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Abstract 

A crucial problem for institutional money managers that are focussed on one sector or sub-sector of financial markets 
is to know to what degree they depend on the broad markets they aim at diversifying away from. This is a special prob-
lem for fund of fund (FoF) managers because with an increasing number of target funds, the marginal contribution 
from diversification decreases and active bets of target funds may be cancelled out. Furthermore, when appropriate 
tools to hedge or reduce risks are unavailable for the respective sectors, investments in derivatives on a more general 
universe or index may become necessary. Both problems make an appropriate method for estimating sector FoF risk 
exposure to the general markets necessary. We provide a solution for sector portfolios that is especially comforting 
when being applied to small datasets. Our parsimonious approach of using only short time spans for estimating broad 
market dependence of the sector portfolio is particularly interesting for practical applications, as it is in line with re-
quirements in the industry where very recent and frequently updated risk measures are used and demanded for by regu-
lators. 
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Introduction© 

If there were still doubts concerning the dependence 
of sectors in broad market downturns, the recent 
crisis following the sub-prime meltdown and the so-
called credit crunch have erased those in an impres-
sive manner. While sectors or industries may be 
largely affected by the fundamentals and structures 
in their very own part of the global economy or sub-
sectors of markets, disruptions and downturns in the 
general financial markets affect them, too. For this 
reason, it is crucial for managers of sector funds or 
sector fund of funds (FoF) to take into account the 
dependence structure of their underlying industry 
portfolio on broad market movements. The impact 
of economic and political changes that affect all 
markets and sub-sectors impose a certain minimum 
of similarity in the behavior of stock markets in 
different aggregation levels (say from the very spe-
cialized sub-part of an industry up to the MSCI 
World). These minimum similarities are pronounced 
when financial market effects lead to broad market 
movements that show up in all industries and sec-
tors, for example through flow-effects, market sen-
timent, de-leveraging and flights to substitute asset 
classes. While these effects are not new in nature, 
appropriate approaches to deal with them are still 
scarce in nature, and often include strong assump-
tions or non-flexible concepts. 

As the degree to which a sector portfolio is affected 
by market movements is a problem of measuring the 
interdependence between financial variables, it is a 
part of research that has undergone tremendous de-
velopments in recent decades, from correlation or 
covariance-based methods to the use of more so-
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phisticated multivariate distribution functions and 
copulas. We combine an asymmetric t copula and 
stable marginals to measure the dependence of a 
sector FoF on the broad stock market, thereby mod-
elling the univariate randomness of the variables 
adequately as well. As information on investment or 
market risks must be updated in high frequencies 
and on a regular basis, we show how the modelling 
of the sector exposure to broad market risk can be 
done with a very parsimonious approach that re-
duces the dimensionality of the problem at hand, 
thereby using all relevant information available. A 
slim approach that is applicable even in the presence 
of few data is of special interest nowadays with the 
industry being highly dynamic and financial assets 
being generated very quickly.  

The estimation procedure has one crucial benefit in 
practical applications, as it may be used on both 
sides of a FoF, meaning that FoF managers may use 
the approach to model their own broad market de-
pendence structure on the one hand, and investors in 
a specific sector FoF may use the approach to model 
their investment risks with respect to the index 
which they are willing to diversify away from.   

Employing a copula approach with an asymmetric t 
copula as chosen form for the dependence model-
ling and stable distributions for the marginal distri-
butions of the variables respectively, we generate 
simulations for the market index as well as for the 
synthetic FoFs of the sector under consideration. 
Both the dependence structure and the univariate 
randomness appear to be modelled very well with 
our approach, showing the need to apply the right 
sophisticated concepts for modelling financial assets 
prone to tail events, and even more important, tail 
dependence. From the time-varying, rolling window 
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estimations we can see that increases in broad mar-
ket tail risk lead to increases in sector portfolio tail 
risk, but not vice versa, indicating a good and unbi-
ased representation of the dependence structure as 
well as the simulation of the realizations for each 
period under consideration.  

The fact that simulations are generated using the 
combination of methods at hand is especially com-
fortable when it comes to the calculation of meas-
ures that demand a lot of observations and do not 
possess closed-form solutions. In addition, the fact 
that the asymmetric approach allows for differing 
tail-dependencies on the up-side and the down-side 
suits the analysis for a FoF very well, as the de-
pendence may be skewed due to industry-specific 
characteristics as well as by fund characteristics. 
Furthermore, changes in those characteristics are 
well tracked by the approach because estimations 
are done using very recent data and therefore short 
memory. 

Knowing the broad market exposure is especially 
important for managers or shareholders of sector 
FoFs in industries for which derivatives are either 
not available or scarce, as in these cases it is espe-
cially difficult to reduce risk and market exposures. 
Unfortunately, for some industries, hedging consid-
erations therefore simply fail due to the lack of 
hedging products. Employing an approach to meas-
ure the joint risks with the general stock market for 
which myriads of derivatives are available may en-
able sector-exposed portfolios to be isolated from 
the broad market movements or at least dampen the 
effects of extreme events. 

Our parsimonious approach for measuring (in-
ter)dependence between financial markets and as-
sets where the data input must be very up to date or 
where only a short history of data is available is not 
limited to FoFs of course. However, we consider it 
especially appealing for the FoF class for the fol-
lowing reasons. While many funds are allowed to 
invest in derivatives to hedge their risks, they often 
abstain from doing so. Reasons for doing so include 
the lack of adequate tools (if the fund is sector fo-
cused for example, as discussed above), the costs of 
hedging may be too high or the use of derivatives is 
regarded as being too exotic a tool in classical asset 
management. However, if the risks are not hedged 
on the fund level, but merely dampened by holding 
cash positions during downturns (thereby forfeiting 
partial exposures that would be beneficial and incur-
ring a considerable inertia into the fund), the FoFs 
may fail to get the benefit of diversification and risk 
reduction by spreading their allocation over the tar-
get funds. This is a special problem for FoFs, be-
cause with an increasing number of target funds, the 
marginal contribution from diversification is de-

creasing and characteristics may cancel each other 
out. With reliable measurement of the risks and 
exposures of the FoF and the market, this problem 
of practical portfolio management may be easily 
overcome and therefore the approach presented in 
this paper should be used in practical applications 
not only for risk measurement but for risk manage-
ment and hedging on the FoF level as well. 

The organization of this paper is as follows. In the 
next section we review the methods used, namely 
the skewed t copula, stable distributions, and risk 
measures. In Section 2, we discuss the approach of 
the study and the data. The empirical results are 
presented in Section 3, showing the application of 
our framework to synthetic technology sector FoFs, 
and their dependence on the broad market repre-
sented by the S&P 500. The last section concludes 
the paper. 

1. Skewed t copulas and stable Paretian  
distributions 

In this section, we explain the method that we pro-
pose to model sector FoF dependence on broad 
market movements, as well as the type of distribu-
tion that we employ to model the univariate ran-
domness of the single variables.  

To model the dependence structure between the FoF 
and the index, we use a copula function. Copulas 
have found increasing attention first in academic 
research on financial markets and have made their 
way to Wall Street and many other parts of finance 
in the following. While the use of copulas brings a 
substantial improvement to the toolboxes that are 
available for financial and economic research, the 
methods have been discussed in heated debates in 
the financial industry as well1. We take the view that 
it is merely the application of the right concept for a 
problem at hand and the difficulty of choosing the 
right form of the copula that is decisive on the way a 
copula model suits the needs of the researcher or 
practitioner (see Rachev et al., 2009). Thus, the use 
of copulas is advantageous to all currently existing 
methods for measuring dependence if the right con-
cept is applied.  

Generally, the concept of copulas enables one to 
separate the univariate randomness of any variable 
from the multivariate dependencies by means of 
factorization. A copula represents the true interde-
pendence structure between variables while the 
marginal distribution is informative on the univari-
ate randomness of these variables. Therefore, a 
standardized measure of the purely joint features of 
a multivariate distribution is generated by using 
copulas. We briefly discuss the copula definitions 
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below1. The cumulative distribution function of a 
one-dimensional random variable is called the grade 
of a random variable (uniformly distributed be-
tween 0 and 1), and the copula is the distribution of 
these grades, such that an n -Copula 

[ ] [ ]1,01,0: →nC  is an n dimensional distribution 
function with univariate marginal distributions 

)1,0(U . 

( ) ( )nnnp uUuUPuuC ≤≤= ,...,,..., 111     (1) 

( ) ( )( ),,...,),...,( 111 nnn xFxFCxxH =     (2) 

where H  is an n -dimensional distribution function 
with marginal distributions iF .  

We will focus on the most common and influential 
types of copulas and will compare them with each 
other in Section 3 where we present our empirical 
results. Archimedean (for example Clayton, Frank 
or Gumbel) copulas are calculated over a closed-
form solution (being very hard to derive for multi-
variate applications beyond two dimensions how-
ever) and do not need to be represented by an appli-
cation of well-known families of multivariate distri-
butions using the theorem of Sklar (1959 and 1973). 
In contrast, elliptical (for example, Gaussian or Stu-
dent t) copulas can be derived via simulating these 
multivariate distributions taking advantage of their 
simple stochastic representations. In the recent past, 
the focus in both academia and practice turned to 
the elliptical class of copula forms. However, a ca-
veat of general elliptical copulas is that the upper 
and lower tail dependence, being informative on 
joint extreme realizations, is identical, due to the 
radial symmetric shape of the elliptical copulas. In 
addition, a Gaussian copula has no tail dependence 
at all (see Bradley and Taqqu, 2003), and this is the 
main argument against its use in financial market 
applications from our point of view. 

That the Gaussian copula is inappropriate for most 
financial applications due to the aforementioned 
inability of measuring tail dependence is especially 
interesting in light of the ongoing debate surround-
ing copula functions in financial markets and espe-
cially during the current credit crisis (see Rachev et 
al., 2009). The fact that the Gaussian copula has no 
tail dependence at all is stemming from the fact that 
a multivariate Gaussian distribution is the n-
dimensional version of a Gaussian distribution, 
which assigns too low probabilities to extreme out-
comes. While the use of Gaussian distributions in 
financial market applications is widely accepted as 
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being flawed due to the fact that this distribution 
type attributes too low probabilities to extreme ob-
servations, the multivariate version still is frequently 
used in copula applications.   

The t copula, or Student copula, does not share 
the shortcoming of the normal copula concerning 
the tail dependence and enables the modelling of 
joint extreme market outcomes. However, the 
radial symmetric shape of the t copula still leaves 
a concern regarding the use for financial market 
data, as the upper and lower tail dependence is 
identical. Thus, the probabilities of joint tail 
events on the downside are equally distributed as 
the ones on the upside. In reality, this may pose 
problems when modelling markets or assets for 
which this assumption may not hold.  

Improving the features of copula models is the use 
of asymmetric t copulas, which in contrast to the 
general elliptical copula forms discussed above al-
low for differing tail dependencies as well. Espe-
cially in our application of a sector FoF and the 
broad market, this feature is highly desirable as 
the dependence of the FoF may be different when 
considering upside and downside events. The 
multivariate t distribution that is used takes the 
following form: 

WZWX ++= γµ:       (3) 

with ⎟
⎠
⎞

⎜
⎝
⎛∈

2
,

2
ννIGW  and ( )Σ∈ ,0NZ , the latter 

being independent of the former. The parameter 
vector ( )nγγγ ,.....,1=  defines the skewness of 
each variable n , while ( )nµµµ ,.....,1=  is the 
vector of location parameters in the same dimen-
sion. Denoting the distribution as 

( )γµν ,,, Σ∈ ntX , ν  is the degrees of freedom 
that define the inverse gamma distribution sub-

part with 
2
ν

 and Σ  is the covariance matrix of the 

zero-mean normal distributed sub-part. Using 
Sklar’s theorem, the skewed Student’s t copula is 
defined as the copula of the multivariate distribu-
tion of X. Therefore, the copula function is ob-
tained as:  

( ) ( ) ( )( )nnXn uFuFFuuC 1
1

1
11 ,....,,...., −−=    (4) 

with XF  being the multivariate distribution func-
tion of X  and ( )kk uF 1−  being the inverse of the 
cumulative density function of all marginals k  
(for k ranging 1 to n ). Therefore, the above nota-
tion is defining the copula for all dimensions us-
ing the multivariate skewed t distribution. As this 
approach is fully general to the type of marginals 
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used, the randomness of each univariate entry to 
the multivariate distribution can be modelled by 
the choice of distribution type.  

Using the asymmetric t copula, we generate a large 
number of copula scenarios, thereby taking into 
account the dependence between the assets. These 
copula scenarios are then used to generate univari-
ate scenarios for each variable, thereby making use 
of the inverse of the cumulative distribution func-
tion of the marginal distribution used for the uni-
variate modelling. 

The marginal distribution for the univariate ran-
domness of each asset is modelled using the stable 
Paretian distribution type, in the following simply 
called stable distribution. Basically, the stable dis-
tributions generalize the normal distribution. While 
the normal or Gaussian distribution is determined by 
the two parameters, location and dispersion, i.e 
mean and standard deviation, the stable distributions 
are defined through four parameters.  

First, the characteristic exponent ( 20 << α ), 
called the index of stability or stable index, deter-
mines the weight of the distribution’s tails. For 
lower values of α , the shape of the distribution is 
more peaked at the location parameter and exhibits 
fatter tails, parameter value 2 corresponds to the 
normal distribution. Second, the parameter β , 
which is bounded between -1 (skewed to the left) 
and +1 (skewed to the right) determines the dis-
tribution’s skewness and is informative on 
whether the occurrence of returns is more prob-
able for negative or positive realizations. Third, 
the parameter σ  is scaling the distribution. 
Fourth, as for any other type of commonly used 
distributions, the location parameter is responsible 
for the shift of the distribution’s peak to the left 
( 0<µ ) or to the right ( 0>µ ). 

The fact that stable distributions are described by 
four parameters and may take a large variety of 
shapes is an advantage over other distribution types, 
with the fact that asymmetric probability distribu-
tions and heavy tails are featured being very favorable. 
Especially when being compared to the normal distri-
bution function, the stable models show up as being 
more in line with real market observations, as the 
probabilities of occurrence of extreme observations far 
away from the mean of a variable are heavily underes-
timated by the normal distribution.  

More detailed discussions and overviews on the 
properties and applications of stable distributions in 
finance are provided in Mittnik and Rachev (1993), 
Samorodnitsky and Taqqu (1994), Rachev and Han 
(2000), Rachev and Mittnik (2000) and in Ortobelli 
et al. (2002 and 2003), while the stable property’s 

importance for financial data has been initially dis-
cussed by Mandelbrot (1963). 

2. Asymmetric copula, heavy-tailed marginals and 
tail risk valuation; example with FoF’s data 

As the properties of both the interdependence and 
the univariate randomness are changing over time 
and therefore should be estimated on a regular basis, 
we use a short time span for the estimations in this 
study. Thus, the data set is chosen to reflect the very 
recent realizations of the variables under considera-
tion, mirroring the need of up to date estimations 
that are crucial in financial market applications for 
which often only a limited data span is available. 
Using a window of 100 trading days that is rolled 
through the whole data sample is beneficial, on the 
one hand, as the estimations are always very fo-
cused on recent realizations but is resulting in a 
small sample for each estimation, on the other hand.  

This classical trade off is losing its severity in our 
approach, as we reduce the dimension of the prob-
lem to a bivariate one. We use all available funds at 
each time point to build a synthetic equal weighted 
FoF. If a fund dies, the allocation share of it is 
evenly distributed among all surviving funds in the 
next period and vice versa. We have therefore a 
time-series of an artificial FoF to estimate against 
the market index. In practice, FoF managers may of 
course use their own actual and current portfolio 
weights for the 100 day backward time-series 
generation. Investors to FoFs may use the actual 
time series of the FoF – thereby keeping in mind 
that it is an approximation due to allocation 
changes within the time period – or may go on 
with the equal weighted approach as some FoFs 
may be approximated as equal-weight schemes of 
their fund universe.  

With the bivariate approach, we obtain the depend-
ence structure by fitting the asymmetric t copula to 
the two return series in any window, and then gen-
erate simulations of the FoF and the index using the 
stable distribution for the univariate randomness. 
One benefit of the bivariate approach is that we do 
not need to estimate a large number of parameters, a 
pre-requisite for a dynamic approach with only lim-
ited data input, as we have here with only 100 trad-
ing days. An estimation of the parameters for each 
fund in the respective time period would make the 
analysis far more complex and would demand more 
data and/or calculation steps. The return series en-
tered the estimation process unfiltered, that is, no 
time-varying effects, volatility clustering or similar 
features have been modelled upfront as the aim is to 
show directly the dependence structure of the vari-
ables. The framework may as well be combined and 
used on pre-filtered data, for example on the innova-
tions of a multivariate AR(I)MA/GARCH model 
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between the FoF and the Index or on results of time-
series analysis with a decaying time influence, but 
the input data set needs to be larger then1.  

Our choice for the size of simulations was 1,000 simu-
lations for each variable. This keeps the computational 
burden on a practical level that allows for daily appli-
cation of the approach. In addition, for appropriate 
backtesting of the model over a considerable history 
the size of the simulations should be kept in a sensible 
range. Therefore, we are generating a 1,000 by 2 ma-
trix of simulations for each estimation window, with 
the simulations, on the one hand, being based on the 
true dependence between the FoF and the broad index 
as being estimated by the copula, and on the other 
hand, mirroring the single return distributions ade-
quately.  

The resulting simulations may be used in a large 
variety of ways, for example for portfolio optimiza-
tion or the calculation of risk measures. Moreover, 
the obtained results may be used by sector FoF 
managers or investors of sector FoFs to hedge their 
broad market exposure incurred by the sector in-
vestment when no industry-specific tools may be 
available. We track whether the model did ade-
quately capture both the dependence structure and 
the structure of the single variables by comparing 
the simulations’ properties with the actual properties 
of the FoF and the index. In addition, we compare 
the results obtained with other methods that were 
commonly used in financial markets and that were 
discussed above. 

We have chosen the technology (tech) sector as an 
example in this study. The tech sector has under-
gone tremendous up-and-down phases in the late 
1990s and the beginning of the new century, and the 
returns of tech stocks show high concentration in the 
tails that makes the need for application of sophis-
ticated methods obvious. As a FoF analysis was 
done for measuring the dependence on broad 
market movements, the approach is interesting in 
light of diversification arguments too, as the bene-
fit of diversification is an oft-heard argument by 
FoF proponents. In addition, the approach is 
straightforward, as an estimation of the depend-
ence of each single fund on the index is not 
needed when considering a FoF that one is man-
aging, neither is it possible to do so when one is 
invested in the FoF and is seeking to estimate the 
dependence of it on the market.  

Selection of the funds and streaming of the total 
return series was done using Bloomberg based2 on 

                                                      
1 See Sun et al. (2009) for a multivariate approach to estimating tail 
risks using the ARMA-GARCH methodology and the Student’s t 
copula. 
2 Datasource: Bloomberg Finance L.P. 

the following criteria. All funds included are mutual 
funds that (1) are listed in the Unites States, (2) have 
their investment focus on tech stocks of the domes-
tic market, (3) are denominated in U.S. dollar, and 
(4) report daily net asset values. Fortunately, the 
resulting fund spectrum includes both dead and 
alive funds such that even the last return of any fund 
before going out of business enters the analysis. 
Daily data were used for the 10 years ending April 
2009. The resulting return matrix consists of 2,527 
daily returns for each of the 255 funds included. 
Measuring the broad stock market was done using 
the S&P 500 for the respective time-period. The 
S&P 500 was selected because it is the index that is 
typically used for benchmarking by institutional 
investors and an indicative check of FoFs that sat-
isfy our selection criteria strengthened this notion. 
Because we use an equal weighted FoF construc-
tion, we have a 2,526 by 2 matrix of returns as our 
sample for the whole period, and 2,426 matrices 
of size 100 by 2 for the dynamic intertemporal 
estimations. 

Concerning the measurement of risk for the index 
and the synthetic FoFs, we use the expected tail loss 
(ETL) which is the conditional value at risk (CVaR) 
for continuous distributions3, 

( ) ( )( )aaaa rVaRrrErETL αα −− >−−= 11 0,max)(   

with )(1 prETL α−  being the expected tail loss with 

tail probability α for asset returns ar  and VaR de-
noting the value at risk. In accordance with common 
confidence levels for other risk measures such as 
VaR are 1% or 5% for α, corresponding to confi-
dence levels of 99% and 95%, respectively. For any 
confidence level, ETL is higher than VaR as it 
measures the expected losses in the case of a tail 
event rather than measuring the loss not to be 
exceeded with the respective confidence4. Con-
cerning the measurement of risk the choice of an 
appropriate measure is another way to omit erro-
neous estimations, as, for example, the VaR at 
95% confidence of a normal distribution may be 
the same as the corresponding measure for a sta-
ble distribution or a t distribution, but the ETLs or 
CVaRs (AVaRs) at 95% may be largely differing. 
For the sake of comparability, we report the clas-
sical measure as well. 

                                                      
3 See Rachev et al. (2007) for discussions on risk, uncertainty and 
performance measures. The conditional value at risk (CVaR) corre-
sponds to the average value at risk (AVaR), see Pflug and Romisch 
(2007) for example. 
4 See Sortino and Sachell (2001) and Rockafellar (2002) among others 
concerning VaR and CVaR / ETL.  
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3. Empirical results 

Prior to appling the rolling window approach for 
successive 100 trading day periods, we check the 
data’s full sample characteristics. Looking at the return 

scatter plot of the index and the synthetic FoF as 
shown in Figure 1, the elliptical shape indicates 
significant dependence, showing the immediate 
need for detailed modeling of the dependence 
structure of the two series.  
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Fig. 1. The return scatter plot of the synthetic tech FoF and the index for the whole sample period 

In general, to check whether the pair of tools we 
favor adequately models both the dependence struc-
ture and the univariate randomness, we estimate the 
asymmetric t copula and generate simulations using 
the stable distributions from the entire sample of ob-
servations. The result is a 2500 by 2 matrix with simu-
lations for the FoF and the index. For comparison 
purposes, we used a number of simulations being ap-
proximately equal to the actual observation series. For 
comparability to other commonly used approaches, we 
have included the results of simulations using a normal 
copula and normal marginal distributions approach as 
well as the results of a directly applied multivariate t 
distribution (the distribution being applied on the re-
turns rather than on the cumulative density function of 
the variables). 

From Figure 2 it can be seen that the normal ap-
proach suffers from the fact that the normal copula 
cannot capture tail dependence and the marginal 
distribution does not account for univariate tail 
risks. The multivariate t distribution approach suf-
fers from the fact that the dependence structure and 
the marginal distributions are not modeled sepa-
rately, leading to a loss of information and a less 
detailed modeling. Therefore, a too radial and poor 
fitting shape is obtained. Increasing the number of 
simulations made this problem even more obvious 
when checking the approaches’ behavior. In con-
trast, the simulations obtained from our approach 
with the asymmetric t copula and stable marginals 
appear to be a good tracking of the dependence 
structure of the FoF and the index.  

Using the approach with rolling 100-day periods, we 
continued by modelling the bivariate set over time. 
When it comes to modelling the dependence struc-
ture over time, we need to check the ability of the 
approach to fit the data well even in the presence of 
a heavily reduced data set because only 100 days 
were selected as the time window in the example. 
Since we originally had 2,526 return observations, 
we have 2,426 windows for which we generated the 
simulations, Figure 3 shows the last period as an 
example. We checked the short sample properties 
of the other methods as well, and the deviations 
from the true data sets are even more severe than in 
the whole data sample, again strengthening the 
notion that the appropriate tools were chosen for 
the analysis.  

As the simulations are of size 1000 and the returns 
were 100 each, the scatter diagram of the simula-
tions is of course more crowded than the one of the 
observations. In addition, the realizations on the tail 
sides seem to be more pronounced in the simula-
tions. To see whether this is due to overestimation 
of the tails or to a small sample bias, the quantile-
quantile (q-q) plots were checked for both the index 
and the synthetic FoF. From the q-q plots we can 
see that the simulations fit the data very well and 
that for both variables only two simulated realiza-
tions are somewhat deviating. Indicative checks of 
other periods did not give rise to doubts concerning 
the estimation and fitting performance for the prob-
lem at hand. 
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Fig. 2. The simulations of the synthetic tech FoF and the index for several approaches for the whole sample period 
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Fig. 3. Example of last period estimations 

We can see from the calculations of the expected 
tail loss that it is good practice to model the broad 
market risk for the FoF in dynamic nature, as both 
the magnitude of the risk measure as well as the 
joint changes therein are heavily time-dependent, as 
can be seen in Figure 4.  
With respect to the expected tail losses of the two 
variables, the fact that a large increase in the 
magnitude of this risk measure for the index leads 
to an increase of it for the FoF  too, shows that the 

influence of the broad market risk on the FoF is 
substantial and modelled adequately. In addition, 
the tech sector had its own characteristic increases 
in the tail risk during drawdowns (besides more 
severe tail events throughout the sample) which 
did not appear in the broad market and did not 
affect the estimation results of the index expected 
tail loss. The latter fact is very favorable concern-
ing the judgment of the measurement of depend-
ence, showing that with the asymmetric t copula, 
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increases in broad market risk lead to increases in 
sector FoF risk, but not the other way round and 
therefore no spurious causality seems to be gener-

ated during the asymmetric t copula fitting and 
simulation generating using the stable distri-
butions. 

 
Note: The negative of the ETL (99% level) is plotted, according to industry usage of the negative loss as risk measure.  

Fig. 4. Stable negative expected tail losses over time 
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Note: The negative of the ETL (99% level) is plotted, according to industry usage of the negative loss as risk measure.  

Fig. 5. Actual returns of synthetic FoF and stable negative expected tail losses over time 

To check whether the methods used were good at 
estimating the expected tail losses for each time span, 
we tested how many times the expected tail loss on the 
99% level was exceeded in the following trading day. 
With 10 exceedances (0.41% of observations) for 
the index and 9 exceedances (0.37% of observa-
tions) for the synthetic FoF, a considerable small 
number is obtained, see Figure 5 for a graphical 
representation of the FoF returns and estimated 
tail risks. Naturally, the number of exceedances 
was higher for the corresponding 99% VaR, but 

with 34 (1.40%) and 32 (1.32%) for the index and 
FoF respectively, the number is still very small, 
strengthening our notion of a sensible approach. 

Conclusions 

The asymmetric t copula approach for the estima-
tion of the dependence of a sector FoF on broad 
market risk captured the independence structure 
very well. Combined with the stable distribution we 
obtained well-fitting simulations for the synthetic 
FoF and the index for each estimation window. Be-



Investment Management and Financial Innovations, Volume 7, Issue 2, 2010 

44 

ing applied to a very short window of data of 100 
trading days, the approach suits estimation needs 
concerning short-term tracking of risks and risk 
dependencies and may be applied to problems with 
limited and small data sets in general. This is be-
cause the problem of measuring the interdependence 
is of the bivariate type, the estimation efficiency 
using the asymmetric t copula and the subsequent 
generation of simulations using the numeric solu-
tions to the previous fitting. 
As the procedure appears to generate well-fitting 
simulations, these may serve as input to a large 
variety of applications, from risk management and 
measurement, portfolio optimizations and sce-
nario analyses to investment selection and hedging 

purposes as examples. It is critical to have an 
approach that identifies the joint risks of a sector 
FoF and the broad markets because for many in-
dustries or (sub) sectors no viable derivative mar-
ket exists. The results obtained by using our ap-
proach may serve both FoF investors and FoF 
managers when it comes to not only measuring 
risks, but also isolating the sector portfolios from 
general market movements. Possible extensions or 
adjustments would be to take into account time-
series effects such as volatility clustering and to 
combine the procedure with those, although this 
would demand more data points for each estima-
tion, reducing the great benefit of a parsimonious 
approach as proposed in this paper. 
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