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Deviation from normality and Sharpe ratio behavior:  
a brief simulation study 
Abstract 

Sharpe ratio has been widely used in the portfolio management industry as well as fund industry (Robertson, 2001; 
Scholz and Wilkens, 2005). Users often forget the main core assumption describing the appropriateness of such a risk-
adjusted performance measure, namely asset return normality. This concern is of huge significance insofar as perform-
ance indicators drive the asset allocation policy, performance forecasts and cost of capital assessment among others 
(Farinelli et al., 2008; Lien, 2002; Christensen and Platen, 2007). We employ a brief simulation study to assess the 
impact of deviations from normality on the performance measures and rankings inferred from Sharpe ratio’s estimates. 
Our analysis allows for assessing the possible bias in both performance measurement and ranking, which results from the 
existence and the magnitude of skewness and kurtosis patterns in asset returns. This study proposes a method to extract an 
unbiased performance measure (i.e. unbiased Sharpe ratios) from observed classic Sharpe ratios after accounting for the 
returns’ skewness bias. The resulting unbiased Sharpe ratio outperforms its classic counterpart at the stock picking level. 

Keywords: asset return, distributional shocks, kurtosis, performance, Sharpe ratio, skewness. 
JEL Classification: C15, C16, G12. 
 

Introduction© 

There is a long debate about the way to soundly 
assess the performance of asset returns relative to 
the corresponding risk borne by investors. Formerly, 
classic performance measures were introduced so as 
to assess the investment’s reward relative to its risk. 
Under the general name of risk-adjusted perform-
ance measures, such performance indicators usually 
consider risk as the asset returns’ standard deviation or 
corresponding pairwise covariance (when considering 
the portfolio’s level). Sharpe (1964; 1994) introduced 
one version of risk-adjusted performance measure, 
where risk is represented by the returns’ standard 
deviation. Moreover, such framework relies strongly 
on the well-known mean-variance efficiency principle 
as well as returns’ Gaussian distribution assumption. 

As long as returns are Gaussian, any investment’s 
reward is conveniently described by its average 
return on the investment horizon under considera-
tion, whereas the corresponding risk is conveniently 
captured by returns’ standard deviation (i.e. vari-
ance). However, deviation from normality may gen-
erate a biased assessment of performance while 
applying Sharpe ratio. Unfortunately, real world 
often exhibits non-Gaussian returns (Eling, 2006; 
Madan and McPhail, 2000; Taleb, 2007) so as to 
emphasize skewness and kurtosis patterns (Black, 
2006; Eling and Schuhmacher, 2007; Harvey et al., 
2004; Harvey and Siddique, 2000; Ziemba, 2005). 
Despite its inappropriateness for non-Gaussian asset 
returns’ distribution, Eling and Schuhmacher (2007) 
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show nevertheless that Sharpe ratio yields the same 
ranking across hedge funds as other appropriate 
performance measures. But, the existence of at least 
one statistically significant outlier return is enough to 
bias upward or downward the obtained Sharpe ratio 
(Gatfaoui, 2009)1. Indeed, biases relative to the Sharpe 
ratio have been reported by academic and professional 
research (Hodges, 1998; Klemkosky, 1973; Spurgin, 
2001). Moreover, the general trend of the financial 
market (i.e. market cycle) drives the assessment qual-
ity of Sharpe performance measure (Scholz and 
Wilkens, 2005; Scholz, 2007; Sortino, 2004). 

In the lens of such a landscape, we attempt to char-
acterize the bias in Sharpe ratio, which may arise 
from deviations from Normality. For this prospect, 
we run a simulation study, where Gaussian simu-
lated returns are disturbed by shocks resulting from 
various non-Gaussian distribution functions. The 
inferred bias is assessed relative to its impact on the 
nature of the initially normally distributed returns, 
its impact on performance ranking and, finally, its link 
with the corresponding skewness and kurtosis of dis-
turbed returns. A fundamental Sharpe ratio (i.e. unbi-
ased Sharpe ratio) is also proposed as a performance 
measure, which is free of skewness bias. 

1. Data simulation and disturbances 

We introduce here our simulated data set as well as 
some corresponding empirical features. We start 
from a stable sample of Gaussian returns to which 
we apply more or less destabilizing shocks. 

                                                      
1 This author discusses the significance of asymmetry in asset returns 
through skewness and kurtosis features. A very brief simulation analysis 
attempts to quantify the bias of one outlier on Sharpe ratio estimates. 
The incurred bias depends on the investment horizon under considera-
tion, the data frequency and the magnitude of the outlier return’s devia-
tion from the average return level. 
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1.1. Gaussian data simulation. We consider daily 
data over a four-year investment horizon, namely 1008 
observations per series of data (i.e. four years of work-
ing days, where one year corresponds to 252 days). 
The length of the time horizon is supported by the 
minimum sample size ensuring consistent representa-
tions of specific probability distributions (i.e. statistical 

significance so as to avoid small sample biases). Over 
such an investment horizon, we simulate a series of 
twelve Gaussian returns, whose annual average values 
range from 3% to 7% whereas related standard devia-
tions range from 10% to 80% (see Table 1). This way, 
we can consider the significance of volatility across 
various average “historical” return levels. 

Table 1. Simulated Gaussian returns’ series 
Series name N3-10 N3-20 N3-50 N3-80 N5-10 N5-20 N5-50 N5-80 N7-10 N7-20 N7-50 N7-80 
Mean (%) 3 3 3 3 5 5 5 5 7 7 7 7 
Standard deviation (%) 10 20 50 80 10 20 50 80 10 20 50 80 

 

For our performance analysis prospect, we also 
simulate the risk free rate (i.e. interest rate bench-
mark) over the same time horizon. We simulate it as 
a generalized Brownian motion (i.e. diffusion proc-
ess) exhibiting a starting value of 3.5% on an annual 

basis, an annual trend coefficient of 3.5% and an 
annual diffusion coefficient (i.e. standard deviation) 
of 30% (see Figure 1 and Table 2). Basically, the 
diffusion coefficient represents the standard devia-
tion of daily return changes. 
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Fig. 1. Daily risk free rate simulation 

Table 2. Statistics of the daily simulated 
risk free rate r 

Mean (daily) 7.9915E-05 
Standard deviation (daily) 1.1818E-05 
Mean (yearly, %) 2.8770E+00 
Standard deviation (yearly, %) 2.2422E-02 
Median 7.8269E-05 
Skewness 8.8902E-01 
Excess kurtosis 7.3310E-01 
Minimum 5.8304E-05 
Maximum 1.1552E-04 
Range = Maximum − Minimum 5.7217E-05 

As a rough guide, we apply a classic performance 
measure to simulated returns, namely the Sharpe ratio 
(SR). The Sharpe index expresses as follows for any 
portfolio P: 
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arithmetic mean of the simulated risk free rate), and 
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PP RVars =  (i.e. unbiased estimator of the stan-
dard deviation or unbiased volatility of portfolio’s 
returns) over our studied investment horizon (i.e. for 
time t ∈ {1,…,1008}). Sharpe ratio measures the port-
folio’s market risk premium per unit of total risk (as 
measured by standard deviation). Diversified and un-
diversified portfolios are often assessed with such a 
risk-adjusted performance measure. Computing corre-
sponding Sharpe ratios allows for assessing the 
risk/reward profile of our simulated returns. Namely, 
checking for the consistency of the reward brought in 
by the returns relative to the risk borne allows for rank-
ing returns accordingly (i.e. performance ranking in-
ferred from risk-adjusted performance measures). We 
display in Table 3 the levels of the obtained Sharpe 
ratios and the inferred ranking (while ordering the 
estimated ratios from the highest to the lowest). 
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Table 3. Daily Sharpe ratios and related performance ranking 

Statistics N3-10 N3-20 N3-50 N3-80 N5-10 N5-20 N5-50 N5-80 N7-10 N7-20 N7-50 N7-80 
SR 0.0062 0.0031 0.0012 0.0008 0.0188 0.0094 0.0038 0.0024 0.0314 0.0157 0.0063 0.0039 
Ranking 6 9 11 12 2 4 8 10 1 3 5 7 

 

The best performing asset is the one whose return 
follows a Gaussian distribution with a 7% annual 
mean and a 10% annual standard deviation (i.e. 
highest average return and lowest standard deviation 
along with the mean-variance efficiency principle). 
The worst asset return follows a Gaussian distribu-
tion with a 3% annual mean and an 80% annual 
standard deviation (i.e. lowest average return and 
highest volatility). 

1.2. Simulating disturbances. We introduce now 
various types of shocks aimed at distorting the pre-
vious returns’ evolutions. Such distortions are ap-
plied both as positive shocks (i.e. returns’ increase) 
and as negative shocks (i.e. returns’ decrease) to the 
studied returns. Namely, we have: 

Distorted return at day t = Gaussian return at 
day t + [c × shock at day t],                             (2) 

Distorted return at day t = Gaussian return at 
day t – [c × shock at day t],                             (3) 

where c is a constant aimed at scaling the applied 
shock so as to maintain coherent return levels (i.e. 
neither too small nor too high values). This way, we 
can study the asymmetric response of returns to 
positive and negative shocks. The disturbances we 
consider follow different non-Gaussian probability 
distributions and are split into two categories. The 
first category refers to presumed homogeneous 
shocks so that they imply no structural change in 
terms of returns’ distributional properties. Differ-
ently, the second category refers to presumed1 in-
homogeneous shocks so as to deviate returns from 
their initial Gaussian property (see Table 4). The 
chosen disturbances are applied all as positive and 
negative shocks unless mentioned. 

Table 4. Simulated non-Gaussian disturbances 
Type Name Density Parameter 

values c 

Gamma f(x)=[ap/ Γ(p)] xp-1 exp{-ax}, 
x > 0, scale a > 0, shape p > 0 

a = 0.12 
p = 0.0055 1 

Log-normal f(x)=x-1 (2πσ2)-0.5 exp{-[ln(x)-µ]2/(2σ2)}, 
x > 0, σ > 0 

µ = -7.3 
σ = 0.01 1 
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Student f(x)= [(nπ)0.5 β(1/2,n/2)]-1 (1+x2/n)-(n+1)/2, 
x real, n positive integer n = 80 1/1000 

Log-normal f(x)=x-1 (2πσ2)-0.5 exp{-[ln(x)-µ]2/(2σ2)} , 
x > 0, σ > 0 

µ = -9 
σ = 2 1 

Poisson f(x)= λx exp(-λ)/x!, 
x positive integer, λ > 0 λ in [0,1]*** 1/250 

Log-logistic* f(x)= (β/α) (x/α)β-1 [1 + (x/α)β]-2, 
x ≥ 0, scale α > 0, shape β > 0 

α = 1.1792 
β = 99.7306 d/100 
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Weibull** f(x)=(α/β) [x/β]α-1 exp{-[x/β]α}, 
x > 0, shape α > 0, scale β > 0 

α = 1 
β = 0.01 1/120 

Notes: * Applied as a negative shock only, and scaled by a random factor d between 0.1 and 1.1 bounds. ** Applied as a positive 
shock only. *** Random value between 0 and 1 issued from simulations. 

In the previous Table, we also need to specify the 
following beta and gamma functions:1 
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All the disturbances under consideration allow for 
introducing skewness and kurtosis patterns in the 

                                                      
1 We apply the same type of shocks to all Gaussian distributions under 
consideration. Therefore, due to their mean-variance properties, some 
returns may be highly distorted by the applied shocks, whereas other 
returns may not be structurally affected. 

Gaussian-based return distributions to some ex-
tent. Sometimes the induced skewness and kurto-
sis effects are not statistically significant (e.g., 
homogeneous shocks) insofar as they imply no 
structural change in the Gaussian distribution. 
But, sometimes skewness and kurtosis impacts 
generate deviations from normality for the returns 
under consideration so that they structurally 
change their corresponding risk/return profiles. 
The application of positive and negative shocks to 
a set of Gaussian returns allows for considering 
the various and asymmetric reactions of different 
groups of stocks in the market over time (e.g., 
sector-specific trends, under- and over-reaction to 
shocks). 
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2. Simulation results and disturbances’ impact 

We summarize the impact of the considered distur-
bances on our Gaussian returns as a function of the 
induced return skewness and kurtosis. The trade-off 
between the two higher above-mentioned moments 
explains the potential structural changes generated 

in original Gaussian returns (i.e. possible deviation 
from normality due to statistically significant distor-
tions over time). 

2.1. Homogeneous shocks. As a first step, we re-
port the average values of the descriptive statistics 
characterizing the new disturbed returns (see Table 5). 

Table 5. Descriptive statistics of disturbed Gaussian returns (daily basis) 
Negative shocks Positive shocks Type of shock 

Mean (%) Std. dev. (%) Skewness Excess kurtosis Mean (%) Std. dev. (%) Skewness Excess kurtosis 
Gamma -0.0332 1.9165 -0.0437 0.2310 0.0606 1.9165 0.0407 0.0464 
Log-normal -0.0339 1.9165 0.0237 0.0363 0.0607 1.9165 0.0237 0.0362 
Student -0.0421 1.9165 0.0298 0.0326 0.0700 1.9165 0.0211 0.0370 

 
On one side, negative disturbances introduce skew-
ness and kurtosis effects. Strikingly, the disturbed 
returns’ averages are highly decreased (between 2 
and 7 times their initial levels), whereas related 
standard deviations remain approximately the same. 
On the other side, positive disturbances also intro-
duce skewness and kurtosis patterns. Strikingly, the 
disturbed returns’ averages are highly increased 
(between 2 and 7 times their initial levels), whereas 
related standard deviations remain generally ap-
proximately the same. As a further investigation, we 
check for structural changes in the general Gaussian 
behavior of initial return series. For this purpose, we 

perform a normal distribution test while computing 
successively the Jarque-Bera (JB), Cramer-Von-
Mises (CVM) and Aderson-Darling (AD) test statis-
tics1. We display in Table 6 below the results corre-
sponding to a 5% normality test for each statistic 
under consideration. Disturbed returns exhibit gen-
erally a Gaussian behavior though having very dif-
ferent average levels as compared to their original 
counterparts. 

Consequently, the homogenous shocks under con-
sideration do not generate structural changes in the 
original Gaussian return distribution. 

Table 6. Percentage of return series satisfying normality tests 
Negative shocks Positive shocks Type of shock 

JB CVM AD JB CVM AD 
Gamma 75.0000 100.0000 83.3333 83.3333 100.0000 91.6667 
Log-normal 91.6667 100.0000 91.6667 91.6667 100.0000 91.6667 
Student 91.6667 100.0000 91.6667 91.6667 100.0000 91.6667 

 

2.2. Inhomogeneous shocks. As the previous 
subsection, we display the average values of the 

descriptive statistics characterizing the new dis-
turbed returns (see Table 7). 

Table7. Descriptive statistics of disturbed Gaussian returns (daily basis)  

Negative shocks Positive shocks Type of shock 
Mean (%) Std. dev. (%) Skewness Excess kurtosis Mean (%) Std. dev. (%) Skewness Excess kurtosis 

Log-normal -0.0505 1.9644 -0.9321 10.4464 0.0791 1.9788 1.3399 19.3100 
Poisson -0.1317 3.3635 -7.4755 132.5174 0.1886 3.6702 9.6854 194.3143 
Log-logistic /Weibull -0.3032 4.4751 -4.4977 234.3234 0.3130 1.9740 0.3152 1.3198 

 

On one side, negative disturbances introduce statisti-
cally significant skewness and kurtosis effects. Strik-
ingly, the disturbed returns’ averages are extremely 
decreased (until 63 times their initial levels), whereas 
related standard deviations are generally impacted to 
some extent. On the other side, positive disturbances 
also introduce non-negligible skewness and kurtosis 
patterns. Strikingly, the disturbed returns’ averages are 
very highly increased (between 2 and 38 times their 
initial levels), whereas related standard deviations are 
altered in a non-negligible way. As a further investiga-
tion, we check for structural changes in the general 
Gaussian behavior of initial return series. For this pur-

pose, we perform a normal distribution test while 
computing successively the Jarque-Bera (JB), Cramer-
Von-Mises (CVM) and Anderson-Darling (AD) test 
statistics. We display in Table 8 below the results cor-
responding to a 5% normality test for each statistic 
under consideration. Disturbed returns exhibit gener-
ally a non-Gaussian behavior due to the combined 
effects on average returns, standard deviation, skew-
ness and kurtosis statistics as compared to their origi-
nal counterparts.1 

                                                      
1 We compute the adjusted statistic values, which account for the finite 
sample property of our return series. 
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Table 8. Percentage of return series satisfying normality tests 
Negative shocks Positive shocks Type of shock 

JB CVM AD JB CVM AD 
Log-normal 33.3333 75.0000 50.0000 33.3333 66.6667 41.6667 
Poisson 33.3333 33.3333 16.6667 8.3333 25.0000 16.6667 
Log-logistic /Weibull 8.3333 16.6667 16.6667 50.0000 75.0000 50.0000 

 

Consequently, the inhomogeneous shocks under 
consideration generate significant structural changes 
in the original Gaussian return distribution. 
3. Impact of disturbances on performance  
assessment 

We assess the impact of the various disturbances 
under consideration over the performance meas-
ure and the implied performance rankings. The 
significance of skewness and kurtosis as underlined 

by existing outlier returns, is also emphasized. 

3.1. Impact on performance rankings. We focus on 
the modification of the initial Sharpe ratios implied by 
the application of specific disturbances to the original 
Gaussian return series. The Tables 9 and 10 below 
display the obtained average daily Sharpe ratios as 
well as the implied new performance ranking, and the 
number of similar Sharpe-based ranks relative to the 
initial Gaussian setting. 

Table 9. Average Sharpe ratios and rankings implied by homogeneous shocks 
 Negative shock Positive shock 
Shock Daily SR NRS* Daily SR NRS* 
Gamma -0.0398 1 0.0550 3 
Log-normal -0.0403 1 0.0575 4 
Student -0.0474 2 0.0673 4 

Note: * Number of ranking similarities relative to the initial Gaussian reference setting. 

As regards homogeneous shocks, negatively dis-
turbed returns exhibit lower Sharpe ratios, whereas 
positively disturbed returns exhibit higher Sharpe 
ratios under skewness and kurtosis patterns now. 
Rankings are structurally changed insofar as only 
20.8333% of the obtained performance ranks remain 
similar to the original Gaussian-based setting. 

Table 10. Average Sharpe ratios and rankings im-
plied by inhomogeneous shocks 

 Negative shock Positive shock 
Shock Daily SR NRS* Daily SR NRS* 
Gamma -0.0497 1 0.0661 4 
Log-normal -0.0904 0 0.1149 2 
Log-logistic /Weibull -0.0761 0 0.2697 2 

Note: * Number of ranking similarities relative to the initial 
Gaussian reference setting. 

As regards inhomogeneous shocks, negatively dis-
torted returns exhibit lower Sharpe ratios, whereas 
positively distorted returns exhibit higher Sharpe 
ratios with skewness and kurtosis features now. 
Rankings also highlight a structural change since 
only 12.5000% of the obtained performance ranks 
remain similar to the original Gaussian-based setting. 

3.2. Significance of higher moments. Given the 
structural changes implied by the disturbances under 
consideration, we attempt to quantify the perform-
ance assessment and ranking bias in the light of the 
generated skewness and kurtosis in returns (e.g., 
outliers’ impact). For this prospect, we consider all 

the available statistics computed previously for our 
108 return time series. We build our cross section 
series so as to consider successively negative and 
positive homogeneous shocks to returns (i.e. 72 
series of homogeneously disturbed returns), and then 
negative and positive heterogeneous shocks to returns 
(i.e. 72 series of heterogeneously distorted returns). 
This way we are able to perform a cross section analy-
sis of return performance across observed statistics. 

As a first step, we consider the descriptive statistics 
describing the obtained mean (MU), standard devia-
tion (SIGMA), skewness (S), excess kurtosis (EK), 
Sharpe ratio (SR) and ranking (RANK) estimates 
across our 144 disturbed return series (see Table 
11)1. Such estimates do exhibit a heterogeneous 
behavior as represented by the prevailing lag be-
tween corresponding mean and median values as 
well as the related skewness and kurtosis patterns. 
Moreover, the Jarque-Bera test statistic rejects 
normality at a 5% level for all the variables under 
consideration. Specifically, the cross sectional 
non-Gaussian behavior of the obtained Sharpe 
ratios underlines the existing bias generated by 
the non-Gaussian behavior of the disturbed return 
series (Lo, 2002).  

                                                      
1 Simulated return series are ordered as in Table 1 for negative shocks 
(12 negatively disturbed return series) and then for positive shocks (12 
positively disturbed return series). This clustering is first applied to each 
3 types of homogeneous shock (72 homogeneously disturbed return 
series) and then to each 3 types of inhomogeneous shock (72 non-
homogeneously disturbed return series). 
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Table 11. Descriptive statistics of cross section statistic estimates 
 MU SIGMA S EK SR RANK 
Mean 0.0002 0.0311 -0.0244 49.3876 0.0238 6.5000 
Median 0.0005 0.0315 -0.0049 0.2084 0.0136 6.5000 
Std. dev. 0.0024 0.0234 6.1144 129.4086 0.1262 3.4641 
Skewness -0.9183 1.3313 -0.2497 3.3043 1.6524 0.0000 
Excess kurtosis 4.3786 3.7988 6.6901 11.4604 5.2099 -1.2168 
Jarque-Bera 135.2729 129.1213 270.0378 1050.0920 228.3836 8.8834 

 

As a second step, we run a preliminary analysis while 
investigating the potential explanatory factors of the 
bias in Sharpe ratios supported by the following facts. 
Under the Gaussian setting, Sharpe ratio is a good 
performance descriptor (i.e. convenient descriptor 
of the risk/reward profile of asset returns) since the 
two first distributional moments conform the 
mean-variance efficiency principle. Under a non-
Gaussian setting, the Sharpe ratio becomes, how-
ever, a biased indicator and asset performance de-
pends on higher moments such as skewness (e.g., 
tail existence) and kurtosis (e.g., tail fatness). Per-
forming assets are expected to exhibit an excess 
risk premium with either a skewness as high as 
possible, or a skewness as low as possible in mag-
nitude when the risk premium is left-skewed. 
Moreover, the Sharpe ratio is a function of both the 
observed historical mean and standard deviation of 
returns. In the same way, skewness and kurtosis 
statistics can also be considered as functions of the 
historical mean and standard deviation. Hence, the 
common dependence on the mean and standard 
deviation of returns is so that finally Sharpe ratio 
can be implicitly linked to skewness and kurtosis to 
some extent. We check for this pattern while consider-
ing the non-parametric correlation coefficients (i.e., 
Spearman and Kendall coefficients) of cross-sectional 
Sharpe ratios and related cross-sectional skewness and 
excess kurtosis (see Table 12). 
Table 12. Correlation of cross-sectional Sharpe ra-

tios with other cross-sectional statistics 
 Kendall Spearman 
MU 0.7055* 0.8812* 
SIGMA -0.0707 -0.0955 
S 0.4005* 0.5848* 
EK -0.0602 -0.0938 
Rank -0.3562* -0.4214* 

Note: * Significant at a 1% two-tailed test level. 

The previous table just emphasizes that only skew-
ness is an important factor for explaining the ob-
served bias in cross sectional Sharpe ratios (i.e. ob-
tained from our distorted return series)1.  

                                                      
1 The way skewness and kurtosis statistics are computed make them 
dependent of each other (i.e. they are linked).  

4. Estimating unbiased Sharpe ratios 

We apply the previous results telling us that the bias 
describing Sharpe ratios when they are estimated un-
der a non-Gaussian setting comes from the skewness 
of observed return times series. Then, we try to infer 
unbiased Sharpe ratios while removing the observed 
skewness impact from classic Sharpe ratios. 

4.1. Methodology. For this purpose, we assume that 
the cross-sectional estimated Sharpe ratios (SRi) are 
biased measures (i.e. distorted observations) of the 
unbiased Sharpe ratios (USRi), namely the latent or 
unobserved component in estimated Sharpe ratios. 
Therefore, we need to filter out the information pro-
vided by observed measures of cross-sectional 
Sharpe ratios in order to extract the corresponding 
embedded and unobserved component. Such a com-
ponent should constitute a pure performance indicator. 
For this purpose, we adopt the latent factor approach 
named Kalman filter method. Specifically, we apply a 
linear state-space representation of the observed 
cross sectional Sharpe ratios (Hamilton, 1994a,b; 
Harvey, 1989; Kalman, 1960; Koopman, Shephard 
and Doornik, 1999). 

Before introducing our model, we explain the rea-
soning underlying the specification we propose. 
First, we showed that cross-sectional Sharpe ratios 
are correlated with their corresponding skewness so 
that the reported performance assessment bias de-
pends on skewness. So, removing the bias from 
observed Sharpe ratios requires expressing them 
as a non-linear function of related skewness2. 
Since non-linearity in asset return is often generated 
by time-varying volatility, we choose to introduce the 

                                                      
2 It is easy to show the non-linear link between a return’s Sharpe ratio 
and related skewness. One easy way to understand it is to notice from 
Sharpe ratio’s expression that µ = σ SR + r. Indeed, we have:  
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where R is the return random variable, r is the average risk free rate of 
return, µ =E[R], σ = Var[R] and 
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skewness explanatory factor in the volatility de-
scribing the error relative to the estimation of 
Sharpe ratios’ equation. Second, Ferson and Harvey 
(1991) advocate the significance of economic vari-
ables in explaining the predictable time-variation of 
investment returns. For example, the relevant eco-
nomic variables correspond to the market risk pre-
mium and prevailing interest rates for stock-specific 
and bond-specific investment returns, respectively. 
Therefore, investment returns exhibit a common 
component explaining their risk of change (i.e., 
time-variation) as advocated by Alexander (2005). 
Since Sharpe ratios are founded on asset risk pre-
miums and given that risk premiums bear a com-
mon systematic component (Sharpe, 1964; Fama 
and French, 1993), observed cross-sectional 
Sharpe ratios are all linked to each other (to some 
extent) through such a systematic component. 
Consequently, cross-sectional Sharpe ratios (SRi) 
are serially dependent. We propose to catch such 
a dependency while stating a first order Markov 
property for the unbiased Sharpe ratios (USRi), 
which are unobserved. Then, we get the following 
representation: 

iii uUSRSR += ,      (6) 

,1 iii vUSRaUSR +×= −      (7) 

where relations (6) and (7) are called dynamic and 
state equations, respectively, (ui) and (vi) are serially 
independent and uncorrelated Gaussian white noises 
with a zero mean (i.e. dynamic and state errors). 
Moreover, the equation errors are assumed to follow 
a two-dimension Gaussian variable with a diagonal 
covariance matrix Ω defined by: 
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where a, b and c are constant parameters. Our speci-
fication is relevant insofar as classic Sharpe ratios 
under a Gaussian setting represent a special case 
of our representation. Indeed, a Gaussian world 
implies S = 0 so that we get a null variance for ui 
and then SRi = USRi (i.e. no dynamic error since 
the related mean and variance are zero). More-
over, sin(i) attempts to capture the firm-specific 
information that explains differences in Sharpe 
ratios from one firm to another. Indeed, firm-
specific performance information such as size and 
book-to-market indicators, for example, is also 
important to explain discrepancies in firm per-
formance (Fama and French, 1992; 1993; 1995). 

Assumptions about the joint multivariate distribu-
tion of the state and dynamic errors allow for es-
timating the model parameters along with the log-
likelihood maximization principle. Such a setting 
requires estimating all the parameters previously 
introduced with also the two moments, describing 
the two-dimension Gaussian distribution of u0 and 
v0 (i.e. prior guess, which represents the initial 
values of the Gaussian white noise vector). Con-
sequently, the optimization process requires esti-
mating 5 parameters. 

4.2. Estimation and results. The Kalman filter 
estimation method yields the following results1 
and parameter estimates (see Table 13 and Figure 2). 
According to Table 13, all the parameters are sig-
nificant at a 5% test level. In unreported results, 
we also tested for the null assumption of each of 
the parameters and all of the parameters at the 
same time, but the null hypothesis was rejected in 
all situations at a 5% Wald test level. Conse-
quently, the model is significant as supported by 
Figure 2. Figure 2 shows cases, where Sharpe 
ratios either over- or under-estimate returns’ per-
formance, depending on skewness and kurtosis 
patterns2. Moreover, our cross-sectional time se-
ries is built so as to account for various reactions 
of different groups of stocks in the market over 
time3. For example, sector-specific stocks react 
differently to market shocks across industry areas. 

Table 13. Model estimation statistics 
 Coefficient Std. error Z-statistic Probability 

a 0.7127 0.0673 10.5852 0.0000 
b -2.6716 0.1059 -25.2267 0.0000 
c -4.7734 0.3332 -14.3258 0.0000 
 Final state RMSE* Z-statistic Probability 
USR 0.0068 0.0618 0.1100 0.9124 
Log-likelihood 91.8284 Akaike info criterion -1.2337 
Parameters 3 Schwarz criterion -1.1719 
Accuracy level 1.00E-6 Hannan-Quinn criterion -1.2086 

Note: * Root mean squared error. Convergence achieved after 12 
iterations. Initial values: a = 0.7895, b = -2.6430, c = -4.7732. 

                                                      
1 To avoid any sample bias due to the way we built it (e.g., clusters), we 
randomly reorganized the sample chronology (i.e. resample process). 
Then, the model estimation is applied to the reorganized sample. 
2 Overestimation takes place when Sharpe ratios are higher than their 
unbiased counterparts. The converse remark applies to underestimation 
cases. 
3 We voluntarily gathered the positively and negatively disturbed re-
turns in order to add clustering effects to the representation. However, 
the statistical computations are achieved on the reorganized sample. 
Hence, there is no sample bias. Moreover, the estimation process is 
more complicated but it also allows for testing for the robustness of the 
proposed methodology. Indeed, the resample process adds harmonic 
volatility effects in Sharpe ratio estimates. 
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Fig. 2. Observed (SR) and latent unbiased (USR) Sharpe ratios 

As a back-test, we tested for both the Gaussian na-
ture of model residuals (i.e. Jarque-Bera, Anderson-
Darling and Cramer-Von-Mises goodness of fit 
tests) and a unit root according to a 5% Phillips-
Perron test (i.e. stationary errors). Though, they are 
non-Gaussian, the dynamic and state errors follow a 
white noise process as emphasized by relevant dis-
tributional and Ljung-Box statistics (see Tables 14 
and 15) as well as related correlograms (see Figure 
3). Such a non-Gaussian pattern is probably due to 
the fact that some information is missing. Indeed, 
Sharpe ratios depend on the financial market climate 
so that there is still a market-dependent bias to ex-
tract (Scholz and Wilkens, 2005; Scholz, 2007; 
Sortino, 2004). But, such feature is beyond the 

scope of this paper given that we cannot simulate 
the market climate randomly. Therefore, the power-
ful proposed method to infer unbiased Sharpe ratios 
from observed classic Sharpe ratios in a cross-
sectional analysis over a given time horizon requires 
encompassing relevant economic variables (i.e., 
additional explanatory factor(s)) so as to remove the 
market climate bias. 

Table 14. Distributional statistics of dynamic and 
state errors 

Statistics Dynamic errors State errors 
Jarque-Bera 501.6644 33.4089 
Cramer-Von-Mises 1.6871 1.2290 
Anderson-Darling 8.8817 6.0653 
Phillips-Perron -12.3958 -12.3178 

Table 15. Autocorrelations of dynamic and state errors 
 Dynamic errors State errors 

Lag AC* PAC** Q-stat*** Probability AC* PAC** Q-stat*** Probability 
1 -0.0560 -0.0560 0.4629 0.4960 -0.0340 -0.0340 0.1719 0.6780 
2 0.1770 0.1740 5.0774 0.0790 -0.0280 -0.0290 0.2844 0.8670 
3 -0.0080 0.0100 5.0865 0.1660 -0.0020 -0.0040 0.2851 0.9630 
4 0.0760 0.0470 5.9536 0.2030 -0.0800 -0.0810 1.2395 0.8720 
5 -0.0190 -0.0140 6.0081 0.3050 0.0240 0.0180 1.3258 0.9320 
6 -0.1330 -0.1610 8.7102 0.1910 0.0410 0.0380 1.5835 0.9540 
7 0.0150 0.0060 8.7454 0.2710 0.0310 0.0340 1.7279 0.9730 
8 -0.0170 0.0320 8.7906 0.3600 -0.0720 -0.0740 2.5183 0.9610 
9 0.0310 0.0340 8.9415 0.4430 0.0690 0.0710 3.2600 0.9530 

10 0.0490 0.0760 9.3202 0.5020 -0.0910 -0.0870 4.5715 0.9180 
11 0.0630 0.0540 9.9520 0.5350 -0.0450 -0.0440 4.8846 0.9370 
12 -0.0120 -0.0550 9.9738 0.6180 -0.1170 -0.1430 7.0474 0.8540 
13 0.1050 0.0840 11.7380 0.5490 0.0860 0.0920 8.2227 0.8290 
14 -0.0580 -0.0520 12.2850 0.5830 -0.0060 -0.0260 8.2281 0.8770 
15 0.0100 -0.0270 12.3030 0.6560 0.1730 0.1880 13.0900 0.5950 
16 0.0450 0.0970 12.6360 0.6990 0.0380 0.0180 13.3220 0.6490 
17 -0.1260 -0.1310 15.2750 0.5760 -0.0250 0.0430 13.4260 0.7070 
18 0.0170 -0.0140 15.3260 0.6390 0.0900 0.0740 14.7800 0.6770 
19 -0.0780 -0.0090 16.3520 0.6340 -0.0190 0.0300 14.8400 0.7330 
20 0.0620 0.0160 16.9940 0.6530 0.0410 0.0110 15.1300 0.7690 

Notes: * Autocorrelations. ** Partial correlations. *** Ljung-Box Q-statistic. 
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Fig. 3. Correlograms of model residuals 

As a rough guide, we also display the variance and 
volatility of dynamic errors (see Figures 4 and 5)1, 
and we report the descriptive statistics relative to 
the unbiased Sharpe ratios (see Table 16). We 
notice the asymmetric and heterogeneous nature 
of such ratios as expected. Moreover, a 5% Jar-
que-Bera test rejects the normality assumption. 
Interestingly, the closer to zero skewness magni-

tude is, the lower the dynamic errors’ variance, as 
expected (see Figure 4). Therefore, the lower dy-
namic residuals’ volatility is the closer observed 
Sharpe ratios to their unbiased and unobserved 
counterparts are (i.e. the more unbiased observed 
Sharpe ratios are since they exhibit a skewness, 
which is as close as possible to a Gaussian distri-
bution’s skewness level). 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.00

0.05

0.10

0.15

0.20

0.25

-2
4.

47
-1

6.
88

-7
.7

6
-4

.1
2

-2
.4

9
-0

.3
7

-0
.2

3
-0

.1
0

-0
.0

8
-0

.0
7

-0
.0

5
-0

.0
5

-0
.0

4
-0

.0
3

-0
.0

3
-0

.0
1

-0
.0

1
-0

.0
1

0.
00

0.
02

0.
04

0.
04

0.
05

0.
07

0.
12

0.
12

0.
13

0.
13

0.
15

0.
18

0.
21

0.
92

1.
58

6.
64

11
.4

9
14

.3
9

Volatility of dynam
ic errorsVa

ria
nc

e 
of

 d
yn

am
ic

 e
rr

or
s

Skewness

Volatility Variance  
Fig. 4. Ranked variance and volatility of dynamic errors (ui)1 

                                                      
1 Figure 4 plots variance and volatility as functions of increasing skewness values, whereas Figure 5 plots variance and volatility as functions of 
increasing observation number. For information prospect, Figure 5 reports also the skewness value corresponding to each observation number. 
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The behavior of the dynamic errors’ variance (i.e. 
volatility, standard deviation) as a function of ob-
served cross section skewness is so that it is non-
exploding, and can catch cyclical as well as non- linear 
patterns. Of course, it is dependent on the nature of the 
data under consideration. If the proportion of extreme 
skewness values were high, the shape of the variance 
would have been more complicated since we look for 
an average behavior (i.e. general trend over the ob-
served sample). In our present case, 75.6944% of ob-
served cross-sectional skewness values lie between  
-0.4917 and 1.0237 levels. We implicitly assume that 

the remaining 24.3056% of observed skewness values 
exhibit “marginal values” or “extreme levels” (to some 
extent) that we cannot explain without resorting to 
some missing relevant explanatory factors. However, 
we cannot simulate such factors at the moment 
(e.g., other performance determinants such as mar-
ket climate, for example). Nonetheless, volatility 
changes and classic Sharpe ratio changes from one 
asset return to another exhibit a correlated behavior 
(see Figure 6). Volatility and Sharpe ratio changes 
exhibit the same sign (i.e. same trend in changes) in 
45.8333% of cases. 
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Table 16. Statistics of the unbiased Sharpe ratios 
Mean 0.0065 
Standard deviation (%) 0.0546 
Median 0.0098 
Skewness -0.5439 
Kurtosis 3.7685 
Jarque-Bera statistic 10.6441 
Probability 0.0049 

Finally, we display the obtained unbiased Sharpe 
ratios (USR) for each distorted return and the related 
performance-based rankings (see Table 17). We also 
compare the obtained new rankings with the ones 
related to the biased Sharpe ratios. The unbiased 
Sharpe ratios yield noticeable structural changes in 
the rankings based on their biased counterparts. 

Table 17. Average unbiased Sharpe ratios and 
rankings implied by shocks 

  Negative shock Positive shock 
Shock Daily SR NRS* Daily SR NRS* 

Gamma 0.0198 0 0.00136 0 
Log-normal 0.0026 1 0.02072 1 Homogeneous 
Student -0.0098 0 0.02815 2 
Gamma -0.04968 1 0.06612 4 
Log-normal -0.09043 0 0.11486 3 Non-

homogeneous Log-logistic 
/Weibull -0.07632 0 0.26974 2 

Note: * Number of ranking similarities relative to the biased 
Sharpe ratios’ rankings. 

With regard to Tables 6 and 8, homogeneous shocks 
generally preserve returns’ Gaussian property whereas 
inhomogeneous shocks engender structural changes 

in returns’ distributional behavior. As an extension, 
Tables 9, 10 and 17 underline the potential struc-
tural changes in corresponding performance rank-
ings. Indeed, the ranking stability in between classic 
Sharpe ratios and unbiased Sharpe ratios depends on 
the impact on skewness and kurtosis, which results 
from such shocks, on the one hand. On the other 
hand, the ranking stability also depends on the 
engendered moves in average returns’ level (i.e. 
significance of the risk-return profile’s alteration). 
However, a robustness study helps to identify the 
efficiency of the proposed filtering method and 
the resulting unbiased Sharpe ratios. Such an 
analysis answers the following question: Is the 
USR a superior performance measure relative to 
SR while discriminating between winners and 
poor performing stocks? 

Superiority of unbiased Sharpe ratios relative to 
their biased counterparts. 

To answer the previous question, we consider the 
top and bottom stock return deciles in accordance 
with classic Sharpe ratios, on one side, and unbiased 
Sharpe ratios, on the other side. Specifically, we 
first select the 10% of stocks, which exhibit the 
highest performance measure across the sample (i.e. 
a cohort of the top 15 stocks). Then, we select the 
10% of stocks, which exhibit the lowest perform-
ance measure across the sample (i.e. a cohort of the 
bottom 15 stocks). We finally analyze the 4 ob-
tained cohorts among which 2 bottom cohorts and 2 
top cohorts for classic and unbiased Sharpe ratios, 
respectively (see Table 18). 

Table 18. Robustness of unbiased Sharpe ratios 
  Statistics N+ Mean Std. dev. Median S EK 

Average 622 0.0029 0.0101 0.0026 0.3684 1.8364 
Nb > 0 - 15 - 15 12 12 SR 
Nb > Sample  mean - 4 - - - - 
Average 618 0.0034 0.0137 0.0030 0.5842 3.5533 
Nb > 0 - 15 - 15 14 14 

To
p s

toc
ks

 

USR 
Nb > Sample  mean - 15 - - - - 
Average 458 -0.0024 0.0199 -0.0016 -3.1638 56.1809 
Nb < 0 - 15 - 15 12 4 SR 
Nb > Sample  mean - 10 - - - - 
Average 456 -0.0027 0.0285 -0.0018 -4.5211 86.1777 
Nb < 0 - 14 - 15 13 4 Bo

tto
m 

sto
ck

s 

USR 
Nb > Sample  mean - 9 - - - - 

Notes: N+ is the number of positive returns. S and EK are the skewness and excess kurtosis statistics, respectively. 

With respect to top stocks and compared to SR-
based selection, more USR-based stocks exhibit 
positive average mean and median returns, on one 
side. On the other side, the USR captures all the 
stocks whose average returns lie above the mean 
return of the top 15 stock sample. Moreover, the 

USR captures winners in a better way because re-
turns exhibit higher skewness and excess kurtosis 
levels on average. Indeed, performers should exhibit 
positively skewed returns with a positive and high 
excess kurtosis (i.e. positive fat tail, or equivalently, 
significant probability of gain). With respect to bot-



Investment Management and Financial Innovations, Volume 7, Issue 4, 2010 

117 

tom stocks, the USR also captures more performing 
stocks than SR (though, it is less obvious on an av-
erage basis). For example, USR-based losers exhibit 
a lower negative skewness with a higher positive 
excess kurtosis as compared to SR-based bottom 
decile. Indeed, a poor performing stock should ex-
hibit a highly negative skewness with a positive 
excess kurtosis (i.e. negative fat tail, or equivalently, 
important risk of loss). As a conclusion, the unbi-
ased Sharpe ratio metric outperforms SR metric 
while identifying and classifying winners and losers. 

Conclusions 

We first simulated normally distributed asset returns 
to which we applied a series of positive and nega-
tive shocks, resulting from various probability dis-
tributions. The applied shocks are split into two 
categories, namely homogeneous and inhomogene-
ous shocks. The homogeneous distortions keep the 
Gaussian nature of returns, whereas the inhomoge-
neous counterparts induce structural return changes 
through deviations from normality. Then, we stud-
ied the behavior of the obtained disturbed returns 
and related skewness, and kurtosis features. The 
existence of skewness and kurtosis generate changes 
in terms of the performance rankings induced by 
Sharpe ratio estimates.  

Under a non-Gaussian setting, Sharpe ratios as func-
tions of the two first distributional moments become 
insufficient descriptors of the risk/return profile of 
investments. The modifications incurred by existing 
distribution tails and related tail fatness 

requires considering also skewness and kurtosis 
patterns. Given the statistical expressions of skew-
ness and kurtosis as distributional moments, these 
two higher moments can be considered as non-linear 
and non-explicit functions of the two first distribu-
tional moments (i.e. mean and standard deviation). 
Consequently, usual Sharpe ratios (i.e. classic risk-
adjusted performance measures) are indirectly func-
tions of skewness and kurtosis (since they also de-
pend on returns’ mean and standard deviation). 

Given this feature, we estimated the unbiased 
Sharpe ratios while filtering the estimated Sharpe 
ratios, which are biased by skewness. For this pros-
pect, we applied a latent factor approach (i.e., Kal-
man filter to smooth classic Sharpe ratios), which 
allows for estimating the fundamental component in 
Sharpe ratios after removing the bias generated by 
return skewness. The robustness of the estimation 
process has been emphasized, and the superiority 
of the unbiased Sharpe ratio for stock picking 
prospects has been proved. Usually, the rankings 
inferred from unbiased Sharpe ratios exhibit struc-
tural changes. Based on return stylized facts and 
available market information, it is possible to infer 
unbiased performance measures as long as the bias is 
described by empirical features. Such a finding is 
very important for forecast prospects and asset allo-
cation schemes (e.g., stock picking). Accessing suffi-
cient economic and market information will then help 
forecasting the future one-period performance 
since Kalman filter can also play the role of a 
forecasting tool. 
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