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Abstract 

We derive and interpret the main results of Modern Portfolio Theory and the Theory of Active Portfolio Management 
from the perspective that, for active investors, the cross-sectional dispersion of returns is more relevant as a measure of 
risk than time series volatility. We show that all key measures of portfolio risk − total, systematic and idiosyncratic − 
are positively related to return dispersion, with dispersion primarily affecting idiosyncratic risk. Moreover, active port-
folio returns are a function of managers’ skill and cross-sectional dispersion, with realized dispersion acting as a lever-
age factor for realized skill. Regardless of their level of skill, however, active managers will tend to reduce their active 
weights as the cross-sectional dispersion of returns increases. While higher levels of dispersion represent opportunities 
to earn higher active returns, managers’ information ratios are expected to remain unchanged, as realized tracking error 
is expected to vary proportionately with dispersion and managers’ active returns. Absolute return investors are, there-
fore, more likely to benefit from tactically adjusting the activeness of their strategies with the level of return dispersion. 
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The role of cross-sectional dispersion in active 
portfolio management. Introduction© 

The ultimate goal of active equity management is to 
outperform a benchmark index such as the S&P 500 
or Russell 1000. Investment managers implement 
active portfolios by overweighting stocks on which 
they have positive opinions and underweighting 
stocks that they view less favorably. Without the 
ability to determine which securities will outperform 
and which will underperform, managers’ efforts will 
be futile, and their relative performance disappoint-
ing. Beyond the ability to rank winners and losers, 
however, active portfolio management also requires 
a reasonable degree of return dispersion in order to 
provide an adequate opportunity set for ranking 
stocks’ relative expected returns. In fact, when ac-
tive managers predict which stocks will perform 
better than others, they are essentially forecasting 
the cross-sectional dispersion (or standard devia-
tion) of returns, which is simply a more formal term 
for the future distribution of relative winners and 
losers. It follows intuitively that dispersion − the 
extent to which stock prices will move in different 
directions − represents a key consideration in any 
forecast of relative security returns. For example, as 
stock returns become more dispersed, the same set 
of active portfolio weights will generate larger dif-
ferences in relative performance. Conversely, if 
stock returns are perfectly correlated − implying 
zero cross-sectional dispersion − the notion of rank-
ing the cross-section of returns becomes meaning-
less, since all stocks would yield the same return. 
Metrics that describe the cross-sectional behavior of 
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asset returns should, therefore, be highly relevant in 
active portfolio management. 

We extend this intuition by developing an analytical 
framework in which the major results of Modern 
Portfolio Theory (MPT) and Active Portfolio Man-
agement (APM) are derived and interpreted from a 
perspective in which cross-sectional dispersion, 
rather than the traditional metric time series volatil-
ity, is the relevant measure of risk. We propose 
that cross-sectional dispersion is a more applica-
ble measure of risk because, in the same sense 
that relative-return investors are focused on gen-
erating portfolio returns relative to some mean 
benchmark return, dispersion measures volatility 
relative to the performance of the same bench-
mark. More technically, we substitute cross-
sectional dispersion for time series volatility as 
the critical variable in the derivation of investors’ 
optimal portfolio weights and active expected 
returns. Under the simplified covariance matrix 
used in this paper, the active management equa-
tions retain their simple and intuitive forms, how-
ever, which allows us to illustrate how developing 
a better understanding of cross-sectional disper-
sion and its drivers can improve active managers’ 
performance. Our major findings and conclusions 
include: 

♦ The cross-sectional dispersion of returns ( C Sσ ) 
has two main drivers. Dispersion is positively 
related to the average volatility of individual se-
curities (σ ) and negatively related to securities’ 
average correlation ( ρ ). Understanding the dif-
ferential effect of σ  and ρ  upon C Sσ  has sig-
nificant implications for active portfolio man-
agement. 
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♦ Active portfolio returns are a function of man-
agers’ skill (information coefficients) and cross-
sectional dispersion, with realized dispersion 
acting as a leverage factor for a manager’s real-
ized skill. Active returns will be higher (lower) 
than expected whenever realized dispersion is 
higher (lower) than expected. 

♦ Our analysis shows that all active managers will 
be averse to cross-sectional risk, regardless of 
their level of skill. Holding risk aversion con-
stant, managers will tend to reduce their active 
portfolio weights as the cross-sectional disper-
sion of returns increases.  

♦ Portfolio tracking error is shown to be linear in 
cross-sectional dispersion, which implies that 
unexpected changes in dispersion will result in 
unexpected changes in tracking error. Accurate 
forecasts of cross-sectional dispersion are, there-
fore, necessary for a manager to ensure that re-
alized tracking error conforms with expected 
tracking error. 

♦ Our results are consistent with the Fundamental 
Law of Active Management. We find that when 
cross-sectional dispersion rises (falls), the in-
crease (decrease) in portfolio expected return 
will be proportional to the increase (decrease) in 
tracking error. Higher dispersion periods repre-
sent opportunities to earn higher active returns, 
but managers’ information ratios are expected to 
remain unchanged. 

The paper’s exposition will proceed as follows. In 
the next section we introduce our theoretical frame-
work. In the following two sections we illustrate key 
similarities between the results of time series-based 
MPT and our cross sectional-based model, begin-
ning with an example of portfolio diversification, 
and next showing how the key drivers of dispersion 
(σ  and ρ ) affect the total, systematic, and indio-
syncratic risk of a portfolio. In the final section we 
show that cross-sectional dispersion is a fundamen-
tal variable affecting active managers’ choice of 
portfolio weights and their forecasts of expected 
returns, and illustrate dispersion’s effect on the 
management of portfolio tracking error and the in-
formation ratios managers are able to achieve. 

1. Initial perspectives: cross-sectional dispersion 
in theory and practice 

This section provides introductory perspectives on 
the cross-sectional dispersion of returns. It is impor-
tant to bear in mind that our analysis proceeds from 
the view that to active investors, return dispersion is 
more relevant as a measure of risk than time series 
volatility, the risk metric usually featured in the 
theoretical MPT and APM frameworks. We propose 

that understanding the drivers of cross-sectional 
dispersion and the inherent parallels between time 
series- and cross sectional-based portfolio manage-
ment models can enhance performance because 
active investors are essentially forecasting the dis-
tribution of the cross-section of returns whenever 
they attempt to identify future winners and losers. 

We begin by considering the structure of one of the 
primary inputs into the portfolio construction proc-
ess in Modern Portfolio Theory, the variance-
covariance (VCV) matrix of stock returns. Gener-
ally, the VCV matrix is represented by an N N×  
matrix, where N represents the total number of 
securities in the market. Diagonal elements of the 
VCV matrix can assume different non-negative 
values, representing the time series variances for 
each security, while the off-diagonal elements rep-
resent the covariances between the returns of vari-
ous pairs of assets. When a VCV matrix is unre-
stricted in its structural form, analytical results are 
often complex and difficult to interpret, however. 
Therefore, in the interest of tractability and intui-
tion, our analysis employs a simplified VCV ma-
trix of stock returns. Specifically, we assume that 
the VCV matrix is described by the two-parameter 
matrix1: 

( ) ,111 22 ′+−=Ω ρσρσ I      (1) 

where σ  is the average time series volatility of 
individual stocks, ρ  is the average stock-by-stock 
correlation, 1 is an 1N ×  vector of ones, and I  is 
the N N×  identity matrix. The VCV matrix Ω  is 
required to be positive semi-definite, which can 
be achieved by assuming 0 1ρ≤ < . Additionally, 
Ω  has the property that all stocks have a variance 
equal to 2σ  and a covariance with all other assets 
equal to 2ρσ .  

Formally, cross-sectional dispersion equals the 
cross-sectional standard deviation of returns (i.e., 
the standard deviation of returns measured across 
all stocks on a particular day or month), which takes 
an intuitive form under the VCV matrix in equation 
(1). As shown in the Appendix, under Ω , return 
dispersion ( C Sσ ) equals: 

1CSσ σ ρ= − .                  (2) 

Equation (2) shows that cross-sectional dispersion is 
a function of two time series-based parameters: the 

                                                      
1 The variance-covariance matrix and our other modeling assumptions 
are the same used in recent research such as Buckle (2004) and Clarke, 
de Silva, Sapra and Thorley (2008). 
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average level of individual securities’ time series 
volatility, as measured by σ , and the average corre-
lation between securities, as measured by ρ . More-
over, dispersion is positively related to volatility 
(σ ) and inversely related to the correlation of secu-
rity returns ( ρ ), ceteris paribus. The differential 
effect of σ  and ρ  upon C Sσ  has significant impli-
cations for active portfolio management.   

For example, consider periods characterized by 
dramatic increases in both time series volatility and 
asset return correlations. Although investors often 
take for granted that higher volatility increases the 
payoff to active management as the spread between 
high- and low-performing stocks widens, and that 
they just need to identify which stocks will be win-
ners and which will be losers, the above analysis 
shows that tactically adjusting portfolios towards 
more aggressive positions based on an increase in 
time series volatility alone only considers half of the 
story. Without also assessing how the mean correla-
tion amongst assets may be simultaneously chang-
ing, active investors will be unaware that conditions 
for identifying future winners and losers may have 
become more difficult, despite a higher-volatility 
environment. If correlations “explode” (approach 
1.0), return dispersion can decline as asset returns 
become increasingly similar, even though volatility 
may be increasing at the same time. The cross-
sectional dispersion of returns can decline under 
these circumstances, which decreases the expected 
payoff to active portfolio management. With lower 
dispersion, active management (tilting portfolio 
weights toward or away from their inherent index 
weights) provides diminished value because inves-
tors’ relative performance will be only negligibly 
different from their benchmarks. Only absolute re-
turn investors who are able to forecast the broad 
market’s general short-term direction will have an 
opportunity to outperform. In a low-dispersion envi-
ronment, relative return investors who fail to recog-
nize the dynamics behind the resulting reduction in 
the value of active management may be disap-
pointed with – and perhaps baffled by – their per-
formance ex-post. Equation (2) provides the gate-
way for understanding how the expected benefits of 
active management change over time with the driv-
ers of cross-sectional dispersion σ  and ρ . 

2. Portfolio diversification and systematic and 
idiosyncratic risk from the cross-sectional 
perspective 

In this section and the one that follows, we further 
develop our analysis by illustrating parallels be-
tween time series- and cross sectional-based depic-

tions of portfolio diversification and systematic and 
idiosyncratic risk. We provide additional examples 
of how appreciating both frameworks can enhance a 
portfolio manager’s understanding and performance. 
This section will focus on how a manager’s choice 
of the number of stocks held in a portfolio (n) af-
fects portfolio risk, while the next section will focus 
on the effects of the drivers of cross-sectional dis-
persion – average stock volatility (σ ) and return 
correlations ( ρ ) – on the relevant measures of risk. 

As shown in the Appendix, for the VCV matrix 
specified in equation (1), the time series (total) risk 
of any n -asset portfolio can be expressed as:  

( ) ,1222
PPP ww′−+= ρσρσσ      (3) 

where 2
Pσ  is portfolio volatility and Pw  is an 1n ×  

vector of portfolio weights that sum to one1. For 
example, in the case of an equally-weighted portfo-
lio of size n , the total risk (variance of returns) of a 
portfolio equals:  

( )2
2 2 1
P n

σ ρ
σ ρσ

−
= + .                                       (4) 

Substituting from Equation (2), which expresses 
dispersion as ( )2 1σ ρ− , the volatility of an 
equally-weighted portfolio equals:  

2
2 2 CS
P n

σσ ρσ= + .                                                 (5) 

Equation (5) shows our first key result: the total risk 
of any equally-weighted portfolio (usually depicted 
as a time series-based metric) can also be expressed 
as a function of the cross-sectional dispersion of 
returns and its drivers σ  and ρ . The limiting cases 
of Equation (5) are:  

1. The equally-weighted market portfolio comprised 
of all N  assets in the market ( n N= ).  

2. The single asset ( 1n = ) case. 

In these two cases total risk is expressed, respec-
tively, as: 

2
2 2 CS
p n N N

σσ ρσ
=

= + ,                                       (6) 

and  
2 2 2

1p CSn
σ ρσ σ

=
= + .                                          (7) 

                                                      
1 The total number of assets in the market is assumed to be N, and hence 
1 ≤ n ≤ N for any equally-weighted portfolio of size n. 
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In order to partition total risk into its systematic and 
idiosyncratic components, we express the relation 
between total, systematic and idiosyncratic risk for 
any n -asset portfolio as1: 

,222222
eMeMP σσσσβσ +=+=      (8) 

where β  represents the portfolio’s market beta 
(which will be equal to 1.0 under the VCV matrix 
depicted by equation (1)) and 2

eσ  is the portfolio’s 
idiosyncratic risk. Substituting equation (6) (the 
variance of the market portfolio) into equation (8) 
allows us to decompose portfolio variance into its 
systematic and idiosyncratic components, where 
both are functions of the parameters σ  and ρ : 

2
2 2 2CS
P eN

σσ ρσ σ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

.                                     (9) 

Equation (9) shows that the systematic risk of a 
portfolio ( PSR ) of any size n  (1 n N≤ ≤ ) can be 
expressed as: 

2
2 CS

PSR
N
σρσ= + .                                             (10) 

Equations (9) and (10) also show that the systematic 
risk of a portfolio is independent of portfolio size, n  
(recall that the denominator in the second term, N  
is the total number of assets available for investment 
in the market, which is usually different than the 
number of assets in the portfolio, n). Equations (9) 
and (10), therefore, demonstrate, from a cross-
sectional perspective, a familiar principle of time 
series-based MPT: systematic risk is unaffected 
by diversification2. Since the systematic risk of a 
portfolio is invariant to changes in portfolio size, 
any reduction in total risk due to diversification 
occurs entirely via the idiosyncratic component of 
portfolio risk. 

Additional insights into the relation between idio-
syncratic risk and cross-sectional dispersion can be 
obtained by directly comparing equations (9) and 
(10). Specifically, for any n -asset portfolio we have 

,2
2

2
2

22
e

CSCS
P Nn

σσρσσρσσ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=           (11) 

                                                      
1 Idiosyncratic risk is also commonly referred to as active risk and 
tracking error, especially amongst active, relative return-focused inves-
tors. At present, we use the more general term idiosyncratic risk. Later 
in the analysis, when discussing active investing, we employ the term 
active risk. 
2 However, this does not imply that systematic risk is a constant. As 

, ,CSσ σ  or ρ change, systematic risk can change as well. 

which implies 

2 2 1 1
e CS n N

σ σ ⎡ ⎤= −⎢ ⎥⎣ ⎦
.                                          (12) 

Equation (12) expresses our next important result: 
the idiosyncratic risk of a portfolio can be expressed 
solely as a scaled version of cross-sectional disper-
sion. Note how, analogous to the results of time 
series-based MPT, the magnitude of this cross sec-
tional-based expression for idiosyncratic risk de-
creases as portfolio size (n) increases. The impact of 
individual asset idiosyncratic (cross-sectional) risk 
is, therefore, diversified away as n  increases. More-
over, because idiosyncratic risk need to be neither 
measured nor viewed from the more traditional time 
series-based framework, the risk diversification 
tenets of Modern Portfolio Theory can be inter-
preted from either a pure time series or cross-
sectional perspective. From a time series perspec-
tive, diversification reduces the idiosyncratic risk of 
a portfolio by lowering the net effect of the con-
stituent assets’ idiosyncratic risk. From a cross-
sectional perspective, diversification reduces cross-
sectional dispersion’s contribution to idiosyncratic 
risk, which also has a practical interpretation: when 
active investors increase the number of stocks in a 
portfolio they are diversifying away the risk of mis-
identifying future winners and losers.  

Further insights into cross-sectional dispersion’s 
contribution to total, systematic and idiosyncratic 
risk can be obtained by considering the cases when 

1n =  and n N= . For the single asset case ( 1n = ), 
equation (12) shows that individual asset idiosyn-
cratic risk is virtually equivalent to cross-sectional 
dispersion, since as N becomes large, 1/ N  be-
comes very small3. In the limiting case, as n  ap-
proaches N , idiosyncratic risk is reduced to zero, 
which is equivalent to saying that the impact of 
cross-sectional dispersion on idiosyncratic risk is 
completely diversified away.  

As shown in equation (10), systematic risk also de-
pends on cross-sectional dispersion. Therefore, total 
risk will always contain some exposure to cross-
sectional dispersion, even for fully-diversified port-
folios. For reasonable values of ρ  (0.20 to 0.40), 
σ  (0.30 to 0.70), and N  > 100, however, the effect 
of cross-sectional dispersion on systematic risk will 
be negligible. For example, using the inputs ρ  = 
0.3, σ = 0.5 and 500N = , systematic variance (per 

                                                      
3 In fact, for a large number of assets in the market ( )N →∞ , cross-

sectional dispersion is equivalent to individual asset (n = 1) idiosyn-
cratic risk. 
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equation (10)) is equal to 0.0754. In this case, the 
term involving cross-sectional variance equals 
0.0004, which comprises less than 1% of systematic 
risk. Therefore, while cross-sectional risk always 
has some effect on systematic risk, the majority of 
dispersion’s impact on total risk occurs via the idio-
syncratic component, not the systematic component. 
Diversification reduces cross-sectional dispersion’s 
effect on total risk to negligible levels. 

3. How the drivers of cross-sectional dispersion 
affect total and idiosyncratic risk 

The analysis presented in this section will show that 
changes in the key drivers of cross-sectional dis-
persion 2σ  and ρ  will affect total, idiosyncratic 
and cross-sectional risk, but not necessarily in 
similar ways. Equation (5) shows that we can ex-
press the total risk of any equally-weighted portfo-
lio of size n  as: 

( )2
2 2 1
P n

σ ρ
σ ρσ

−
= + .                                   (13) 

From equation (2), we know:  

( )2 2 1CSσ σ ρ= − .                                                (14) 

After substituting equation (14) into equation (12), 
the idiosyncratic risk of an equally-weighted portfo-
lio of size n  can be expressed as 

( )2 2 1 11e n N
σ σ ρ ⎡ ⎤= − −⎢ ⎥⎣ ⎦

.                                (15) 

Equations (13), (14), and (15) show that all three 
primary risk measures (total, cross sectional, and 
idiosyncratic) can be expressed in terms of the 
model parameters 2σ  and ρ .  

We examine how changes in either 2σ  or ρ  affect 
the three risk measures by taking the partial deriva-
tive of each expression. With three risk measures 
and two input variables, a total of six partial deriva-
tives are of interest. We, therefore, compute partial 
derivatives for total risk: 

2

2

1 0P

n
σ ρρ
σ
∂ −

= + >
∂

,                                      (16) 

2
2 11 0P

n
σ σ
ρ

∂ ⎡ ⎤= − ≥⎢ ⎥∂ ⎣ ⎦
,                                       (17) 

idiosyncratic risk: 

( )
2

2

1 11 0e

n N
σ ρ
σ
∂ ⎡ ⎤= − − ≥⎢ ⎥∂ ⎣ ⎦

,                              (18) 

2
2 1 1 0e

n N
σ σ
ρ

∂ ⎡ ⎤= − − ≤⎢ ⎥∂ ⎣ ⎦
,                                 (19) 

and cross-sectional risk: 

( )
2

2 1 0CSσ ρ
σ

∂
= − >

∂
,                                           (20) 

2
2 0CSσ σ

ρ
∂

= − <
∂

.                                               (21) 

In Table 1 we report the magnitude and direction of 
the impact for reasonable levels of 2σ , ρ , n  and 
N : 2σ  = (0.5)2 = 0.25 (50% annualized volatility 
for a typical stock), ρ  = 0.30, n  = 100, and N  = 
1000. For these input values, the partial derivative 
values are: 

Table 1. The drivers of dispersion and portfolio risk 
Risk  

measure: 
VCV Input: 

2
Pσ∂  2

eσ∂  2
CSσ∂  

2σ∂  0.3070 0.0063 0.7000 

ρ∂  0.2475 −0.0023 −0.2500 

Notes: The impact of changes in 2σ  and ρ  on total, idiosyn-
cratic and cross-sectional risk, as measured by partial deriva-

tives. The derivatives are evaluated for values of 2σ = 0.25, 

ρ = 0.30, n  = 100 and N  = 1000. 

As shown in Table 1 and Equations (16) through 
(21), the parameters that drive cross-sectional dis-
persion − 2σ  and ρ  − make distinctly different 
contributions to each measure of risk. While all 
three measures of risk are positively related to the 
average level of time series variance, 2σ , this is not 
the case for ρ . Total risk is positively related toρ , 
but idiosyncratic risk and cross-sectional dispersion 
are negatively related to ρ . Total risk rises with ρ  
because as asset correlations rise, the positive im-
pact upon the systematic component of total risk 

( )2
2 1

N
σ ρ

ρσ
−

+  is larger in magnitude than the 

negative impact upon the idiosyncratic component 

of total risk ( )2 1 11
n N

σ ρ ⎡ ⎤− −⎢ ⎥⎣ ⎦
, which leads to a 

net overall increase in total risk. Conversely, idio-
syncratic risk declines as correlations rise because 
an increase in ρ  compresses cross-sectional disper-
sion (per equation (2)) and, in our model, the idio-
syncratic risk of a portfolio is simply a scaled meas-
ure of dispersion (per equations (12) and (15)). In-
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tuitively, as stocks become increasingly correlated 
(or, equivalently, as cross-sectional dispersion de-
clines), the risk of misidentifying high- and low-
performing stocks also declines. The net result is that a 
rise in the correlation among securities reduces a port-
folio’s idiosyncratic risk, ceteris paribus. 

The impact of dispersion on idiosyncratic and total 
risk can be further understood by noting that the 
directional impacts (signs) of the partial derivatives 
are the same for both idiosyncratic risk and cross-
sectional risk, but the values in Table 1 differ by 
approximately two orders of magnitude, i.e., by 
approximately 100. This occurs due to interaction 
with the number of securities in the portfolio (n), the 
factor analyzed in the previous section. Equations 
(12) and (15) show that the link between cross-
sectional risk and idiosyncratic risk depends only on 
N  and n , and not on 2σ  or ρ . The approximate 
two orders of magnitude difference is explained by 

the factor ⎟
⎠
⎞

⎜
⎝
⎛ −

Nn
11

, which equals 0.009 with N = 

1000 and n = 100, with an inverse of 111.11. We see 
that as the number of securities in a portfolio rises, 
cross-sectional dispersion’s effect on a portfolio’s 
idiosyncratic risk component decreases, since as 
noted earlier, dispersion represents the diversifiable 
component of returns. 

The above result is intuitively comparable with time 
series-based MPT as well. In both frameworks, 
holding a more diversified portfolio (increasing n) 
lowers idiosyncratic risk, and for portfolios consist-
ing of all of the stocks in the benchmark (N), idio-
syncratic risk equals zero (i.e., the case of an index 
fund). Larger portfolios will always diversify away 
a greater amount of cross-sectional dispersion, ce-
teris paribus. And, the more cross-sectional disper-
sion is diversified away, the less changes in cross-
sectional dispersion can affect idiosyncratic (and 
total) risk. 

4. Cross-sectional dispersion and active portfolio 
management 

In the previous sections we showed that: 1) total, 
systematic and idiosyncratic risk are positively re-
lated to cross-sectional dispersion; 2) cross-sectional 
dispersion primarily affects the idiosyncratic com-
ponent of portfolio risk; and 3) in the limit, as n → N, 
the effect of cross-sectional dispersion on the idio-
syncratic component of total risk is completely di-

                                                      
1 This can also be seen by comparing Equations 18 and 20 and equations 

(19) and (21), each of which differ by the factor ⎟
⎠
⎞

⎜
⎝
⎛ −

Nn
11 . 

versified away2. We next focus on the role of cross-
sectional dispersion in active portfolio management, 
where investors attempt to outperform a benchmark 
such as the Russell 1000. Specifically, we derive 
investors’ vectors of optimal active portfolio 
weights and benchmark-relative expected returns in 
the context of a cross sectional-based active man-
agement framework. 

The essence of active investing involves construct-
ing portfolios with position weights that differ 
from the benchmark weights, which induces 
tracking error3. Of course, investors employ ac-
tive position weightings with the expectation that 
they will subsequently be compensated with posi-
tive benchmark-relative returns. More formally, 
active investors are assumed to solve the follow-
ing optimization problem to determine their vec-
tor of active holdings: 

( ) ,
2

0
max AAAw wwarEwU

A
Ω′−′=   (22) 

where ( )E r  is a mean-zero 1n ×  vector of bench-

mark-relative expected returns, oa  is the manager’s 
coefficient of absolute risk aversion, Ω  is the vari-
ance-covariance matrix given by equation (1), and 

Aw  is an 1n ×  vector of active weights that repre-
sent the difference between the weight in the man-
ager’s portfolio and the weight in the benchmark 
index. By definition, tracking error, 2

Aσ , is equal to 

'A Aw wΩ . In the Appendix we show that tracking 
error can also be expressed in terms of cross-
sectional risk and active weights: 

2 2
A C S A Aw wσ σ ′= .                                                   (23) 

Making this substitution into equation (22) and 
maximizing with respect to Aw  yields the vector of 
optimal weights, as given by4: 

( )*
2A

o CS

E r
w

a σ
= .                                                      (24) 

                                                      
2 See equations (10) and (12). 
3 In the context of active portfolio management, idiosyncratic risk 
relative to a benchmark index is typically referred to as tracking error. 
The two are equivalent when the benchmark index is the entire market, 
and the beta of the portfolio equals one.  From here on we will use the 
terminology tracking error when discussing active management versus 
an equally-weighted benchmark index of size n. 
4 The solution to equation (22) is also shown in Clarke et al. (2008) as 

( )
( )2 1o

E r
w

a σ ρ
=

−
. With the substitution ( )2 2 1CSσ σ ρ= − , the two 

expressions are equivalent. 
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Notice that, thus far, we have made no assumptions 
regarding the nature of the relative expected return 
vector, ( )E r . Following Grinold (1994), Clarke, de 
Silva and Thorley (2006) show that an appropriate 
formulation for ( )E r  is given by: 

( ) ,2/1 zVICrE ⋅⋅=      (25) 

where V  is an n n×  general VCV matrix of asset 
returns, IC  (the information coefficient) is the as-
sumed correlation between expected returns and 
actual returns (a measure of manager skill), and z  is 
a mean-zero 1n ×  vector of information, assumed to 
distributed as ~ (0,1)N , that reflects a manager’s 
opinion on the relative attractiveness of securities. 
Under equation (1), V = Ω , and thus: 

( ) 1 2E r IC z= ⋅Ω ⋅ .                                             (26) 

In the Appendix, it is shown that equation (26) is 
equivalent to: 

( ) CSE r IC zσ= ⋅ ⋅ .                                            (27) 

The intuition behind equation (27) is as follows. For 
a given level of skill (IC), the magnitude of a man-
ager's expected returns will rise as cross-sectional 
dispersion increases. In the limiting case, when 
cross-sectional dispersion is equal to zero ( 1ρ =  or 

0σ = ), the expected return vector will consist only 
of zeros, since there is no cross-sectional difference 
amongst security returns. In this case there is no 
opportunity to add value, and thus, no role for 
active management, because it is not possible to 
earn returns that differ from the benchmark. The 
potential for active management to add value is, 
therefore, positively related to the level of cross-
sectional dispersion. 

Using the expression for expected returns given by 
equation (27), we can re-write the vector of optimal 
weights (equation (24)) as: 

*
A

o CS

ICw z
a σ

= .                                                  (28) 

Equation (28) shows that managers with higher lev-
els of skill (IC) will optimally hold portfolios with 
larger active weights than managers with lower lev-
els of skill. Further note that all managers, regard-
less of their levels of skill, are averse to cross-
sectional risk, however. Given their personal level 
of risk aversion oα , managers will tend to reduce 
their active weights as the level of cross-sectional 
dispersion increases.  

The result that investors are averse to cross-
sectional risk (depicted by the denominator of equa-
tion (28)) may appear counterintuitive at first. After 
all, dispersion drives the value of active investing, 
which might lead one to surmise that greater disper-
sion would lead to larger active weights, as manag-
ers attempt to “cash in” on the opportunity set pro-
vided by a higher dispersion environment. Because 
equation (28) is the result of maximizing expected 
returns net of tracking error variance, however, 
when dispersion increases, there is a trade-off be-
tween increasing utility via higher portfolio ex-

pected returns ( A CSw IC zσ′ ⋅ ⋅ ⋅ ) and decreasing 
utility via higher tracking error variance 

( 20.5 o CS A Aa w wσ ′⋅ ⋅ ⋅ ). Dispersion, therefore, af-
fects utility from different directions, with the net 
result being that the vector of optimal weights de-
clines in magnitude as dispersion increases. 

In practice, it is more common for active investors 
to optimize portfolios subject to a specific tracking 
error constraint than as a function of investors’ 
(largely unobservable) risk aversion level. In the 
Appendix we show that equation (28) can be re-
written so that a manager’s vector of active 
weights is a function of the desired level of track-
ing error1:  

* A
A

CS

w z
n

σ
σ

= .                                                  (29) 

Equation (29) allows us to directly relate our cross-
sectional framework to a key result of the theory of 
Active Portfolio Management. Substituting equa-
tions (27) and (29) into ( )Aw E r′  results in the well-
known Fundamental Law of Active Management 
(Grinold, 1989): 

( )
A

E r
IC n

σ
= .                                                   (30) 

The left-hand-side of equation (30) is commonly 
referred to as the information ratio, and is equal to 
IC  times the square root of n  (the number of ac-
tive positions in a portfolio, or “breadth”)2. Intui-
tively, the Fundamental Law results because the 
information ratio is invariant to cross-sectional dis-

                                                      
1 The link between equations (29) and (28) implies that the optimal level 
of tracking error depends upon skill (IC), breadth (n) and risk aversion 
(α0), such that 1

A oa IC nσ −= . 
2 Although the variable n is commonly referred to in the literature as 
“the number of independent bets,” our results show that stock returns do not 
need to be independent in order for the fundamental law to hold. In our 
model stocks are correlated by ρ, yet the fundamental law still results. 
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persion − when dispersion rises (falls), the increase 
(decrease) in portfolio expected return is propor-
tional to the increase (decrease) in tracking error, 
thus leaving a manager’s information ratio un-
changed. This result is driven by equations (27) and 
(29), which show that both expected returns and 
portfolio allocations scale directly with cross-
sectional dispersion.  

Equation (29) shows that a portfolio’s active posi-
tion weights depend on a manager’s estimates of the 
critical model inputs CSσ  (return dispersion) and 
IC  (skill), which in practice will be subject to error. 
Next we illustrate how realized values of both active 
returns and tracking error (the numerator and de-
nominator, respectively, of the information ratio) 
also depend on realized values of dispersion and 
skill. In the Appendix we derive an expression relat-
ing a manager’s realized tracking error to expected 
tracking error:  

( ) ( )
CS

A A
CS

E
E
σσ σ
σ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                                     (31) 

Equation (31) shows that realized tracking error 
( Aσ ) is linearly related to realized dispersion, and 
that tracking error will be higher or lower than ex-
pectations whenever realized dispersion is higher or 
lower than expectations. In practical terms, equation 
(31) shows that when markets are characterized by 
unexpected positive (negative) shocks to cross-
sectional dispersion, such as those that occur prior 
to an economic recession, a rise (decline) in realized 
tracking error will result (see Gorman, Sapra and 
Weigand (2010) for empirical evidence). Accurate 
forecasts of cross-sectional dispersion are, therefore, 
necessary for a manager to ensure that realized 
tracking error is consistent with expectations. 

Equation (31) provides insight into the relation be-
tween the denominator of the information ratio, Aσ , 
and realized cross-sectional dispersion. Not surpris-
ingly, the numerator of the information ratio, the 
portfolio’s expected active return, is also dependent 
upon realized and expected values of C Sσ , as well 
as the key input variables IC  and z . Recall that the 
vector z  describes a manager’s relative opinion on 
the cross-section of returns, and is assumed to be 
distributed as a standard normal variable. The rela-
tion between opinions z, and realized benchmark 
relative returns r, can be measured as: 

,ˆˆˆ ezar ++= γ       (32) 

where r  is the 1n ×  realized return vector, z  is the 
1n ×  analyst opinion vector, and â  is a mean-zero 

vector of residuals. In this context, λ̂  is the product 
of the manager’s realized IC and realized cross-
sectional dispersion1.  

In order to better understand how equation (32) 
relates to portfolio performance, note that a portfo-
lio’s realized active return rA is equal to the product 
of active portfolio weights Aw , and realized returns, 

*
A Ar w r′= , where *

Aw  and r  are given by equations 
(29) and (32), respectively. In the Appendix we use 
this relation to show that a manager’s realized active 
return is given by: 

( ) ( )
CS

A A
CS

r E IC n
E
σσ
σ

= .                              (33) 

Similar to equation (31), equation (33) reveals that 
active portfolio returns are a function of realized 
IC  and realized cross-sectional dispersion. Further 
note that the last term in equation (33) − the ratio of 
realized to expected dispersion – acts as “leverage” 
for a manager’s realized skill. When skill is positive, 
higher (lower) dispersion results in higher (lower) 
realized returns. Conversely, if a high dispersion 
environment manifests when a manager experiences 
a negative IC, portfolio performance will be signifi-
cantly negative. Therefore, realized cross-sectional 
dispersion magnifies a manager’s realized skill, 
causing active returns to be higher (lower) than ex-
pectations when realized dispersion is higher 
(lower) than expectations. Actual returns and ex-
pected returns will be equal only when actual and 
expected dispersion are equal ( )( )CS CSEσ σ=  and 

actual skill equals expected skill ( )( )IC E IC= . 

The previous two sections analyzed the role of 
cross-sectional dispersion in managing portfolio 
risk. In this section we illustrated dispersion’s role 
as a fundamental variable driving the performance 
of active portfolios. Unexpected shocks to cross-
sectional dispersion have direct implications for a 
manager’s tracking error and active returns. For 
example, when dispersion becomes unexpectedly 
elevated, one would expect to observe an increase in 
the tracking error of active managers. Cross-
sectional dispersion is also directly related to the 
magnitude of active portfolio returns. Holding IC  
fixed, active returns are linear in cross-sectional 

                                                      
1 Note that the regression coefficient can be expressed as 

,ˆ CSr
z

ICIC σσ
σ

γ ×==  since 1zσ =  and r CSσ σ= . The second 

equality is due to the fact that equation (32) is a cross-sectional regres-
sion, and thus, the standard deviation of r is equal to the cross-sectional 
dispersion of returns. 
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dispersion: when dispersion is high (low), active 
returns will similarly be high (low). Finally, we find 
that because both tracking error and active returns 
are linear in cross-sectional dispersion, shocks to 
cross-sectional dispersion do not affect managers’ 
information ratios. This occurs because dispersion 
shocks result in a change in tracking error that is 
proportional to the change in active return. 

Conclusions 

We derive and interpret the key results of Modern 
Portfolio Theory and the Theory of Active Portfolio 
Management starting from the perspective that, for 
active investors, the cross-sectional dispersion of 
returns is more relevant as a measure of risk than 
time series volatility. Our analysis demonstrates 
how developing a better understanding of the role of 
cross-sectional dispersion in active management can 
enhance managers’ performance.  

We find that cross-sectional dispersion is driven by 
two time-series based parameters: the average level 
of time-series volatility of individual securities (σ ) 
and the average correlation between securities (ρ ). 
Because return dispersion is positively related to σ  
but inversely related to ρ , however, it is important for 
active investors to remain aware of how both of these 
underlying variables may be changing as they forecast 
their high- and low-conviction stock selections and the 
weightings they will assign to these securities.  

Interpreting portfolio diversification from a cross-
sectional perspective, we find that all key measures of 
risk (total, systematic and idiosyncratic risk) are posi-
tively related to dispersion, and that cross-sectional 

dispersion primarily affects the idiosyncratic com-
ponent of portfolio risk. We show that active portfo-
lio returns are a function of managers’ skill and 
cross-sectional dispersion, and that realized cross-
sectional dispersion serves as a leverage factor for a 
manager’s realized skill. Active returns will, there-
fore, be higher or lower than expected whenever 
realized dispersion is higher or lower than expected. 
Regardless of their level of skill, however, all active 
managers will be averse to cross-sectional risk. 
Holding risk aversion constant, managers will tend 
to reduce their active weights as return dispersion 
increases.  

Portfolio tracking error is also shown to be directly 
related to cross-sectional dispersion, which implies 
that unexpected changes in dispersion will result in 
unexpected changes in tracking error. Accurate 
forecasts of cross-sectional dispersion are, therefore, 
necessary for a manager to ensure that realized 
tracking error conforms with expectations. 

Because active returns and portfolio tracking error 
are both linearly related to cross-sectional disper-
sion, the results of our model are consistent with 
the well-known Fundamental Law of Active Man-
agement. Changes in cross-sectional dispersion 
represent opportunities to earn higher active re-
turns, but managers’ information ratios are ex-
pected to remain unchanged, as realized tracking 
error is expected to be proportional to managers’ 
active returns. Therefore, absolute return inves-
tors are more likely to benefit from tactically ad-
justing the activeness of their strategies with the 
level of return dispersion. 
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Appendix 

1. Proof of equation (2) 

Assume that stock returns are distributed as ~ (0, )r N Ω , where Ω  is given by equation (1). Thus, the return vector 

r, can be expressed as 1 2r z= Ω , where z  is an 1N ×  vector of standard normal z-scores. Let a  represent the di-

agonal term of 1 2Ω  and let b  represent the off-diagonal elements of 1 2Ω . Since 1 2 1 2Ω Ω = Ω , then a  and b  
solve the following two equations: 
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( )2 2 21a N b σ+ − = ,                                                                                                                                                  (34) 

( ) 2 22 2N b ab ρσ− + = .                                                                                                                                           (35) 

Subtracting equations (35) from (34) yields ( ) ( )2 2 1a b σ ρ− = − . Using the formula for the population variance 

( ) ( )21
ii

V r N r−= ∑  and the zero mean property of standard normal z-scores, we have 

( ) ( )( ) ( )2 21 1
1 2 1 1... ...i i i n i ii i

V r N az b z z z z z N az bz− −
− += + + + + + + + = −∑ ∑ .  Using the property 

( )2 1E z = , this can be written as ( ) ( ) ( )2 2 1V r a b σ ρ= − = − . Taking the square root yields the cross-sectional 

standard deviation of r , 1CSσ σ ρ= − .  

2. Proof of equations (4) and (5) 

We first prove equation (4) for a general vector of portfolio weights and then substitute the equally-weighted portfolio 

into the solution. The variance of a portfolio is given by ,PP ww Ω′  where pw  is an 1nx  vector of total portfolio 

weights and Ω  is given by equation (1). Since the vector of portfolio weights sum to one, 

( )( ) ( )( ) ( )( )2 2 2 2
1 1 2 21 1 ... 1P P N Nw w w w w w w wσ ρ ρ ρ ρ ρ ρ′ ⎡ ⎤Ω = − + + − + + + − +⎣ ⎦  and thus, 

( )2 2 2

1 1
1

n n

P P i i
i i

w w w wσ ρ ρσ
= =

′Ω = − +∑ ∑ .  

Expressing in vector notation, we have ( )2 2 1P P P Pw w w wρσ σ ρ′ ′Ω = + − , which proves equation (3). To arrive at 

equation (5), we simply need to substitute ( )11Pw n−= , where1 is an 1nx  vector of ones, which yields the result 

( ) ( )( )2 2 2 1 21 1P Pw w nρσ σ ρ ρσ σ ρ−′+ − = + − . 

3. Proof of equation (23) 

The definition of active variance is .ww AAA Ω′=2σ  Under the simplified covariance matrix of equation (1), active 

variance can be expressed as ( )2 2 2 2 2 2
, , ,1 1

1n n
A A i A i A ii i

w w wσ σ ρ σ ρ
= =
⎡ ⎤= − = −⎣ ⎦∑ ∑ , where we have used the prop-

erty that active weights are zero-mean. Taking the square root and using vector notation, active portfolio risk is 

( )1A A Aw wσ σ ρ ′= −  and using equation (2) this yields 2 2
A CS A A A CS A Aw w w wσ σ σ σ′ ′= ⇒ = . 

4. Proof of equation (27) 

By the same logic as in the proof of equation (2), the term 1 2 zΩ  can be expressed as ( ) ( )1a b z zσ ρ− = − . 

Thus, ( ) 1 2 1 CSE r IC z IC z IC zσ ρ σ= ⋅Ω ⋅ = ⋅ − ⋅ = ⋅ ⋅ .  

5. Proof of equation (29) 

From equations (24) and (27), [ ] ( ) [ ] .zICrEw CSCS
*
A ⋅== −− 1

0
12

0 σασα  From the definition of tracking error vari-

ance, equation (23), we have 1 1
A o oICa z z ICa nσ − −′= = . Solving this for oa  and substituting back into equation 

(24), we have *
2

CSA A
A

CS CS

ICw z z
IC n n

σσ σ
σ σ

⎡ ⎤⎡ ⎤= =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
.  

6. Proof of equation (31) 

Optimal weights are generated using (29), where we augment the random variables csσ  and Aσ  with the expectation 

operator ( )E  to denote the fact that optimal weights are based on ex-ante expected values of the relevant input vari-
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ables. Thus, equation (29) is written as 
( )

( )
* A
A

CS

E
w z

E n
σ

σ
= . A portfolio’s realized tracking error is calculated using 

equation (23), where both csσ  and Aσ  are considered realized values and, therefore, are not prefaced by the expecta-

tions operator. Substituting equation (29) into equation (23), and using the fact that [ ]E z z n′ = , we have 

 
( )
( )

( ) ( )
2

2 2
2

A CS
A CS A A

CSCS

E
z z E

EE n

σ σσ σ σ σ
σσ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ′ ⎢ ⎥= ⇒ =
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

7. Proof of equation (33) 

Realized portfolio active return is given by
( )

( )
* A

A A
CS

E
r w r z r

E n
σ

σ
′ ′= = , where r is given by .ˆˆˆ ezar ++= γ   

Let 
( )

( )
A

CS

E
a

E N
σ

σ
= . Thus, active return is given by .ˆˆ

1 1 1

2
⎥
⎦

⎤
⎢
⎣

⎡
++= ∑ ∑ ∑

= = =

n

i

n

i

n

i
iiiiA zezzaar γ  The first term in brack-

ets is zero by the zero-mean property of z-scores, the second term is equal to Nγ̂ since ( )2 1E z = , and the last term is 

zero by regression orthogonality. Substituting back for a  and noting that ,ˆ 1
CSrz ICIC σσσγ == −  we 

have ( ) ( )
CS

A A
CS

r E IC n
E
σσ
σ

= . 

 


