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approach 
Abstract 

In this article we study the situation, where a private company is able to obtain a concession by the state to develop a 
project, and is able to return this concession at its own will, when the project becomes unprofitable. The latter may 
result in a fee that the company needs to pay to the state. We are particularly thinking about the development of state-
owned land in China and Thailand for the matter of building private schools, hospitals, factories, roads or expressways. 
To model this, we use multi stage real option theory. In particular, we discuss the cases where the project value follows 
either a geometric mean reversion process or a geometric Brownian motion. For these cases we derive the Bellman 
equations and show how the problem can be solved backwards in time. The resulting free boundary problems are 
solved numerically via the shooting method. A comparative analysis is provided. Particular emphasis is given to the 
role of uncertainty and how uncertainty affects the average time that the concessionary agreement is in action. The 
latter problem is approached by using Monte Carlo simulation.  
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Introduction© 

In countries such as China, Thailand, Australia or 
Russia, many sectors of the economy are or have 
initially been state owned. Such sectors include but 
are not limited to natural resources, land, 
infrastructures, services such as the postal service, 
dental care or transportation services, etc. In 
particular in the services sector full privatization has 
been taken place in many cases. For other sectors, 
say natural resources such as coal, oil or nuclear 
energy, it may not be ideal for the state to proceed to 
full privatization. In the cases mentioned, this may 
well be as the states souvereignity or security is 
endangered. On the other side, private companies 
may have developed great expertise and efficiency 
to undertake projects in specific sectors that are 
relevant for the state-economy. Further, the state 
budget may not allow sufficient investment to 
develop each and every part of the economy. For 
example, the government of Thailand has had many 
construction plans for building inter-city roads and 
expressways in order to reduce the traffic 
congestion in the city centres. The government, 
however, has been unable to undertake all projects 
mostly due to financial constraints. In these cases it 
may be worthwhile for the state government to give, 
a concession to a private company to develop a 
specific project until either the concession ends at a 
given date in the future, or the private company ends 
the concession premature, paying an appropriate 
penalty fee to the government. When the concession 
has ended, all property rights fall back to the state 
and a new concession can be arranged. In this article 
we study the situation, where the concession will 
not be given to the same private company again, if 
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this company decides to end the concessionary 
agreement prematurely. This assumption is realistic 
in many cases, where private companies compete 
for state concessions. 

Entry-exit models in the real option context have 
been discussed in the literature (see, for example, 
Mossin (1968), Brennan and Schwartz (1985), Dixit 
(1989) and Sodal (2006)). There, private companies 
retain whatever market power they had to start with, 
and do not lose the right to invest again if they 
abandon operation. Our model is different from 
these, in the way that we do not allow for re-entry, 
which is realistic under the assumptions indicated 
above. This makes the problem essentially much 
harder to solve. Also unique is our use of 
exponential utility for modeling the benefits of the 
private company when undertaking the project. 

Mathematically we model the level of development 
)(tx of the project in two different ways. In the first 

instance we assume that the level follows a 
geometric mean reverting process, while in the 
second instance we assume it follows a geometric 
Brownian motion. From the point of dynamics, 
these are standard assumptions in real option theory. 
Technically, geometric mean reversion models the 
case where the level is mean reverting in a way that 
in the long term it keeps fluctuating around a so 
called mean reversion level θ . In this case the level 
features bounded variance and in expectation will 
converge to a certain value, which is the mean 
reversion level minus some expectation bias (see 
Ewald and Yang (2007)). This is a good modeling 
assumption in the case of renewable resources. 
Geometric Brownian motion, on the other side, grows 
exponentially in expectation and its variance will 
eventually become arbitrary large. Both, geometric 
mean reversion and geometric Brownian motion have 
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in common that if hypothetically the level of )(tx  
would fall to zero, it would stay there forever. This has 
implications on the value function, which have in part 
been discussed in Ewald and Wang (2010), where as 
an alternative the Cox-Ingersoll-Ross process is 
proposed for modeling in the real option context. 

The level of development )(tx  does not necessarily 
have to be a monetary value, it could be, for 
example, the level of industrialization, or the 
percentage of households that have access to 
medical treatment in the form of modern hospitals. 
During the time a private company develops the 
project under the state concession, the private 
company will accumulate utility measured in terms 
of a utility function ))((1 txF , which measures 
benefits against costs. 

Most of the classical real option models in the 
literature, including aforementioned authors, do not 
allow for a fully analytic solution. In the classical 
cases, it is possible to compute the solution of the 
dynamic programming equation analytically, but the 
threshold level for investment needs to be computed 
numerically. In our model we have to go one step 
further. Due to the fact that we do not allow for re-
entry and the fact that we use a more complex utility 
function, we are not able to solve the dynamic 
programming equation analytically, at least not for 
the part that corresponds to the period in which the 
private company is developing the project. Instead we 
use a numerical method called “shooting method” to 
deal numerically with the corresponding free 
boundary problem. A detailed discussion of the 
numerical results, including a thorough comparative 
analysis, is provided. 

The relationship between uncertainty and the expected 
time the private company develops the project under 
the concessionary agreement is an interesting aspect 
for both, the state and the private company. In other 
real option models the relationship between 
uncertainty and investment has been frequently 
discussed. Authors such as McDonald and Siegel 
(1986), Dixit (1989), Mauer and Ott (1995) as well as 
Metcalf and Hassett (1995) find that a rise in 
uncertainty leads to a larger critical value as the real 
option increases in price and it becomes more 
profitable to hold on to the option. Carr, Ewald and 
Xiao (2008) as well as Ewald and Yang (2008) 
provide examples that in case the underlying dynamic 

is more complex or in case that risk aversion is taken 
into account in a genuinely incomplete setup, these 
results do not necessarily hold in a more general 
context of real option theory. Furthermore Sarkar 
(2000) argues that the relationship between uncertainty 
and investment is not necessarily expressed in the 
relationship between volatility and threshold, as an 
increase in volatility may force the level to reach the 
threshold earlier rather than later, even though the 
threshold is higher, time until investment is undertaken 
is shorter. Instead, Sarkar proposes to study the 
expected time that passes until investment is 
undertaken in terms of the level of uncertainty. We 
will discuss both of these aspects in this article. As 
opposed to Sarkar (2000) who studies a single 
investment problem, we are facing two times, 1τ , 
when the private company enters the concessionary 
agreement, and 2τ , when the private company ends it. 
Our focus will be on the expected time ( )12 ττ −E  that 
the private company is developing the project. 

The remainder of the paper is structured as follows. 
In section 1 we will set up our single entry-exit 
model while in section 2 we will discuss how to 
solve it. Section 3 is devoted to numerical results 
and their discussion, this includes a detailed 
comparative analysis. In the last section we 
summarize conclusions. The article contains two 
appendices, one which contains all figures and one 
in which we briefly illustrate the shooting method 
that is at the center of our numerical analysis. 

1. Model setup 

As indicated earlier, we study the situation where a 
project is in the first instance developed by the state, 
until a private company takes over under a 
concessionary agreement, which it can end at any 
given time under payment of a penalty fee. The 
level of the development is denoted with )(tx . The 
two main questions for the private company are: 
When is the optimal time to enter the concessionary 
agreement, and When is it optimal to end it? This 
will naturally lead us to a two stages real option 
problem which we will set up below. 

1.1. The case of geometric mean reversion. In this 
section, we describe the model where the level of 
development follows geometric mean reversion. In 
this case the dynamic optimization problem of the 
private company is given as 

( ) ,=(0)))(())((max=)( 1
2

2
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2
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⎥
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s.t. ,);()()())((=)( 1τσδα ≤+− ttdWtxdttxtxtdx      (2) 

.);()()())((=)( 21 ττσδµ ≤≤+− ttdWtxdttxtxtdx  (3) 
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The interpretation of this is as follows. Before the 
company invests in the project at time 1τ  the 
dynamics of the level of the project, )(tdx , follows 
(2). During that period the development is entirely 
undertaken by the state government. The parameter α  
represents the government contribution to the project 
and δ  is the depreciation rate. We assume 

0>> δα . The parameter 0>σ  denotes the 
volatility and )(tW  stands for a standard Wiener 
process. Once the private company decides to enter the 
concessionary agreement at time 1τ , the company 
needs to pay a fee 0>sI  to the government. In 
addition, the dynamics of the development level 
changes due to the private company now running the 
business. We assume that )(tx  then follows the 
dynamics (3) until time 2τ  at which the private 
company decides to end the concessionary agreement. 
At that time the dynamics would go back to (2), but as 
the private company does not earn and in fact will 
never again earn any benefits from the project, this fact 
does not contribute to the private companies' 
optimization problem. Between time 1τ  and 2τ  the 
parameter µ  represents the private companies' 
contribution to the project and ))((1 txF  stands for the 
utility that the private company obtains from the 
development. At the time the private company decides 
to end the concessionary agreement, it will give the 
initial capital back to the government, but will be 
reimbursed ))(( 2τxS  for the development 
undertaken, e.g. factory buildings that have been 
erected on state owned land etc. Additionally, the 
private company will have to pay a penalty fee of qI . 

We will solve the dynamic optimization problem (1)-
(3) backward in time as it is standard in multi-stage 
real option problems. Let )(0 xV  and )(1 xV  denote the 
value functions of the corresponding dynamic 
optimization problems before 1τ  and in between 1τ  
and 2τ . After the private company ends the 
concessionary agreement it will obtain a terminal 
payoff of qIxS −))(( 2τ , but there will be no option 

value left. Note that )(=)( 0 xVxV  and this function 
includes the combined option value, the one to enter 
and the one to exit, while )(1 xV  only includes the 
option value of exiting. It follows from standard real 
option theory that the private company will enter the 
concessionary agreement when a certain investment 
threshold *

sx  is reached. At this threshold the so called 
value matching condition (4) and smooth pasting 
condition (5) need to be satisfied. Further, the 
company will end the concessionary agreement when 

a second investment threshold *
qx  is reached at which 

the value matching condition (6) and smooth pasting 
condition (7) apply.  

,)(=)( *
1

*
0 sss IxVxV −                                             (4) 

( ) ( ) ,)(=)( '*
1

'*
0 ss xVxV                                              (5) 

,)(=)( **
1 qqq IxSxV −                                              (6) 

( ) ( ) .)(=)( '*'*
1 qq xSxV                                                (7) 

1.2. The case of geometric Brownian motion. As an 
alternative to the setup based on geometric mean 
reversion we consider the following setup, which is 
geometric Brownian motion based. The private 
company aims to maximize (1) subject to  

,);()()(=)( 1τσα ≤+ ttdWtxdttxtdx              (8) 

.);()()(=)( 21 ττσµ ≤≤+ ttdWtxdttxtdx     (9) 

The parameters α , µ  and σ  are interpreted in the 
same way as before. Note that there is no depreciation 
here, and in fact (8) and (9) are special cases of (2) and 
(3) for 0=δ . The analysis, however, is different from 
the case of ,0≠δ  that is why we include it as a 
separate case here.  

2. Solving the problem 

In this section we derive the partial differential 
equations that will determine the solutions of the 
optimization problems (1)-(3) resp. (1), (8)-(9) and 
discuss how to solve them with a combination of 
numerical and analytical methods. As indicated before, 
we proceed backward in time. In the first step we have 
to find )(1 xV  and *

qx . Once )(1 xV  is determined, we 

will solve for )(0 xV  and *
sx . 

In our model, we use exponential utility to 
measure the benefits that accrue with the level of 
the development )(tx  as well as linear costs, 
yielding to a utility function of the type 

( ) )())((exp1=))((1 txtxtxF µλ −−− . For simpli-
city we assume that the terminal payoff for the 
private company is given as )(=))(( txtxS . Note 
that the final payoff also includes the level of 
development that has been existing before a 
concessionary agreement has been set up, and that 
the private company would normally only be 
remunerated for the additional level of 
development that it has contributed. However, the 
initial level can be taken care of in the fees sI  so 
that in this case the payoff )(=))(( txtxS  still 
makes sense.  
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2.1. Geometric mean reversion. The equations (2) 
and (3) are of the geometric mean reversion type 
which is well understood. It is known that the 
equilibrium distribution of this process is a Gamma-
distribution and all of its moments have been derived 
in Ewald and Yang (2007) for example. An analytic 
expression for the non-equilibrium distribution has 
been derived in Yang and Ewald (2010). The 
dynamics of (2) and (3) are tied to the mean reversion 

level 
δ
α

 and 
δ
µ

 respectively. The parameter δ  

captures how fast the value of )(tx  reacts to the 
disturbance from the mean level. 

We start with solving the problem for )(1 xV  and *
qx , 

21 ττ ≤≤ t  by using the constraint (3) with the two 
free boundary conditions (6) and (7). Using the 
specific forms for ))((1 txF  and ))(( txS , the 
corresponding Bellman equation becomes  

( ) xxexpVxxVxrV µλσδµ −−−+′+− ))(1'
2
1'= 1

22
11  (10) 

subject to the following two conditions:  

,=)( **
1 qqq IxxV −                                                (11) 

( ) .1=)( '*
1 qxV                                                         (12) 

We will solve (10) subject to (11) and (12) 
numerically. In order to do that, an additional 
boundary condition is needed. This condition, which 
applies for both geometric mean reversion and 
geometric Brownian motion, comes from the fact 
that 0=)(tx  is a fixed point of the dynamics (2), 
(3), (8) and (9). It states 

0.=(0)1V                                                             (13) 

It has been shown in Ewald and Wang (2010) that 

this condition is equivalent to the seemingly 
lessrestrictive condition ∞<(0)V . The idea for 
solving the free boundary problem numerically is 
as follows. We first make a guess that the optimal 
threshold *

qx  is x̂ , and then apply the shooting 
method (see appendix for details) to solve the 
boundary value problem (10) subject to (13) and 
(11). We then check whether the solution x̂  
satisfies (12) within a certain level of tolerance, 
which we allow for. If x̂  does not satisfy (12), we 
change x̂  to ε+x̂  where ε  is a small number. 
This procedure is repeated until an approximation 
to the solution *

qx  is found. 

Once we have )(1 xV , we will then solve for )(0 xV  

and *
sx , by using the constraint (2) with the two free 

boundary conditions (4) and (5). The Bellman 
equation for this problem is  

( ) .'
2
1'= 0

22
00 ′+− VxxVxrV σδα                         (14) 

This problem is essentially the same as the classical 
real option problem discussed in Dixit and Pindyck 
(1994), except that the value matching conditions are 
coming from )(1 xV , which makes it more 
complicated. Nevertheless the way to derive the 
general form of the value function before 1τ  is in 
complete analogy to Dixit and Pindyck. To make this 
article as self-contained as possible, we include this 
derivation here. 

It is not difficult to see that an elementary solution 
of (14) is given by  

).(=)(0 xhAxxV β  

By substitution in (14) and after rearranging terms, 
we obtain 

0.=)()()()(
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1)( 2212
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⎡ −+− + xhxhxxhxxrxhx βδβσδασβαββσ ββ  (15) 

Equation (15) needs to hold for all values of x , 
therefore the coefficients for both )(xhxβ  and 1+βx  
must be equal to zero. From the first term of (15), 
we get  

0=1)(
2
1 2 r−+− βαββσ  which has two roots:  

,
2)

2
1()

2
1(
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1 σ
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β

r+−+−−
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.
2)
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1()

2
1(

= 2

2222

2 σ

σσασα
β

r+−−−−
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This leads to  

)()(=)( 2
2

21
1

10 xhxAxhxAxV ββ +  

with 1,2=);( ixhi  satisfying  

).()(')()('
2
1 22 xhxhxxxh iiiii δββσδασ −+−+′  (18) 
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Substituting 2

2=
σ
δxz  and )(=)( zmxh ii , we obtain 

)('2=)(' 2 zmxh ii ⎟
⎠
⎞

⎜
⎝
⎛
σ
δ

 and )('2=)('
2

2 zmxh ii ′⎟
⎠
⎞

⎜
⎝
⎛′
σ
δ

. 

The equation (18) then becomes  

,0=)()(')()(' zmzmzbzzm iiii β−−+′             (19) 

where .22= 2 β
σ
α
+b  

Equation (19) is known as the Kummer equation and 
its solution is given by the Kummer’s M  functions, 
denoted as M  in the following. The Kummer M  
function is also known as confluent hyper geometric 
function. Details on the Kummer M  function can 
be obtained from Abramovitz and Stegun (1972). As 

2β  is negative and the Kummer M  function takes 
the value 1 for the argument 0=x  we therefore 
need to impose the condition 0=2A  so as to get a 
finite value of the project at 0=x . The solution of 
(14) is therefore  

,2,22,=)( 220 ⎟
⎠
⎞

⎜
⎝
⎛ + xMAxxV

σ
δβ

σ
αββ                 (20) 

where 1= AA  is a constant that is yet to be 
determined, 1= ββ  and ),,( zbaM  denotes the 
Kummer’s M  function. 

The free boundary conditions (4) and (5) become  

ssss IxVxMAx −⎟
⎠
⎞
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⎛ + )(=2,22, *
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22
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σ
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σ
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σ
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σ
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σ
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βσα
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β
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  (22) 

Because )(1 xV  does not exist in analytic form, we 
have to replace it by the corresponding finite 
difference  

( ) ( ) ( ) .)()()( 11'
1 h

xVhxVxV −+
≈  

To obtain )(0 xV  and *
sx  we now proceed as 

follows: )(1 xV  has been obtained in the previous 
step numerically and we know the value of )(1 xV  at 
each { }*

210 =,,,0,= qn xxxxxx K∈ . We first make 

a guess that 1
* = xxs  and then use (21) to find out 

A . We then substitute 1x  and A  in (22). If 1x  and 
the corresponding A  satisfy (22) up to a certain 
level of tolerance; i.e. the difference between LHS 
and RHS of (22) is less than a given small number 
ε  (we use 410= −ε  here), we take 1

* = xxs . 
Otherwise we move to 2x  and carry on. The 
procedure is repeated until *

sx  is found. 

2.2. Geometric Brownian motion. We are using 
the same procedure as in the previous subsection. 
We start with solving the problem for )(1 xV  and *

qx  
using the dynamic constraint (9) with the two free 
boundary conditions (6) and (7). With the chosen 
form of ))((1 txF  and ))(( txS  we obtain the 
following Bellman equation  

( ) xxVxxVrV µλσµ −−−+′+ )(exp1'
2
1'= 1

22
11   (23) 

with the same boundary conditions as in the case of 
geometric mean reversion, (11) and (12). We solve 
this free boundary value problem numerically in a 
similar manner as before. 

Once )(1 xV  is obtained, we proceed to find )(0 xV  

and *
sx  under the dynamic constraint (8) and the two 

free boundary conditions (4) and (5). This problem 
leads to the following Bellman equation  

.'
2
1'= 0

22
00 ′+ VxxVrV σα                                   (24) 

Equation (24) is the same as in the classical real 
option problem with geometric Brownian motion 
describing the project value (see Dixit and Pindyck 
(1994)) except that the free boundary conditions are 
changed. 

The elementary solution of (24) is of the type  

.=)(0
βAxxV  

By substitution in (24), we obtain  

0=1)(
2
1 2 βββ ββσαβ rAxAxAx −−+  

and hence we can identify β  as the solution of the 
following quadratic equation  

0.=1)(
2
1 2 r−+− αβββσ  

The two solutions are  

,
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2)

2
1()

2
1(
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2 σ

σσασα
β

r+−−−−
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This leads to a general form  

.=)( 2
2

1
10

ββ xAxAxV +  

It is obvious that 2β  is negative and for the same 
reason as before, i.e. to ensure the finite value of the 
project at 0=x , we must have 0=2A . The 
solution of (24) is therefore  

,=)(0
βAxxV                                                      (27) 

where 1= AA  is a constant that is yet to be 
determined and 1= ββ . 

The two free boundary conditions (4) and (5) are 
translated to  

,)(= *
1

*
sss IxVAx −β                                           (28) 

and ( ).)(= *
1

1)*(
ss xVAx −ββ                                    (29) 

To solve for )(0 xV  and *
sx  we proceed in the same 

way as before. Note that in (29) )(1 xV ′  is once more 
replaced by the corresponding finite difference. 

3. Numerical results 

In this section we discuss the results of our 
numerical computations which are based on the 
previous two sections. We also undertake a 
comparative analysis and discuss in particular how 
the threshold levels *

sx  and *
qx  are affected by 

changes in the parameters. In addition, we 
investigate the relationship between uncertainty and 
the expected time the private company will develop 
the project under the concessionary agreement.  

3.1. Geometric mean reversion. In the following 
we discuss the geometric mean reversion based 
model (1)-(3) with parameters λ = 0.4, r = 0.2, δ = 
0.05, µ = 0.2, σ = 0.1, α = 0.2, and 0.7=sI . The 

numerical results obtained for )(0 xV , *
sx  as well as 

)(1 xV , *
qx  are displayed in Figure 1 and Figure 2 in 

the appendix. 

Figure 1 displays the value functions, )(0 xV  and 
)(1 xV , as a function of the level of development x . 

The dashed line in the figure represents the private 
company's value function before entering the 
concessionary agreement, i.e. )(0 xV , whereas the 
thick line represents the company's value function 
after investing in the project minus the sunk costs 

the company needs to pay when the company adopts 
the project, i.e. sIxV −)(1 . Our computation shows 
that it is optimal for the company to invest in the 
project at the threshold of 1.2182=*

sx . 

Figure 2 displays the value function of the private 
company before ending the concessionary 
agreement, i.e. )(1 xV  (thick line) as well as the 
terminal payoff qIx −  (dashed line), as functions of 
the level of development x . Our numerical results 
show that it is optimal for the private company to 
end the concessionary agreement once the level of 
development reaches the threshold, 2.7104=*

qx . 

3.1.1. Comparative analysis and effects on the 
thresholds. There are several parameters in the 
model that could affect the private company's value 
function, )(xV , and thus the thresholds, *

sx  and *
qx . 

For each case, we investigate the changes in the 
thresholds and value functions, )(0 xV  and )(1 xV  
with three different values for each parameter while 
the remainder of parameters are fixed. The results 
are displayed in Figures 3-10. The parameters that 
we consider are: 

♦ uncertainty measured in terms of the 
instantaneous volatility σ ,  

♦ the private company contribution µ ,  
♦ the depreciation parameter δ , and  
♦ the penalty fee qI .  

Figure 3 and Figure 4 show how σ  affects the 
value functions and the thresholds whereas Figure 5 
and Figure 6 demonstrate the impacts of µ  on the 
results. Figure 7 and Figure 8 illustrate the change in 
the value functions and thresholds as a consequence 
of changes in δ . The penalty fee the private 
company needs to pay if it decides to end the 
concessionary agreement, i.e. qI , also affects the 
results as shown in Figure 9 and Figure 10. 

It can be seen in Figures 3 and 4 that the thresholds, 
*
sx  and *

qx , are both increasing in σ . The larger σ  
is, the greater is the uncertainty component in the 
level of development. The effects of µ  on the 
thresholds can be observed in Figures 5 and 6. Our 
results show that µ  positively impacts *

sx  but 

negatively *
qx . This is intuitive as µ  represents the 

money the firm contributes to development, which 
positively affects the growth in development, but 
negatively the costs carried by the private company, 
part of which is recovered in the terminal payoff. 
The higher the costs, the less attractive is it to 
initially enter the concessionary agreement. 
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The impact of depreciation, δ , on the thresholds is 
displayed in Figures 7 and 8. The threshold to enter 
the concessionary agreement, *

sx , is increasing in δ  

while the threshold for ending, *
qx , is decreasing. As 

depreciation is essentially a cost that needs to be 
carried by the private company under the 
concessionary agreement, the intuition behind this 
result is essentially the same as in the previous 
paragraph. 

Figures 9 and 10 display the effect of the penalty fee 
qI  the firm needs to pay if it would like to end the 

concessionary agreement. In Figure 9, we observe 
that the amount of the penalty does not have any 
significant effect on the threshold for entering but 
does affect the value function, )(0 xV . This is 
intuitive as the penalty fee is also a kind of cost that 
the private company has to carry. In Figure 10 we 
observe that the higher the penalty fee, the longer 
the firm developing under the concessionary 
agreement. This is because the firm needs to wait 
for higher terminal benefits )( *

qxS  in order to 
compensate for the higher penalty fees. 

Let us now consider the effect of the government 
contribution to development, α , as well as the sunk 
costs the company needs to pay once the company 
adopts the project, sI . Figure 11 demonstrates that 

the threshold, *
sx , is increasing in α . The larger α , 

the larger the drift term in the level of development 
x , which will increase x  in average and, hence, 
positively affect the value function )(1 xV . The 
increase in *

sx  should not be interpreted that the 
private company becomes more cautious to entering 

the agreement, but simply that it expects the 
government to push up the level of development 
quickly to a higher level, at which it becomes more 
profitable for the private company to enter. 

It is observed in Figure 12 that the critical value to 
adopt the project, *

sx , has a positive relation to sunk 
costs, sI . This can be understood as follows. The 
higher the sunk costs that the firm needs to pay once 
it enters the concessionary agreement, the less 
incentives it has to do so. The private company 
needs to wait longer to guarantee that the value of 
the project is high enough to cover the sunk costs 
once it adopts the project. 

3.1.2. The effect of uncertainty on the expected 
length of the concessionary agreement. In the 
previous section, we examined the effects of each 
parameter on the thresholds, *

sx  and *
qx . In this 

analysis we also included the uncertainty parameter 
σ . A related, but conceptually different question is 
to ask for how long on average will the 
concessionary agreement last. In this section we will 
determine the expected value of the difference 2τ  
and 1τ  when optimal thresholds are applied under 
different levels of uncertainty. The complexity of 
our model prevents us to use analytic results about 
exit times, such as in Sarkar (2000), and instead we 
apply Monte Carlo simulation. As our problem is 
path-dependent, particular care has to be taken, on 
the problem of generating paths. Standard theory on 
numerical simulation of stochastic differential 
equations suggests the Euler-Milstein schemes, 
which features a strong convergence rate of 1. 
Using Euler-Milstein, the discrete approximations of 

)(tx  following (2) for 1< τt  and (3) for 1τ≥t  are 

,=(0)],))[((
2
1)()())(()(=1)( 0

22 xxtWtxWtxttxtxtxtx ∆−∆+∆+∆−++ σσδα                             (30) 

and ,]))[((
2
1)()())(()(=1)( 22 tWtxWtxttxtxtxtx ∆−∆+∆+∆−++ σσδµ  respectively.                  (31) 

Given the two thresholds for entry and exit *
sx  and 

*
qx , and an initial value of the project *

0 < sxx , we 
simulate the level of development of the project, 

)(tx , using (30) and (31) above for many times and 
take the average value of the time the concessionary 
agreement lasts, i.e. the time the paths have spent 
between *

sx  and *
qx , as an approximate for the 

expected value ( )12 ττ −E . 

For the purpose of illustration, the following 
parameter values have been chosen: λ = 0.6, r = 0.2, 
µ = 0.3, δ = 0.1, α = 0.3, Iq = 1 and Is = 0.7. In our 

simulation, we consider eleven different values of 
σ  which are ,0.2.12,0.1,0.11,0 K . Figure 13 
displays σ  and the expected value ( )12 ττ −E . In 
the analysis in the previous section we have 
observed that the larger σ  is, the higher *

sx  and *
qx . 

Our results now show that ( )12 ττ −E  appears to be 
increasing in σ , meaning that concessionary 
agreements are likely to last longer, the higher the 
uncertainty is. 

3.2. The case of geometric Brownian motion. We 
now consider the case (1), (8)-(9) where the level of 
development is modeled as a geometric Brownian 
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motion. In our numerical anlyisis we use the 
following parameter values: λ = 0.4, r = 0.2, µ = 
0.17, σ = 0.1, α = 0.17, Iq = 1 and Is = 0.7. and 

0.7=sI . The results are shown in Figure 14 and 
Figure 15, respectively. 

Figure 14 displays the value functions, )(0 xV  and 
)(1 xV , as a function of the level of development x  

when x  follows a geometric Brownian motion. In 
the figure the dashed line illustrates the company's 
value function before entering the agreement, 

)(0 xV , whereas the thick line illustrates the 
company's value function after entering the 
agreement minus the sunk costs the company has to 
pay when entering, sIxV −)(1 . Our results shows 
that it is optimal for the company to enter the 
concessionary agreement if the threshold 

0.8422=*
sx  is reached. 

Figure 15 displays the value function, )(1 xV  and 
terminal payoff, as a function of the level of 
development x . In the figure the thick line 
represents the value function of the company 
before ending the agreement, )(1 xV , while the 
dashed line represents the terminal payoff qIx − . 
Our results show that it is optimal for the 
company to end the agreement if the threshold 

5.5876=*
qx  is reached. 

3.2.1. Comparative analysis and effects on the 
thresholds. In this section, we vary the same 
parameters as in the geometric mean reversion case 
(except that there is no depreciation here) and study 
how the company’s value function )(xV  and 
threshold levels *

sx  and *
qx  are affected. 

Figures 16-21 show the value functions, )(0 xV , 

)(1 xV  and terminal payoff as well as thresholds, *
sx  

and *
qx  depending on the various parameters. 

Figures 16 and 17 show how σ  affects the value 
functions and the thresholds whereas Figures 18 and 
19 illustrate the changes in the value functions and 
the thresholds caused by changes in µ . The effect 
of the penalty fee that the private company needs to 
pay to the government if it decides to end the 
agreement, qI , can be seen in Figures 20 and 21. 

The effect of the government contribution α  as well 
as the sunk costs the company needs to pay once the 
company enters the agreement, sI , also affect the 
results but only prior to entering, i.e. )(0 xV  and the 

threshold, *
sx . The effects of changes in α  and sI  are 

displayed in figure 22 and figure 23. 

Comparing to the geometric mean reversion case, 
we find that the parameters, σ, µ, Iq, α and Is, have 
the same qualitative effects on the thresholds, *

sx  

and *
qx . The same intuition applies.  

3.2.2. The effect of uncertainty on the expected length 
of the concessionary agreement. As in the geometric 
mean reversion case, we are interested in the impact of 
uncertainty, measured in terms of the instantaneous 
volatility σ , on the time 12 ττ −  the concessionary 
agreement is intact. As before the idea is to find the 
expected value of 12 ττ −  using Monte Carlo 
simulation, while employing the Euler-Milstein 
method. In this case )(tx  follows (8) for 1< τt  and 
(9) for 1τ≥t . The Euler-Milstein scheme is given 

as 0
22 =(0)],))[((

2
1)()()(=1)( xxtWtxWtxttxtxtx ∆−∆+∆+∆++ σσα   (32) 

and ]))[((
2
1)()()(=1)( 22 tWtxWtxttxtxtx ∆−∆+∆+∆++ σσµ  respectively. (33) 

Given the two thresholds for entry and exit, *
sx  and 

*
qx , and an initial value for the level of 

development, *
0 < sxx , we use Monte-Carlo 

simulation as in the geometric mean reversion case 
in order to compute ( )12 ττ −E . In our numerical 
example we have chosen the following set of 
parameters: λ = 0.4, r = 0.2, µ = 0.18, α = 0.18, Iq = 
1 and Is = 0.7. We use eleven different values for σ  
which are ,0.2.12,0.1,0.11,0 K . Figure 24 displays 
σ  and the expected value of 12 ττ − . The result 
shows the same relationship between σ  and 

( )12 ττ −E  as in the geometric mean reversion case, 
i.e. the higher the uncertainty is, the longer the 
concessionary agreement is expected to last.  

Conclusion 

We have studied the problem where a private 
company is given a concession by the state 
government to develop a project. The optimal time 
to enter the concessionary agreement and the 
optimal time to end it have been computed using 
different modeling assumptions, i.e. geometric mean 
reversion and geometric Brownian motion. The 
effect of various model parameters on the threshold 
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levels for entry and exit has been analyzed with 
particular emphasis on the uncertainty parameter 
σ . Further, the effects of uncertainty on the 

expected time the concessionary agreement is 
expected to last have been investigated by means 
of Monte Carlo simulation. 
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Appendix A. Graphical illustration 

The case of geometric mean reversion  

    
Fig. 1. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement 

 
Fig. 2. GMR: Value functions; )(1 xV , and the terminal payoff, 

and the threshold *
qx  for entering the concessionary agreement 
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Fig. 3. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different σ  

 
Fig. 4. GMR: Value function; )(1 xV , and the terminal 

payoff, and the threshold *
qx  for ending the concessionary 

agreement with different σ  
 

 
Fig. 5. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different µ  

 

Fig. 6. GMR: Value function; )(1 xV , and the terminal 

payoff, and the threshold *
qx  for ending the concessionary 

agreement with different µ  
 

 
Fig. 7. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different δ  

 
Fig. 8. GMR: Value function; )(1 xV , and the terminal 

payoff, and the threshold *
qx  for ending the concessionary 

agreement with different δ  
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Fig. 9. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different qI  

Fig. 10. GMR: Value function; )(1 xV , and the terminal 

payoff, and the threshold *
qx  for ending the concessionary 

agreement with different qI  
 

Fig. 11. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different α  

Fig. 12. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different sI  

 
Fig. 13. GMR: Expected value of 12 ττ −  with different σ  
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The case of geometric Brownian motion  

 
Fig. 14. GBM: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement 

 
Fig. 15. GBM: Value function; )(1 xV , and the terminal 

payoff, and the threshold *
qx  for ending the 

concessionary agreement 
 

Fig. 16. GBM: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different σ  

Fig. 17. GBM: Value function; )(1 xV , and the terminal 

payoff, and the threshold *
qx  for ending the concessionary 

agreement with different σ  
 

Fig. 18. GBM: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different µ  

Fig. 19. GBM: Value function; )(1 xV , and the terminal 

payoff, and the threshold *
qx  for ending the concessionary 

agreement with different µ  
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Fig. 20. GBM: Value functions; )(0 xV  and )(1 xV , and the 

threshold *
sx  for entering the concessionary agreement with 

different qI  

 
Fig. 21. GBM: Value function; )(1 xV , and the terminal 

payoff, and the threshold *
qx  for ending the concessionary 

agreement with different qI  
 

Fig. 22. GBM: Value functions; )(0 xV  and )(1 xV , and 

the threshold *
sx  for the concessionary agreement with 

 different α  

Fig. 23. GBM: Value functions; )(0 xV  and )(1 xV , and 

the threshold *
sx  for entering the concessionary agreement 

with different sI  

 

 
Fig. 24. GBM: Expected value of 12 ττ −  with different σ  

Appendix B. Shooting method 

In this appendix, we summarize the idea of the so called “Shooting Method”. Details can be found, for example, in 
Mathews and Fink (2004). The shooting method is a numerical method for solving a boundary value problem (BVP) 
by transforming it to an initial value problem (IVP) by making an initial guess for the first order condition. We then 
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solve the IVP by applying the time discretized numerical method like finite different method for example. Once the 
calculation is completed, we can verify whether it satisfies the desired boundary condition at the other endpoint or not. 
If not, the procedure is repeated after guessing a new first order condition. This proceeds until the boundary condition 
at the endpoint is ultimately satisfied up to an appropriate level of accuracy. 

For the case of linear BVP, this procedure is simplified as closed-form solution of the BVP in terms of the solutions of 
the two corresponding IVPs can be obtained as shown in the following proposition. Note that the corresponding IVPs 
in general still have to be solved numerically. 

Proposition let )(tx  denote the solution of the following linear BVP  

.=)(,=)(;)()()()()(=)( βα bxaxtrtxtqtxtptx ++′′′  (34) 

Then )(tx  satisfies  

,)(
)(

)()(=)( tv
bv

bututx −
+
β

  (35) 

where )(tu  and )(tv  are solutions of the IVPs (36) and (37) respectively:  

,0=)(,=)();()()()()(=)( auautrtutqtutptu ′++′′′ α  (36) 

1.=)(0,=)();()()()(=)( avavtvtqtvtptv ′+′′′   (37) 

Proof: Since )(tu  and )(tv  are solutions of the IVPs (36) and (37) the linear combination  

)()(=)( tCvtutx +   (38) 

is a solution of )()()()()(=)( trtxtqtxtptx ++′′′  with boundary values  

αα =0=)()(=)( ++ aCvauax  

).()(=)( bCvbubx +  

Choosing 
)(

)(=
bv

buC −β
 gives β=)(bx . Hence, the solution of (34) is given by  

)(
)(

)()(=)( tv
bv

bututx −
+
β

           (39) 

assuming that 0)( ≠bv . 


