depend-

ing on an unknown parameter 
kR⊆∈Θϑ , the task to estimate ϑ . 

Assuming that all measures Pϑ  are absolutely continuous relative to a 
common measure v, the likelihood function is defined by 

( ) ( )
dP

L X
d

ϑϑ
ν

= . 

The maximum likelihood method recommends taking as an estimator 

for the statistic defined by ˆ( ) max ( ).L L
ϑ

ϑ ϑ
∈Θ

=  

$ϑ  is called the maximum likelihood estimator. In a broad class of cases the 
maximum-likelihood estimator is the solution of a likelihood equation 

0=
∂
∂ )(Llog

i
ϑ

ϑ
                                     (*) 

,k,...,,i 21=  
).,...,,( kϑϑϑϑ 21=  

Example. Let 1 2( , , , )nX X X X= K  be a sequence of independent 

random variables (observations) with common distribution Pϑ , 

ϑ ∈Θ . If there is a density ( , ) ( )
dP

f x x
dm

ϑϑ = relative to some 

measure m  , then 
1

( ) ( , )
n

j
j

L f Xϑ ϑ
=

=∏ and the equations (*) take 

the form 1

log ( , ) 0

1,2, , .

n

j
j i

f X

i k

ϑ
ϑ=

∂
=

∂

=

∑
K  

For loss empirical data the best estimate has been 
given from the Weibull distribution with a Chi square 
test value of 0,00227 (and a confidence level greater 
than 99%) and a KS test value of 0,055430; for ALAE 
empirical data the best estimate has been given from 
the Lognormal distribution with a Chi square test value 
of 0,00834 (corresponding to a confidence level 
greater than 99%) and a KS test value of 0,077154. 
The following figures 4, 5 show the empirical and 
the fitted cumulative distribution function for Loss 
and ALAE. 

Fig. 4. Empirical distribution and fitted cdf of Loss  

 
Fig. 5. Empirical distribution and fitted cdf of ALAE 

Estimated parameters of the two distributions are 
0,0013 and 0,7387 for the Weibull; 7,3753 and 
0,8918 for the Lognormal. 

2.3. Estimating Archimedean copulas. Schweizer 
& Wolff (1981) established that the value of the pa-
rameter α  characterizing each family of Archimedean 
copulas can be related to the Kendall’s measure of 
concordance τ . The relationships are shown in the 
table below. 

Table 2. Relationship between α  and τ  

Family τ  

Gumbel (1990) 
11
α

−  

Clayton (1978) 
2

α
α +

 

Frank (1979) ( )( )1
41 1D α
α

− ⋅ − −  

From the calculation of the Kendall’s measure of 
concordance of our bivariate data, we obtain τ  
equal to 0,375.  
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This value gives 61,α =  for the Gumbel, 21,α =  
for the Clayton and 8263,α =  for the Frank. 

Now for each of these different copulas we must 
verify how close it fits the data by comparison with 
the empirical sample. 

This fit test can be made using a procedure devel-
oped by Genest & Rivest (1993) whose algorithm is 
well described by Frees & Valdez (1998). 

The procedure has the following steps: 

 identify an intermediate variable ( , )i i iZ F X Y=  
that has distribution function )z(K ; 

 for Archimedean copulas this function is 

;
dz

)z(lndz)z(K
1−

⎟
⎠
⎞

⎜
⎝
⎛−= αφ  

 define 
{ }( , ) : ,

1
j j j i j i

i

card X Y X X Y Y
Z

N
< <

=
−  

and calculate the empirical version of )z(K , 
( )NK z ; 

 reply the procedure for each copula under ex-
amination and compare the parametric estimate 
with the non parametric one; 

 choose the “best” copula by using an adequate 
criterion (like a graphical test and/or a minimum 
square error analysis). 

From our data we obtain the following forms of 
)z(K  for the copulas under examination: 

Table 3. The function K(z) 

Family τ  

Gumbel 
(1990) α

)zlnα(z −⋅
 

Clayton 
(1978) α

)zα(z α−+⋅ 1
 

Frank 
(1979) 

α
)αexp(
)zαexp(ln))zα(exp(zα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−
−⋅−

⋅−⋅−⋅
1
11

The empirical version of ( )NK z  and the three 
)z(K  coming from the fitted Archimedean copulas 

are presented in Figure 6 below. 

The corresponding mean square errors for the three 
copulas are 0,03473 for the Frank, 0,22405 for the 
Clayton and 0,02235 for the Gumbel. 

 
Fig. 6. Empirical and theoretical values of )z(K

It is evident both from the figure and from the errors 
that only the Clayton copula must be rejected while 
both the Frank and the Gumbel provide a good fit. 

2.4. A reinsurance strategy. .In .this section after 
having identified the best copula that  expresses the  

joint distribution of )Y,X( , we calculate the 
expected payment on a policy with limit L  and in-
surer’s retention R  (see Frees & Valdez, 1998). 
If we assume a pro-rata sharing of expenses, we have 
the following expression of the stochastic payment: 
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,L

.LXifY
L

RLRL

XRifY
X

RXRX

,RXif

)Y,X(P

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥⋅
−

+−

<≤⋅
−

+−

<

=

0

The calculation of the expected payment can be 
made via Monte Carlo simulation. In this way we 
must simulate a large number M  of bivariate data 
( , )k kx y  from the bivariate distribution model. 

The reinsurer’s estimated payment is given by 

∑
=

⋅=
M

k
kk )y,x(P

M
)Y,X(P

1

1

 
and its standard error is: 

[ ]

21

21

2

1

/M

k
kk

)Y,X(P
M

)y,x(P

M
)Y,X(PS

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−⋅=
∑
=

 
The necessary algorithms for these calculations are 
described in Frees & Valdez (1998); we present here 
a short version of the algorithm restricted to the 
bivariate case; the steps are the following: 

 generate 1U  and 2U  independent uniform (0,1) 
random numbers; 

 set 1
1 1 1( )X F U−= ; 

 calculate 2X  as the solution of 

.
)))x(F(φ(φ

)))x(F(φ))x(F(φ(φU )(

)(

11
11

2211
11

2 −

− +
=  

Results coming from the application can be com-
pared with those obtained in independence condition 
that is the most used way of thinking in actuarial field. 
Tables 4, 5 show the values of the premia the rein-
surer would have assessed to cover costs of losses 
and expenses according to various policy limits L  
and retentions R  (standard errors in parentheses). 

Table 4. Reinsurance premia provided by Monte Carlo simulation and their standard errors; Frank case 

 0 0.25 0.5 0.75 0.95 
 5,000  5,804.1 (25.9) 3,781.8 (22.4) 2,320.2 (15.7) 1,083.0 (8.1) 206.6 (1.6) 
10,000  7,785.7 (38.1) 4,653.9 (33.4) 2,685.8 (23.1) 1,192.8 (11.7) 219.2 (2.3) 
15,000  9,071.8 (49.3) 5,001.3 (42.4) 2,723.7 (28.5) 1,143.0 (14.1) 201.5 (2.8) 
20,000  9,937.7 (58.8) 5,058.8 (49.3) 2,594.0 (32.3) 1,039.3 (15.7) 178.3 (3.0) 
25,000  10,545.8 (66.6) 4,961.7 (54.4) 2,403.6 (34.9) 926.8 (16.6) 156.2 (3.2) 

Table 5. Reinsurance premia provided by Monte Carlo simulation and their standard errors; Gumble case 

 0 0.25 0.5 0.75 0.95 
5000 5,784.6 (36.7) 3,835.5 (31.2) 2,345.5 (21.9) 1,089.7 (11.3) 207.1 (2.3) 
10000 7,752.7 (54.0) 4,666.4 (46.7) 2,673.7 (32.3) 1,184.6 (16.3) 216.7 (3.3) 
15000 9,025.7 (69.6) 4,978.6 (59.3) 2,694.8 (39.8) 1,124.9 (19.6) 197.8 (3.9) 
20000 9,883.4 (82.7) 5,017.1 (68.9) 2,556.3 (45.1) 1,021.6 (21.8) 175.2 (4.2) 
25000 10,490.5 (93.8) 4,916.8 (76.2) 2,371.4 (48.9) 916.5 (23.3) 155.9 (4.5) 

Table 6. Reinsurance premia provided by Monte Carlo simulation and their standard errors;  
independence case 

 0 0.25 0.5 0.75 0.95 
5.000 5,773.8 (32.5) 3,515.0 (28.2) 2,115.1 (19.7) 977.2 (10.1) 184.9 (2.0) 
10.000 7,768.7 (47.1) 4,357.5 (42.8) 2,489.8 (29.5) 1,098.3 (14.9) 201.5 (3.0) 
15.000 9,063.8 (62.0) 4,717.3 (55.2) 2,551.4 (37.1) 1,065.4 (18.3) 186.5 (3.6) 
20.000 9,934.3 (75.0) 4,795.8 (64.9) 2,446.4 (42.6) 975.9 (20.6) 168.0 (4.0) 
25.000 10,544.0 (86.0) 4,718.9 (72.3) 2,275.5 (46.4) 876.9 (22.0) 146.5 (4.2) 

 

Table 6 shows premia obtained in the common inde-
pendence hypothesis. 

The comparison between Tables 4/5 and Table 6 
highlights some results: 
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 from a practical point of view, there is only a 
slight difference between results coming from 
the Gumbel and the Frank case; 

 premia vary considerably passing from depend-
ence to independence hypothesis and those ob-
tained in independence conditions are generally 
undervalued; 

 the level of undervaluation grows with the re-
tention to policy limit ratio /L R ; on the aver-
age, it passes from about 0 to 7,75% when Pϑ  
passes from 0  to X . 

Conclusions 

The work is essentially devoted to describe the main 
mathematical features and properties of copula func-
tions and their possible role in some non-life actuar-
ial valuations. 

In particular, following the approach of Frees & 
Valdez (1998) and Klugman & Parsa (1999) we 

develop a practical scheme for the application of 
copula functions to the valuation of the premia of a 
reinsurance strategy in the presence of a policy limit 
and insurer’s retention. 

The valuations of the premia are made via Monte 
Carlo simulation and the results obtained are compared 
to those deriving from the traditional independence 
hypothesis. 

Empirical results show that the correct way to model 
dependence permits to avoid the undervaluation of 
reinsurance premia. 

The relative simplicity in estimating the right copula 
from empirical data and the use of algorithms able to 
be programmed also on a common PC makes this 
probabilistic instrument easy to be used by insurers 
and reinsurers to improve their valuation “ability” and 
to realize more efficient and precise estimation of their 
assets and liabilities. 
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Appendix 

In this section, we present additional features about copula functions. 

We deduce the following remarks from the copula definition. 

 The canonical representation can be written equivalently. Consider two continuous distributions, 1G  and 2G , and 

let 1( )i i iY G U−= . The distribution G  of 1 2( , )Y Y Y=  will be: 

( )
1 21 2 ( , ) 1 1 2 2( , ) ( ), ( )X XG y y C G y G y=  so that ( ) ( )( )1 1

1 2 1 1 1 2 2 2( , ) ( ) , ( )C x x F F G x F G x− −=  
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with ( )i i iU F X= , F  distribution of 1 2( , )X X . This construction is called translation method. 
 The definition of 2-copula can be generalized analogously to the n-dimensional case. The canonical form of the n-

dimensional distribution takes the following form, according to Sklar’s theorem: 

( )1 1 1( , , ) ( ), , ( )n n nF x x C F x F x=K K  

where 1 1( ), , ( )n nF x F xK  are the n marginal distributions and C  represents an n-copula. 

Probability density. Suppose that the bivariate 1 2( , )X X X=  possesses a density function. We can then express it 
by means of the marginal density functions and the copula in the following manner: 

( )1 2 1 1 2 2 1 1 2 2( , ) ( ), ( ) ( ) ( )f x x c F x F x f x f x= ⋅ ⋅  with 1 2
1 2

1 2

( , )( , ) C u uc u u
u u

∂
=

∂ ∂
. 

The condition 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) 0C v v C v u C u v C u u− − + ≥  leads to the positivity of the density 1 2( , ) 0c u u ≥ . 

In the case of n-dimensional distributions, if the density function exists we will get analogously: 

( )1 1 1
1

( , , ) ( ), , ( ) ( )
n

n n n i i
i

f x x c F x F x f x
=

= ⋅∏K K
 
with: 1

1
1

( , , )( , , )
n

n
n

n

C u uc u u
u u

∂
=

∂ ∂
K

K
L

. 

The density of a copula can then be written as 
( )

( ) ( )
1 1

1 1 2 2
1 2 1 1

1 1 1 2 2 2

( ), ( )
( , )

( ) ( )

f F u F u
c u u

f F u f F u

− −

− −
=

⋅
. 

Other copulas examples 

 The product copula. The product copula is  1 2 1 2( , )C u u u u⊥ = ⋅  which density is 1 2( , ) 1c u u⊥ = . 

We deduce that a distribution constructed with this copula satisfies: 1 2 1 1 2 2( , ) ( ) ( )f x x f x f x= ⋅  which character-

izes independence between 1X  and 2X . 
 Gumbel logistic copula. The Gumbel Logistic copula is: 

)),u(F),u(F(F
uuuu

uu)u,u(C 2
1

21
1

1
2121

21
21

−−=
⋅−+

⋅
=  

where 1
21

211 −−− ++= )ee()x,x(F xx  is the Gumbel logistic 2-distribution having marginals 
1

11
11 −−+= )e()x(F x  and 1

22
21 −−+= )e()x(F x ; moreover, quantiles have the expression 

)ulog(ulog)u(F 111
1

1 1−−=−

 and ).ulog(ulog)u(F 222
1

2 1−−=−  

The density function is: 

1 2
1 2 3

1 2 1 2

2( , )
( )

u uc u u
u u u u

⋅
=

+ − ⋅
. 

 Gumble-Barnett copula. Gumble-Barnett copula is: 

1 2log log
1 2 1 2( , , ) u uC u u u u e ϑϑ − ⋅ ⋅= ⋅ ⋅ .  

One easily verifies that (0, , ) ( , 0, ) 0C u C uϑ ϑ= =  and (1, , ) ( ,1, )C u C u uϑ ϑ= = . 

Density is given by: 

21
21

2
2121 1 uloguloge)ulogulog)ulogu(log(),u,u(c ⋅⋅−⋅⋅⋅++⋅−−= ϑϑϑϑϑ . 

 Normal copula. The normal copula is given by: 

)),u(Ф),...,u(Ф(ФC n
nGa 1

1
1 −−= ρρ  

where we supposed that 1( , , )nZ Z Z= K  has normal distribution ( , )nN µ Σ  with marginals ( )iF Z , where 

iZ ∼N(µi,Σii) and ρ  represents the linear correlation matrix corresponding to the covariance matrix Σ .  
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We denote nФρ  
the multivariate normal distribution function with correlation matrix ρ  and 1−Ф  is the inverse of 

the standard univariate normal distribution. 

The density of the normal copula is: 

,)I(exp),u(c T ⎟
⎠
⎞

⎜
⎝
⎛ ⋅−⋅−⋅= −− ζρζρρ 12

1

2
1

 

where ( ).)u(Ф),...,u(Ф n
1

1
1 −−=ζ  

 FGM copula (Farlie-Gumbel-Morgenstern). The FGM copula is given by: 
)).u()u((uu)u,u(C 212121 111 −⋅−+⋅⋅= ϑϑ  

 The t Student copula. Let the variate Z=(Z1,...,Zn) ∼ nN (0,Σ) with non-degenerate marginals and let 

X Z
S
νµ= + ⋅ ,  

where Z  and S ∼ 2
vχ  are independent. We will say that X  has a t Student distribution with degrees of freedom 

ν , mean µ  (if 1ν > ) and covariance matrix 
2

ν
ν

⋅Σ
−

 (if 2ν > ). 

If iX  has distribution iG , then the distribution function of 1 1( ), , ( )n nG X G XK  is the tν  copula ,
tCν ρ  where 

ρ  is the linear correlation matrix associated to Σ . The density of the t copula is: 

21

1/2
1 1

2 2

1

11
2 2( , , ) | |

1 1
2 2

nn
T

n
n

n i
i

n

c u u

ν

ν

ν ν ξ ρ ξ
ν

ρ
ξν ν
ν

+
−

−

−
+

−

=

⎡ ⎤+⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ Γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦=
⎛ ⎞⎡ ⎤+⎛ ⎞ ⎛ ⎞Γ Γ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠

∏
K ,  

where Γ  is the gamma function and 1( )i it uνζ −= . For ν →∞  we obtain the normal copula. 
 The cubic copula. The cubic copula has the form: 

( ) ( )1 2 1 2 1 1 1 2 2 2( , ) ( 1) (2 1) ( 1) (2 1)C u u u u u u u u u uα= ⋅ + ⋅ ⋅ − ⋅ − ⋅ ⋅ − ⋅ −  

with [ 1,2]α∈ − . 

 Two parameters copulas. We can define copulas with two parameters, for example, an Archimedean copula 
whose generator is defined by composing two generators of other Archimedean copulas: .21 φφφ ⋅=   

 Alternative method. Another method for constructing copulas is the following: 

Let [ ] R,:g,f →10 with
1 1

0 0
( ) ( ) 0f x dx g y dy= =∫ ∫  and ( ) ( ) 1f x g y⋅ ≥ −  for every , [0,1]x y∈ . Then 

( , ) 1 ( ) ( )h x y f x g y= + ⋅  is a bivariate density in [0,1] [0,1]× . 

Consequently, we can define the copula 

( ) ( )0 0
( , ) ( ) ( )

x y
C x y x y f u du g v dv= ⋅ + ⋅∫ ∫ . 

Copulas properties. Let’s start with some properties, which need conditional probabilities. 

 { } );u,u(CuuU,uUPr 2112211 −=>≤  

 { } ;
u

)u,u(CuUuUPr
2

21
2211 =≤≤  

 { } ;
u

)u,u(CuuUuUPr
2

211
2211 1−

−
=>≤  
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 { } );u,u(CuuuU,uUPr 21212211 1 +−−=>>  

 { } ;
u

)u,u(CuuuUuUPr
2

2121
2211 1

1
−
+−−

=>>  

 { } ).u,u(C)u,u(CuUuUPr 21221212211 ∂===≤  

Remark. Starting with a copula C , we can construct some other copulas in the following way: 

 )u,u(Cuu)u,u(Ĉ 212121 111 −−+−+=  is the “survival” copula; 

 )u,u(Cuu)u,u(C~ 212121 −+=  is the dual copula; 

 *
1 2 1 2( , ) 1 (1 ,1 )C u u C u u= − − −  is the co-copula, 

which satisfy the following properties: 

 { } ));u(F),u(F(CuU,uUPr 22112211 =≤≤  

 { } ));u(S),u(S(ĈuU,uUPr 22112211 =>>  

 { } ));u(F),u(F(C~uU,uUPr 22112211 =≤≤  

 { } )),u(S),u(S(CuU,uUPr *
22112211 =>>  

where ( ) 1 ( )S x F x= − . 

We give now some fundamental properties of copulas: 

Proposition 1. A copula C  is uniformly continuous in its domain. Besides, it can be shown that 

1 2 1 2 1 1 2 2( , ) ( , )C v v C u u v u v u− ≤ − + − . 

Proposition 2. Partial derivatives 1C∂ and 2C∂ exist for every 1 2( , ) [0,1] [0,1]u u ∈ ×  and they satisfy the following 

properties: 1 1 20 ( , ) 1C u u≤ ∂ ≤  and 2 1 20 ( , ) 1C u u≤ ∂ ≤ . 

Proposition 3. Let 1 2,X X  be two continuous variates with marginals 1F  and 2F  and copula 1 2( , )C X X . If 1h and 

2h  are two strictly increasing functions on Im 1X  and Im 2X  then ( )1 1 2 2 1 2( ), ( ) ( , )C h X h X C X X= , in other 
words the copula function is invariant under strictly increasing transformations of the variates. 

Linear correlation. Remember that given two variates X , Y  with finite variance we define the linear correlation 
coefficient between X  and Y  as 

,
)Y()X(

)Y,X(Cov)Y,X(
σσ

ρ
⋅

=  

where ( , ) ( ) ( ) ( )C ov X Y E X Y E X E Y= ⋅ − ⋅  is the covariance and 2 2( ), ( )X Yσ σ  are the variances of X  and 

,Y   respectively. Moreover, we have that ( , ) [ 1,1]X Yρ ∈ − . 

Correlation is a linear dependence measure. It means that in case of perfect linear correlation Y a X b= ⋅ + , one gets 
( , ) 1X Yρ = ±  and in case of independence we obtain ( , ) 0X Yρ =  (as ( , ) 0Cov X Y = ). 

In financial theory, correlation plays a central role. For example, in the Capital Asset Pricing Model (CAPM) or in 
Arbitrage Pricing Theory (APT) correlation is used as a dependence measure between financial instruments. These 
theories rely on the hypothesis that assets follow a multivariate normal distribution. In actuarial fields, the increasing 
complexity of problems involved leads to develop great interest in modeling dependent risks. The concept of correla-
tion represents closely the idea of dependence between variates in the framework of normal distributions (or more 
generally, for spherical or elliptical distributions). 

Nevertheless, empirical observations show that, in actuarial and financial fields, normal distributions rarely occur. The 
notion of dependence between variates requires more suitable tools. 
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The advantages of linear correlation are mainly due to calculus facilities and to the following property: given two applications 
mn RR:B,A →  with ( )A x A x a= ⋅ +  and ( )B x B x b= ⋅ +  where ,Rb,a;RB,A mnm ∈∈ ×  we have: 

( , ) ( , ) TCov A X a B Y b A Cov X Y B⋅ + ⋅ + = ⋅ ⋅ .  

Moreover, correlation turns out to be a natural risk measure for normal distributions. 

Let see now some inconvenient: 

 variance of X  and Y  must be finite; this restriction causes problems when we use fat tailed distributions; 
 independence between variates implies they are uncorrelated (i.e. 0ρ = ); the converse is not true (it holds only in 

the normal case); 
 correlation is not invariant under a strictly increasing transformation: let RR:T → , with ' 0T > , so 

( ( ), ( )) ( , )T X T Y X Yρ ρ≠ ; 
 in general, the knowledge of marginals and correlation does not allow to determine the joint distribution; 
 given marginals of X  and Y , not all values between 1−  and 1+  can be reached by a suitable determination of 

the joint distribution. 

Rank correlation 

Definition 1. Consider the variates X , Y  with marginals 1F  and 2F  and joint distribution F . The Spearman’s rank 

correlation (“Spearman’s ρ ”) is defined as ( )1 2( , ) ( ), ( )S X Y F X F Yρ ρ=  where ρ  is the usual linear correlation. 

Let 1 2 1 2( , ), ( , )X X Y Y  two independent couples of variates from F , then Kendall’s rank correlation (“Kendall’s 
τ ”) is given by  

{ } { }1 2 1 2 1 2 1 2( , ) Pr ( ) ( ) 0 Pr ( ) ( ) 0X Y X X Y Y X X Y Yτρ = − ⋅ − > − − ⋅ − < . 

We can assume that Sρ  is the correlation of the copula C  associated to ( , )X Y ; both Sρ  and τρ  measure the 

monotonic dependence degree between X  and Y  (whereas linear correlation only measures the linear dependence 
degree). 

We list some fundamental properties of Sρ  and τρ . 

Theorem 1. Let X , Y  be continuous variates with continuous distributions 1F , 2F ; joint distribution F  and copula 

C . We then have: 

( , ) ( , ); ( , ) ( , )S SX Y Y X X Y Y Xτ τρ ρ ρ ρ= = ,          (1) 

if X  and Y  are independent, then ( , ) ( , ) 0S X Y X Yτρ ρ= = ,        (2) 

, [ 1,1]S τρ ρ ∈ − ,             (3) 

( )
1 1

0 0
( , ) 12 ( , )S X Y C u v u v dudvρ = − ⋅∫ ∫ ,    (4) 

1 1

0 0
( , ) 4 ( , ) ( , ) 1X Y C u v dC u vτρ = −∫ ∫ ,    (5) 

given the strictly monotonous application ,RR:T →  Sρ  and τρ  satisfy property (8) of the last section,   (6) 

( , ) ( , ) 1S X Y X Yτρ ρ= =  if and only if C C+= if and only if ( )Y T X= with T increasing,     (7) 

( , ) ( , ) 1S X Y X Yτρ ρ= = −  if and only if C C−= if and only if ( )Y T X=  with T decreasing,    (8) 

The rank correlation satisfies properties (4), (5), (6) and (8) given in section 1 (definition 1.3.2). 

Remarks: 

 for the normal copula we have: 

,arcsins ⎟
⎠
⎞

⎜
⎝
⎛⋅= −

2
6 1 ρπρ
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;arcsin ρπρτ ⋅= −12

 
 for Gumbel copula we have: 

1
τ

ϑρ
ϑ
−

= ;  

 for the copula FGM: 

,/s 3ϑρ =  

;/ 92ϑρτ =  
 for Frank copula: 

)),(D)(D(s ϑϑϑρ 21
1121 −⋅−= −

 )),(D( ϑϑρτ 1
1 141 −⋅−= −

 where ( )kD x  is the Debye function defined in the following way: 

∫ −−=
x ti

ii ,dt)e(t
x
i)x(D

0

11  which satisfies ;x)x(D)x(D
211 +=−  

 for Archimedean copula we have: 
1

0

( )1 4
'( )
u du
uτ

φρ
φ

= + ∫ ;
 

 finally, for Clayton copula: 

2τ
ϑρ

ϑ
=

+
.  

Tail dependence. The notion of tail dependence for a couple of continuous variates ( , )X Y  is linked to the probabil-

ity of simultaneous extremal values occurring for X  and Y  (this is essential for applications). Let F  and G  be the 
marginals of X  and ,Y  respectively. We give the following: 

Definition 2. The upper tail dependence coefficient for ( , )X Y  is given by the following limit (if it exists): 

{ }1 1

1
lim Pr ( ) | ( )u
u

Y G u X F uλ
−

− −

→
= > >

 
with [0,1]uλ ∈ . 

Remarks: 

 If (0,1]uλ ∈  we will say that X  and Y  are asymptotically dependent in the upper tail. 

 If 0uλ =  we will say that X  and Y  are asymptotically independent in the upper tail. 

If we denote C  the copula of the joint distribution, one can prove that: 

u
)u,u(Culim

u
u −

+−
=

−→ 1
21

1
λ . 

An analogous definition can be given for the lower tail: 
{ })u(FX)u(GYPrlim

*u
l

11

0

−−

→
<<=λ , 

or in terms of copulas: 

.
u

)u,u(Clim
u

l +→
=

0
λ  

Examples. 

 Copula : 0; 0u lC λ λ⊥ = = ;  

 Copula : 1; 1u lC λ λ+ = = ;  

 Copula : 0; 0u lC λ λ− = = ;  

 Gumbel copula 1/2 2 ; 0u l
ϑλ λ= − = ;  
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 Clayton copula 1/0; 2u l
ϑλ λ −= = ;  

 Normal copula: 0u lλ λ= =  if 1ρ >  whereas 1u lλ λ= =  if 1ρ = ;  
 t Student copula: 

1/2

1
( 1) (1 )2 2

1u sν
ν ρλ

ρ+

⎛ ⎞+ ⋅ −
= − ⋅⎜ ⎟+⎝ ⎠

;  

so that 0>uλ if 1ρ > −  and 0=uλ if 1ρ = − . 

The results presented in this appendix can also be found in Roncalli (2000) and in Embrechts et al. (2001, 2002). 


