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Abstract 

The main objective of this study is to investigate the validity and predictability of technical analysis in precious metal 
markets. This study applies the bootstrap tests of White (2000) and Hansen (2005) to determine if there are favorable 
trade rules among the “universe” of technical trading rules of the Sullivan et al. [3] research. This study employs the 
powerful bootstrap tests to determine the profitability of technical analysis with the restructuring of non-synchronous 
trading and transaction costs. The empirical results strongly indicate that the three elements, data snooping, non-
synchronous trading and transaction costs, have a significant impact on the overall performance of technical analysis. 
In fact, these results illustrate that economic profits cannot be generated among the ten precious metal market indices. 
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Introduction© 

Technical analysis is a well-established method of 
forecasting future market movements by generating 
buy or sell signals based on specific information 
gained from previous prices. The continuing preva-
lence and application of technical analysis has come 
to be widely recognized, even among academic 
scholars, with the techniques for discovering any 
hidden patterns ranging from the very rudimentary 
analysis of moving averages, to the recognition of 
quite complex time series patterns. Brock et al. 
(1992) show that simple trading rules based upon 
the movements of a short-run and a long-run mov-
ing average return have significant predictive power 
over a century of daily data on the Dow Jones indus-
trial average. Fifield, Power, and Sinclair (1995) 
went on to investigate the predictive power of the 
“filter” rule and the “moving average oscillator” 
rule in eleven European stock markets covering the 
period from January 1991 to December 2000. Their 
main findings indicated that four emerging markets, 
Greece, Hungary, Portugal and Turkey, were infor-
mationally inefficient, relative to the other seven 
more advanced markets. Empirical results in the 
past support technical analysis among them (Blume 
et al., 1994; Lo et al., 2000; and Savin et al., 2007). 
However, such evidences may be criticized for their 
data snooping bias. (e.g., Lo and MacKinlay, 1990; 
and Brock et al., 1992). 

Data snooping occurs when a given set of data is 
used more than once for purposes of inference or 
model selection. When such data reuse occurs, there 
is always the possibility that any satisfactory results 
obtained may simply be due to chance rather than to 
any merit inherent in the method yielding the re-
sults. This problem is practically unavoidable in the 
analysis of time-series data, as typically only a sin-
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gle history measuring a given phenomenon of inter-
est is available for analysis. It is widely acknowl-
edged by empirical researchers that data snooping is 
a dangerous practice to be avoided but in fact it is 
endemic. The main problem has been a lack of suf-
ficiently simple practical methods capable of assess-
ing the potential dangers of data snooping in a given 
situation. Sullivan et al. (1999) apply the White 
(2000) “reality check (RC)” test and find that tech-
nical trading rules lose their predictive power for 
major U.S. stock indices after the mid 80s. Chen et 
al. (2009) find that the results of technical analysis 
remain valid in all Asian markets, with the excep-
tion of South Korea, even after controlling for data 
snooping bias through the bootstrap reality check 
(RC) of White (2000) and superior predictive ability 
(SPA) test of Hansen (2005). Hsu et al. (2010) ex-
tend the SPA test of Hansen (2005) to a stepwise 
SPA test that can identify predictive models without 
potential data snooping bias. In the present study, 
we set out to empirically test the efficacy of techni-
cal analysis within thirteen precious metal market 
indices, employing the two data snooping adjust-
ment methods for non-synchronous trading and 
transaction costs proposed by White (2000) and 
Hansen (2005). 

The efficient market hypothesis (EMH) has domi-
nated empirical finance, largely as a result of the 
work of Fama (1970). An enormous wealth of asso-
ciated literature during the 1970s provided support 
for the weak form of this hypothesis, in which it is 
suggested that changes in past share prices cannot 
be used to forecast future share returns. Along the 
same vein, precious metal market efficiency implies 
that precious metal prices respond quickly and accu-
rately to relevant information. If precious metal 
prices are mean reverting, then it follows that the 
price level will return to its trend path over time and 
that it might be possible to forecast future move-
ments in precious metal prices based on past behav-
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ior. By contrast, if precious metal prices follow a 
random walk process, then any shock to prices is 
permanent. This means that future returns cannot be 
predicted based on historical movements in precious 
metal prices and that volatility in precious metal 
markets increases without bound. 
Historically, technical analysis is equally appealed 
among financial and agricultural commodity mar-
kets as illustrated by popular practitioner books, for 
examples, Murphy (1986), Arnold (1993), and Pring 
(2002). The most widely followed futures composite 
index is the commodity research bureau (CRB) in-
dex represents basket of 21 industrial and agricul-
ture commodities. The CRB index is particularly 
sensitive to price movement in the grains and oil 
complex. However, as surveyed by Park and Irwin 
(2007), most empirical studies of the efficacy of 
technical analysis concentrate on stock markets and 
foreign exchange markets. Only a smaller number of 
studies devote to commodity markets, in particular, 
precious metal markets.  
MacDonald and Taylor (1988a) used the bivariate 
vector autoregressive approach with appropriate 
stationarity-inducing transformations to test the 
efficient market hypothesis in terms of four primary 
metals quoted on the London metal exchange. The 
metals studied are copper, lead, tin and zinc over the 
period from January 1976 to March 1987. They 
demonstrated the rejection of the joint efficient 
markets hypothesis for copper and lead of the four 
examined metals. Besides, MacDonald and Taylor 
(1988b) focused on the market efficiency of metals 
prices from the London metal exchange. Their main 
finding concerns the result that none of their chosen 
spot metal prices are cointegrated and supports the 
efficient markets hypothesis. 

Sephton and Cochrane (1990) examined the market 
efficiency hypothesis with respect to six metals 
traded on the London metal exchange (LME). Using 
overlapping data and both single and multimarket 
models, they found evidence contradictory to the 
tenet that the LME is an efficient market.  
Jones and Uri (1990) investigated the efficiency of 
three primary metals markets in the USA using both 
static cointegration and dynamic error correction 
tests. The spot prices of lead, tin and zinc over the 
period from January 1964 to December 1987 have 
served as the basis of the analysis. The results 
showed that spot prices for lead and both, tin and 
zinc, are cointegrated at the 1% level. This fact 
meant that these markets are not efficient in the 
semistrong form sense since casuality must run in at 
least one direction. 
Sephton and Cochrane (1991) suggested that some 
markets on the LME do not exhibit the major char-

acteristics of efficient markets: rationality and risk 
neutrality. They pointed that the tin market exhib-
ited a risk premium and was inefficient between 
1976 and 1985. Narayan et al. (2010) examined the 
long-run relationship between gold and oil spot and 
futures markets. They tested for the long-run rela-
tionship between gold and oil futures prices at dif-
ferent maturity and unravel evidence of cointegra-
tion. The evidence of Narayan et al. (2000) indi-
cated that the oil market can be used to predict the 
gold market prices and vice versa, thus, these two 
markets are jointly inefficient. 

We set out in this study to test empirically the prof-
itability of technical analysis in ten precious metal 
market indexes of futures and spots over the period 
from January 1968 to December 2009, taking into 
account the relevant data snooping biases, non-
synchronous trading effects and transaction costs. 
We reexamine the performance of technical rules 
by implementing the White (2000) “reality check” 
and the Hansen (2005) “superior predictive abil-
ity” test in order to fully investigate the effects 
that data snooping can have on trading rules. Our 
study extends the set of trading rules considered 
in Bessembinder and Chan (1995) to the “uni-
verse” of 7846 trading spaces suggested in Sulli-
van, Timmermann, and White (1999). 

The remainder of this paper is organized as follows. 
An explanation of the test algorithms and the trading 
rules proposed in this study is provided in Section 1. 
Section 2 presents our presentation and subsequent 
analysis of the empirical results. Finally, the conclu-
sions drawn from this study are provided in the last 
Section, along with some suggestions for further 
development of our approach. 

1. Methodology 

In this Section, we describe the methodology used 
in our study, including the test algorithms and the 
trading rules. The former comprises the “reality 
check” of White (2000) and the “superior predic-
tive ability” test of Hansen (2005), while the latter 
introduces the 7846 universal rules proposed by 
Sullivan et al. (1999). 

1.1. The reality check and superior predictive 
ability tests. Trading model dependence makes it 
difficult to construct a formal test to differentiate 
between a genuine model with superior predictability 
and other spurious models. White’s “reality check”, 
which initially built on Diebold and Mariano (1995) 
and West (1996), employed the block resampling 
procedure of Politis and Romano (1994) in a predic-
tive power test model to account for the effect of 
data mining. 
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We begin by defining the relative performance of 
models k, k =1, ..., m, against the benchmark at time 
t, t =1, ..., n, as follows: 

mkt,tt,ktt,k ,,1,0),,(),( 101 K=−≡ −− δξφδξφπ     (1) 

ttktkt ξδδξφ 1,1, ),( −− = ,  

where tξ  represents the random real asset returns; 

1, −tkδ  is the trading signal of the forecasting model k, 
at t − 1; and k = 0 represents the market model.  
Let ( )kk Eµ π=  be the expected excess return of 
model k. As we are interested to know whether 
any of the models are better than the benchmark, 

the natural null hypothesis of interest can then be 
defined as: 
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Rejection of this null hypothesis leads to the exis-
tence of the best technical trading rule achieving 
performance superior to the benchmark. The 
block re-sampling procedure of Politis and 
Romano (1994) is employed to generate 500 
pseudo time-series B

tk ,π  from the observed value 

tk ,π . We construct the following two statistics 
from both, the real series and the pseudo series: 
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tiles provides the White (2000) p-value for the null 
hypothesis test. The “superior predictive ability” test 
of Hansen (2005), the development of which was 
based upon White’s “reality check”, provides an 
alternative method of correcting the findings for data 

snooping effects. Hansen (2005) demonstrated that the 
“reality check” can be seriously manipulated by other 
irrelevant models, resulting in reduced test power, and 
therefore utilized the studentized process to remove the 
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where kω̂  is a consistent estimator for return 
variance, calculated by the stationary bootstrap 
method of Politis and Romano (1994), and 

}2{ 2
11

nloglogkˆ/nk
c
k

k

ˆ
−≤

=
ωπ

πµ  is the threshold used 

for the removal of the irrelevant models. The com-
parison between SPA

nT  and B,SPA
nT quartiles provides 

the p-value for the Hansen (2005) “superior predic-
tive ability” null hypothesis test. 

1.2. Technical analysis. Sullivan et al. (1999) ex-
tended the sample rules proposed by Brock et al. 
(1992), to a larger universal technical analysis 
space. In this paper, we adopt the two sets of rule 
spaces proposed in these two studies, and undertake 
a comprehensive comparison of their performance. 
The Sullivan et al. (1999) trading set comprises of 
7846 universal trading rules belonging to five tech-
nical analysis catalogs, as shown in the following 
sub-sections, each of which provides a brief over-
view of these rules. 

1.2.1. Filter rules. The standard filter rule can be 
explained as in Fama and Blume (1966, p. 227). 

We define an X per cent filter as follows. If the daily 
closing price of a particular security moves up by at 
least X percent, then an investor buys and holds the 
security until its price moves down at least X per-

cent from the subsequent high, at which time the 
investor simultaneously sells and takes up a short 
position. This short position is maintained until the 
daily closing price rises by at least X per cent above 
the subsequent low, at which time the investor cov-
ers and buys. Any movements of less than X percent in 
either direction are ignored.  

In executing the filter rule, this study relies upon 
four parameters: (1) a change in the share price re-
quired to initiate a position (ranging from 0.005 to 
0.5, giving a total of 24 values); (2) a change in the 
share price required to liquidate a position (ranging 
from 0.005 to 0.2, giving a total of 12 values); (3) an 
alternative definition of extremes, where a low 
(high) can be defined as the most recent closing 
price which is less (greater) than the n previous 
closing prices (ranging from1 to 20, giving a total of 
eight values); and (4) the number of days a position 
is held (5, 10, 25 or 50 days, giving a total of four 
values). The various permutations of the above four 
parameters result in the construction of a total of 
497 filter rules.  
1.2.2. Moving average (MA) rules. A moving aver-
age strategy is designed to detect a trend with a buy 
(sell) signal, being generated when the short-term 
average price crosses the long-term average price 
from below (above). The execution of a moving 
average rule relies on five parameters: (1) the num-
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ber of days for the short-run moving average (rang-
ing from 2 to 250, giving a total of 15 values); (2) 
the number for the long-run moving average, and 
combination of the short-run and long-run moving 
average give a total number of 105; (3) a fixed band 
multiplicative before a signal is recognized to avoid 
small difference between the short-run and long-run 
moving average (ranging from0.001 to 0.05, giving 
a total of eight values); (4) the number of days in the 
time delay before the signal is acted upon (2, 3, 4 or 
5 days, giving a total of four values); and (5) the 
number of days that a position is held (5, 10, 25 or 
50 days, giving a total of four values).  

An example of this is MA (1, 2, 0, 0, 0), which 
represents the moving average as defined by the 
following five parameters: (1) a 1-day (short-term) 
average line; (2) a 2-day (long-term) average line; 
(3) a zero fixed band; (4) no time delay; and (5) a 
variable holding day. The various permutations of 
the above five parameters result in the construction 
of a total of 2049 rules. 

1.2.3. Support and resistance rules. A “support and 
resistance” strategy supplies details on the market 
movements relating to historical support and resis-
tance lines. A buy (sell) signal is generated when the 
closing price exceeds (falls below) the historical 
maximum (minimum) within a given time frame. 
Similar to the “moving average” rules, the execution 
of a support and resistance rule relies on five pa-
rameters: (1) the number of days in the support and 
resistance range (ranging from 5 to 250, giving a 
total of ten values); (2) an alternative definition of 
extremes, where a low can be defined as the most 
recent closing price which is less than the previous n 
closing prices (ranging from 2 to 200, giving a total 
of ten values); (3) a fixed band multiplicative value 
(ranging from 0.001 to 0.05, giving a total of eight 
values); (4) the number of days in the time delay (2, 
3, 4 or 5 days, giving a total of four values); and (5) 
the number of days that a position is held (5, 10, 25 
or 50 days, giving a total of four values). The vari-
ous permutations of the above five parameters result 
in the construction of a total of 1220 rules. 

1.2.4. Channel breakout rules. A “channel break-
out” strategy is similar to the support and resistance 
rule. The buy (sell) signal is generated when the 
closing price moves up (down) the upper (lower) 
channel. The execution of a channel breakout rule is 
reliant upon the following four parameters: (1) the 
number of days in the channel (ranging from 5 to 
250, giving a total of ten values); (2) the difference 
between the high and low price required to form a 
channel (ranging from 0.005 to 0.15, giving a total 
of eight values); (3) a fixed band multiplicative 
value (ranging from 0.001 to 0.05, giving a total of 

eight values); and (4) the number of days that a po-
sition is held (5, 10, 25 or 50 days, giving a total of 
four values). The various permutations of the above 
five parameters result in the construction of a total of 
2040 rules. 

1.2.5. On-balance volume average (OBV) rule. An 
“on-balance volume averages” strategy is a volume-
based version of the moving average rules. A buy 
(sell) signal is generated when the short-term aver-
age volume crosses the on-term average volume 
from below (above). The parameters required in the 
on-balance volume averages strategy are similar to 
those for the moving average rules. This category 
has a total of 2040 rules. 

1.3. Implementation. First, we apply the 7846 trad-
ing rules of universe of Sullivan et al. (1999) to the 
time series of ten precious metal price indices. For 
example, a certain type of moving average trading 
indicator, MA (1, 250, 0, 0, 10), generates a trading 
signal of buying, selling, or neutral on each trading 
day for the gold bullion spot index (LBM) as fol-
lows. When the current price crosses the long-term 
moving average of 250-day prices from below 
(above) then a buy (sell) signal is generated with 
long position (short position) of +1 (-1). The trading 
signal effects on the immediate trading day and holds 
for the following 10 days. The performance statistic of 
the MA (1, 250, 0, 0, 10) for LBM is set as: 

,1
1∑

+
+

−=
T

Rt
tf̂nf       (5) 

where n is the number of prediction periods of LBM 
indexed from R through T so that T = R + n − 1, 

^
1tf + is the realized performance measure for the day 

t + 1. Specifically, in the sample of LBM, n is set 
equal to 10697, R is set equal to 251, accommodat-
ing the technical indicators that require 250 previous 
daily data in order to produce trading signals. The 
performance measure is exactly defined as follows: 
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where { } ,0
R
iitt X =−=χ  Xt is the original price series 

of LBM, ( )1 1 /t t t ty X X X+ += − , and ( ).kS and 

( )0 .S are respectively signal functions of trading rule 
k (here, MA (1, 250, 0, 0, 10)) and the buy-and-hold 
strategy that convert the sequence of price index 
information tχ into trading signals of long position 
of +1, short position of -1, and neutral position of 0. 
The , 1k tf + represents the relative trading return of the 
trading rule k with respective to the buy-and-hold 
strategy on the day t + 1.  
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Second, repeat the first step for all k = 1,.., 7846 
rules on the price series of LBM and complete the 
computation of relative performance measures of 
the full universe of Sullivan et al. (1999). This study 
then examines the profitability of technical analysis 
on LBM in terms of nominal data snooping test, 
non-synchronous trading adjustment, transaction 
costs adjustment, and White’s (2000) and Hansen’s 
(2005) bootstrapping tests. The nominal data snoop-
ing test of this study is inherently the performance 
test of Brock et al. (1992). This study also follows 
the one-day lag adjustment proposed by Bessem-
binder and Chan (1995) to partially calibrate the 
non-synchronous bias. Specifically, we associate the 
day t + 2 return with the initial trading signal emit-
ted at the close of day t, thereby allowing the com-
ponent stocks of the index to be fully traded on the 
intervening days. We incorporate the transaction 
costs of the ten precious metal market indices into the 
analysis of the profitability of technical analysis in this 
study. The round-trip costs utilized in this study are 
drawn from the member fees of CME group and range 
from the highest high grade copper futures index 
(CMX) of 0.5% to the lowest copper, grade a cash spot 
index (LME) of 0.02%. Finally, this study adjusts the 
performance of technical analysis for data snooping 
bias by employing the White (2000) “reality check” 
and the Hansen (2005) “superior predictive ability” 
test as illustrated in the Section 1.1.  

2. Empirical results and analysis 

We set out in this study to test empirically the prof-
itability of technical analysis of Sullivan et al. 
(1999) in precious metal market indices over the 
period of 1968-2009, taking into account the rele-
vant data snooping biases, non-synchronous trading 
effects and transaction costs. The testing markets 
indices cover ten precious metal markets which are 
comprised of five futures: high grade copper futures 
index (CMX), gold 100 OZ futures index (CMX), 
palladium futures index (NYM), platinum futures 

index (NYM), silver 5000 OZ futures index (CMX), 
as well as five spots: copper, grade a cash spot index 
(LME), gold bullion spot index (LBM), London 
palladium free market spot index, London platinum 
free market spot index and silver spot index (LBM). 
The empirical market data of daily prices and daily 
volumes utilized in this study are obtained from 
datastream international. Moreover, the actual re-
search horizon for each index, which referred to 
Table 1, is trimmed according the data availability 
from datastream international. Meanwhile, the 
whole universal set of trading rules are employed 
in the futures markets while only part of them are 
tested in the spot markets due to the lack of vol-
ume data in the latter. Ultimately, the trading 
rules for the futures and spot markets are respec-
tively amounting to 7846 and 5806. 

The summary statistics of the daily returns for ten 
precious metal market indices are reported in Table 
1. Among them, the longest research coverage be-
longs to gold bullion spot index (LBM) with 10947 
observations and the shortest for copper, grade a 
cash spot index (LME) with 4296 observations. The 
mean daily return is rather diversified ranging from 
the highest 0.031 of gold bullion spot index (LBM) 
to the lowest 0.0168 of silver 5000 OZ futures index 
(CMX). The highest volatility is found in the silver 
spot index (LBM) of 0.0224 and the lowest volatil-
ity is found in the gold 100 OZ futures index (CMX) 
of 0.0124. The empirical evidence shows that most 
markets possess left skewness even not in the statis-
tical significance. However, the fat right tails are 
strongly embedded in all precious metal markets as 
indicated in Table 1 and, therefore, the behaviors of 
daily returns are almost far from the presumed nor-
mality assumption. Finally, the autocorrelation sta-
tistics shown in Table 1 indicate the palladium fu-
tures and spots exhibit strong positive first order 
autocorrelation while other markets show no signifi-
cant series dependence for the time lags structure.    

Table 1. Summary statistics of the precious metal market futures and spot indices 
Variablesb  Data period No. of 

observations Mean (%) S.D. Skewness Kurtosis ρ(1) ρ(2) ρ(3) ρ(4) 
High grade copper futures index (CMX) 1989/09~2009/12 5295 0.0170 0.0170 -0.2067 7.4541 -0.0772 -0.0009 -0.0117 0.0124 
Gold 100 OZ futures index (CMX) 1977/08~2009/12 8428 0.0230 0.0124 -0.0560 10.7629 -0.0116 0.0156 0.0195 -0.0398 
Palladium futures index (NYM) 1979/01~2009/12 8078 0.0203 0.0205 -0.0829 10.7163 0.0635*** 0.0020 -0.0088 -0.0014 
Platinum futures index (NYM) 1979/01~2009/12 8078 0.0174 0.0168 -0.1772 11.7924 0.0073 0.0267** 0.0172 -0.0322 
Silver 5000 OZ futures index (CMX) 1988/05~2009/12 5629 0.0167 0.0170 -0.6048 10.8871 -0.0123 0.0038 0.0090 -0.0186 
Copper, grade a cash spot index (LME) 1993/07~2009/12 4296 0.0296 0.0172 -0.2000 7.0332 -0.0606 -0.0433 0.0070 0.0202 
Gold bullion spot index (LBM) 1968/01~2009/12 10947 0.0315 0.0128 0.2164 31.4141 -0.0307 0.0103 0.0121 0.0033 
London palladium free market spot index 1987/01~2009/12 5989 0.0188 0.0198 -0.1431 10.9003 0.0442*** -0.0379 -0.0189 -0.0043 
London platinum free market spot index 1976/01~2009/12 8860 0.0257 0.0168 -0.4670 12.6317 -0.0087 -0.0189 0.0203 -0.0222 
Silver spot index (LBM) 1970/01~2009/12 10422 0.0215 0.0224 0.2314 42.4664 -0.1221 0.0163 0.0140 -0.0075 

Notes: b ρ(i) is the estimated autocorrelation at lag i for each series. * Significant of the two-tailed test at the 10% level. ** Signifi-
cance at the 5% level. *** Significant at the 1% level. 
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2.1. Optimum rules for the thirteen precious 
metal market indices. This Section reports the 
characteristics of the best trading rules and their 
associated profits within the precious metal market 
indices. With no consideration of the issues of non-
synchronous trading biases or transaction costs, the 
optimal trading rules for the spot markets and fu-
tures markets are rather distinct. The OBV rules and 
MA rules are respectively served as the best in fu-
tures and spot markets. Among the best MA rules in 
futures and spot markets, the windows of moving 
averages are diversified, ranging two- through 250-
day, which contrast sharply with about two- through 
five-day windows reported in U.S. markets by Sul-
livan et al. (1999) and in Asian markets by Chen et 
al. (2009). In consequence, the resultant trading 
signals for precious metal market indices tend to be 
diversified. From these, the lowest frequency is 
found in the high grade copper futures index (CMX) 
and gold 100 OZ futures index (CMX), where the 
total number of buy and sell signals are 16 and 15. 
The highest frequency is found in the palladium 
futures index (NYM), where the total number of buy 
and sell signals are 1791 and 1790. Moreover, al-
most all best trading rules exhibit significant mean 
returns at 1% level except silver 5000 OZ futures 
index (CMX) and silver spot index (LBM) reaching 
5% significance. The mean daily returns of the best 
rules range from a high of 0.146% for the London 
palladium free market spot index to a low of 0.043% 
for gold 100 OZ futures index (CMX); all of these 
easily outperform a buy-and-hold strategy across 
their various market indices. 

We further decompose the results on trading signals 
into buy-signals and sell-signals in order to exam-
ine, in some detail, the characteristic features of 
these buy and sell signals, and find that the fre-
quency of buy and sell signals is approximately 
equal for each market. For instance, London palla-
dium free market spot index results in a total of 
1380 (1379) buy (sell) signals for the best rules. 
However, the frequency of buy and sell signals var-
ies across the different markets. For example, palla-
dium has the highest of buy and sell signals, 
whether in the futures (1791:1790) and spot 
(1380:1379) market, whereas gold has the lowest 
buy and sell signals in the futures (16:15) and spot 
(17:16) market. As a result, there are also significant 
variations in the ratios of the average holding hori-
zons for buy and sell signals across markets. It is 
found to be highest in the gold bullion spot index 
(LBM) with a ratio of 379.18:265.63, and lowest in 
the London palladium free market spot index, where 
the ratio is 2.36:1.80. 

As noted by Bessembinder and Chan (1995), sig-
nificant return differentials between buy and sell 
signals indicate that the technical rules in precious 
metal market indices are capable of conveying eco-
nomic information. The differentials in the daily 
returns resulting from buy and sell signals for the 
best rules found in this study are sufficiently wide to 
generate significant economic profits across the 
precious metal market indices. For example, the 
mean difference between buy and sell signals in the 
London palladium free market spot index 0.285%, 
whilst the gold 100 OZ futures index (CMX), which 
has the lowest figure, still manages to achieve a 
0.079% return differential.  

2.2. The effects of data snooping on trading rules. 
We examine the profitability of technical analysis in 
greater depth in this section by taking into account 
the level of dependence that exists between the trad-
ing models, adjusting for data snooping bias by em-
ploying the White (2000) “reality check” and the 
Hansen (2005) “superior predictive ability” test. 

As shown in Table 3, the mean daily return of the 
best rule in ten precious metal market indices all are 
significantly higher than the buy-and-hold mean 
daily returns. The notable examples include London 
palladium free market spot index, palladium futures 
index (NYM), copper, grade a cash spot index 
(LME), and gold bullion spot index (LBM) respec-
tively amounting to 36.38%, 35.16%, 25.93%, and 
14.42% comparing to 4.7%, 5.07%, 7.40%, and 
7.87% of the indices in annual returns. All the four 
precious metal future and spot indices above pro-
vide abnormal returns significantly in terms of 
nominal reality check. However, only London pal-
ladium free market spot index and palladium futures 
index (NYM) are marginally better than the market 
indices in the SPA test and RC test. The fact clearly 
delineates the tendency of over-optimism toward the 
acceptance of superior trading rules as well as the 
neglect of the potential data snooping effect among 
the universe of technical analysis. Table 3 shows 
that, as in the majority of prior empirical studies 
within the finance literature, all of the best rules in 
the precious metal market indices significantly out-
perform their buy-and-hold alternatives. However, 
our empirical results also reveal quite a striking 
finding in precious metal markets, that when con-
trolling for the dependence in the trading models of 
the Sullivan et al. (1999) “universe”, most of the 
precious metal market indices in our sample, with 
the two exceptions of London palladium free 
market spot index and palladium futures index 
(NYM), confirm the non-existence of a superior 
technical rule. 



 

 

Table 2. Standard test results for the technical rules among the precious  
metal market futures and spot indices 

 Mean Buy returnd Sell returnd Buy-Selld  Round-trip  
costf 

 
Best rulea Orderb  

(%) t-value 
Long dayc /buy signals 

(%) t-value 

Short dayc / 
 sell signals 

(%) t-value 
BAHDe /SAHD 

(%) t-value (%) 
High grade copper futures index (CMX) MA(40, 125, 0, 0, 50) 2495 0.073 3.066 2694 16 0.098 3.129 2350 15 0.045 3.129 168.38 156.67 0.142 2.982 0.505 
Gold 100 OZ futures index (CMX) MA(30, 250, 0, 0, 25) 2425 0.043 3.098 4677 16 0.061 3.167 3500 15 0.018 3.167 292.31 233.33 0.079 2.838 0.168 
Palladium futures index (NYM) MA(1, 2, 0, 0, 0) 498 0.141 6.082 4427 1791 0.151 4.963 3400 1790 0.126 4.963 2.47 1.90 0.278 5.957 0.329 
Platinum Futures Index(NYM) MA(50, 125, 0, 0, 50) 2496 0.048 2.563 4477 27 0.064 2.546 3350 26 0.028 2.546 165.81 128.85 0.091 2.398 0.119 
Silver 5000 OZ futures index (CMX) OVB(20, 25, 0, 3, 0) 7066 0.053 2.268 2697 583 0.088 2.736 2679 584 0.018 2.736 4.63 4.59 0.105 2.264 0.104 
Copper, grade a cash spot index (LME) MA(10, 75, 0, 0, 5) 2156 0.104 3.812 2380 29 0.123 3.605 1665 28 0.076 3.605 82.07 59.46 0.200 3.610 0.022 
Gold bullion spot index (LBM) MA(30, 250, 0, 0, 25) 2425 0.058 4.611 6446 17 0.081 4.655 4250 16 0.024 4.655 379.18 265.63 0.104 4.077 0.206 
London palladium free market spot index MA(1, 2, 0, 0, 0) 498 0.146 5.558 3256 1380 0.163 4.783 2482 1379 0.122 4.783 2.36 1.80 0.285 5.396 0.288 
London platinum free market spot index MA(100, 125, 0, 0, 25) 2393 0.052 2.850 4960 30 0.080 3.332 3649 30 0.013 3.332 165.33 121.63 0.093 2.547 0.127 
Silver spot index (LBM) MA(2, 30, 0, 0, 50) 2448 0.051 2.263 5521 47 0.092 2.821 4650 46 0.003 2.821 117.47 101.09 0.095 2.088 0.105 

Notes: a“Best rule MA” denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; m-days is the long-term horizon line; b is the filter rate (%); d-
days is the time delay; and c-days is the holding days. b“Order” refers to the location of the best universal rule. c“Long (short) day” refers to the number of buying days for the best rule. d“Buy (sell) 
signals” referring to the number of buy (sell) signals for the best rule with the t-values referring to the two-tailed t-test. e“BAHD (SAHD)” denotes the average holding days for the buy (sell) sig-
nals. fThe transaction (round-trip) costs for thirteen precious metal market indices are adopted from member fees of CME group. 
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Table 3. Bootstrapped test results for the technical rules among the precious  
metal market futures and spot indices 

Daily returnc  Best  rulea Orderb 
(%) t-value 

Annual 
return (%) 

Index  
(%) SPAd RCe Nominal 

RCf 

High grade copper futures index 
(CMX) MA(40, 125, 0, 0, 50) 2495 0.073 3.066 18.266 4.252 0.886 0.886 0.112 

Gold 100 OZ futures index (CMX) MA(30, 250, 0, 0, 25) 2425 0.043 3.098 10.639 5.753 0.954 0.996 0.188 
Palladium futures index (NYM) MA(1, 2, 0, 0, 0) 498 0.141 6.082 35.161 5.073 0.092 0.092 0.000 
Platinum futures index (NYM) MA(50, 125, 0, 0, 50) 2496 0.048 2.563 12.083 4.355 0.940 0.986 0.172 
Silver 5000 OZ futures index (CMX) OBV(20, 25, 0, 3, 0) 7066 0.053 2.268 13.163 4.180 0.998 1.000 0.316 
Copper, grade a cash spot index 
(LME) MA(10, 75, 0, 0, 5) 2156 0.104 3.812 25.934 7.404 0.586 0.590 0.034 

Gold bullion spot index (LBM) MA(30, 250, 0, 0, 25) 2425 0.058 4.611 14.424 7.871 0.638 0.900 0.084 
London palladium free market spot 
index MA(1, 2, 0, 0, 0) 498 0.146 5.558 36.382 4.705 0.080 0.086 0.002 

London platinum free market spot 
index MA(100, 125, 0, 0, 25) 2393 0.052 2.850 12.901 6.422 0.976 1.000 0.312 

Silver spot index (LBM) MA(2, 30, 0, 0, 50) 2448 0.051 2.263 12.834 5.378 0.984 1.000 0.450 

Note: a“Best rule MA”denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; 
m-days is the long-term horizon line; b is the filter rate (%); d-days is the time delay; and c-days are the holding days. b“Order” 
refers to the location of the best universal rule. cThe t-value refers to the two-tailed t-test. d“RC” refers to the p-value for the White 
(2000) ‘reality check’ to the full universe. e“SPA” refers to the p-value for the Hansen (2005) ‘superior predictive ability’ test to the 
full universe. f“Nominal RC” refers to the p-value obtained by applying the “reality check” to the best rule only, without relating it 
to the full set of rules. 

2.3. The effects of non-synchronous trading bias 
on technical analysis. Technical analysis trading prof-
its arise mainly from positive serial dependence on 
stock index returns. However, as demonstrated by 
Scholes and Williams (1977), non-synchronous trad-
ing amongst component stocks may give rise to spuri-
ous positive serial dependence in the index returns, 
leading to the resultant measurement error potentially 
overestimating the trading profits of technical analysis. 

We adopt the one-day lag adjustment proposed by 
Bessembinder and Chan (1995) in the present study to 
partially calibrate the non-synchronous bias. Specifi-
cally, we associate the day t + 2 return with the initial 
trading signal emitted at the close of day t, thereby, 
allowing the component stocks of the index to be 
fully traded on the intervening days. Our empirical 
results, which are reported in Table 4, reveal that the 
non-synchronous effect is considerable and results in 
a significant alteration to the best rules selected for 
the samples.  

After calibrating the non-synchronous bias, we can 
find the best rules still lie in the original rule catego-
ries except high grade copper futures index (CMX) 
changing from the MA rule to the OBV rule. How-
ever, the parameter structures of best rules indeed 
move slightly around the original ones. For exam-
ple, the best rule in palladium futures index (NYM) 
changes from MA (1, 2, 0, 0, 0) to MA (1, 250, 0, 0, 
10). Furthermore, controlling for the non-
synchronous effect is also found to have adverse 
effects on the performance of the best rules reported 
in Table 3. For instance, the highest mean return for 

the London palladium free market spot index in 
Table 3, which is achieved by the MA (1, 2, 0, 0, 0) 
rule, declines from 0.15% to 0.01% when taking the 
non-synchronous effect into account, whilst the new 
optimal rule, MA (50, 100, 0.001, 0, 0), mean daily 
return is 0.10%, the gap between the two best rules is 
obvious. In fact, the effect of non-synchronous has 
much change for the best trading rules but the mean 
daily returns are not significantly affected. The nomi-
nal RC test provides the same result to Table 3 that 
only four previous indices, namely London palladium 
free market spot index, palladium futures index 
(NYM), copper, grade a cash spot index (LME), and 
gold bullion spot index (LBM), remain significantly 
better than the buy-and-hold strategy.  

We also take the model dependence into considera-
tion by carrying out the reality check and superior 
predictive ability test. As shown in Table 4, when 
ignoring the potential model dependence in the Sul-
livan et al. (1999) “universe” of technical analysis, 
only four indices which are the same with Table 3 
are still superior, in terms of the “nominal reality 
check”. However, the picture is rather different after 
controlling for the data snooping effect, there are no 
indices which have the best rule through the reality 
check and the superior predictive ability test. The 
evidence presented in Table 4 provides support for 
Sullivan et al. (1999) and White (2000) on the need 
for bootstrap testing when assessing the perform-
ance of technical analysis. The evidence also rein-
forces the fact that data snooping has a potentially 
serious bias when assessing the profitability of tech-
nical analysis rules. 
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Table 4. Bootstrapped test results for the technical rules among the precious metal market futures and spot 
indices with non-synchronous adjustment 

  Daily return Old best rule returnb 
  

Best  rulea Orderc 
(%) t-value (%) t-value 

SPAd RCe Nominal 
RCf 

High grade copper futures index (CMX) OBV(30, 100, 0.005, 0, 0) 6203 0.074 3.092 0.068 2.852 0.824 0.900 0.104 
Gold 100 OZ futures index (CMX) MA(40, 250, 0, 0, 25) 2426 0.041 3.013 0.041 2.951 0.980 1.000 0.198 
Palladium futures index (NYM) MA(1, 250, 0, 0, 10) 2087 0.090 3.892 0.012 0.523 0.574 0.748 0.022 
Platinum futures index (NYM) MA(40, 125, 0, 0, 50) 2495 0.045 2.365 0.043 2.283 0.950 0.992 0.196 
Silver 5000 OZ futures index (CMX) OBV(10, 25, 0, 0, 25) 7649 0.050 2.158 0.043 1.868 1.000 1.000 0.338 
Copper, grade a cash spot index (LME) MA(10, 75, 0, 2, 0) 1676 0.098 3.607 0.087 3.180 0.636 0.648 0.056 
Gold bullion spot index (LBM) MA(40, 250, 0, 0, 25) 2426 0.056 4.485 0.056 4.460 0.728 0.932 0.094 
London palladium free market spot index MA(50, 100, 0.001, 0, 0) 791 0.101 3.849 0.009 0.338 0.498 0.562 0.038 
London platinum free market spot index MA(100, 125, 0, 5, 0) 2018 0.055 3.020 0.049 2.720 0.940 0.996 0.274 
Silver spot index (LBM) MA(1, 5, 0, 0, 0) 499 0.059 2.580 0.057 2.533 0.992 1.000 0.348 

Note: a“Best rule MA” denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; 
m-days is the long-term horizon line; b is the filter rate (%); d-days is the time delay; and c-days are the holding days. b“Old best 
rule return” refers to the return of the best rule without institutional adjustments, as indicated in Table 2. c“Order” refers to the loca-
tion of the best universal rule. d“RC” refers to the p-value for the White (2000) “reality check” to the full universe. e“SPA” refers to 
the p-value for the Hansen (2005) “superior predictive ability” test to the full universe. f“Nominal RC” refers to the p-value obtained 
by applying the “reality check” to the best rule only, without relating it to the full set of rules. 

2.4. The effects of transaction costs on technical 
analysis. It has been argued by many researchers 
that transaction costs are a critical element in the 
overall appraisal of the economic significance of 
trading rules, particularly with regard to those rules 
which tend to generate frequent trades. We 
incorporate the transaction costs of the ten 
precious metal market indices into the analysis of 
the profitability of technical analysis in this study. 
The round-trip costs, utilized in this study, are 
drawn from the member fees of CME group and 
range from the highest high grade copper futures 
index (CMX) of 0.5% to the lowest copper, grade 
a cash spot index (LME) of 0.02%, the details 
referred to Table 2.  

When considering transaction costs, the best rules is 
similar with Table 3 which with no consideration of 
the issues of non-synchronous trading biases or 
transaction costs. In particular, as shown in Table 5, 
the best rules of Palladium indices in the future and 
spot market regularly switch to the long-run strate-
gies in order to avoid the frequently traded rules 
which attract high transaction costs. We also find 

that transaction costs exert great impacts on the 
profitability of technical analysis and results in the 
highest mean daily return (0.103%) to copper, grade 
a cash spot index (LME) which have the lowest 
transaction cost (0.02%). 

We go on to further explore the effects of data 
snooping bias under a setting in which transaction 
costs are taken into consideration. Even in the 
nominal sense of the reality check, the trading 
rules in only four of the ten precious metal market 
indices (London palladium free market spot index, 
palladium futures index (NYM), copper, grade a 
cash spot index (LME), and gold bullion spot 
index (LBM)) continue to exhibit superior profit-
ability, as compared to their corresponding buy-
and-hold strategy. However, the picture is rather 
different after controlling for the data snooping 
effect, no indices which have the best rule, through 
the reality check and the superior predictive abil-
ity test. The finding arrogantly maintains the as-
sertion of efficient market hypothesis among ten 
more developed precious metal markets under 
examination. 

Table 5. Bootstrapped test results for the technical rules amongst the precious metal market futures and  
spot indices with transaction costs adjustment 

Daily return Old best rule returnb  Best  rulea Orderc 
(%) t-value (%) t-value 

SPAd RCe Nominal 
RCf 

High grade copper futures index (CMX) MA(40, 125, 0, 0, 50) 2495 0.070 2.941 0.070 2.941 0.916 0.954 0.122 
Gold 100 OZ futures index (CMX) MA(30, 250, 0, 0, 25) 2425 0.042 3.054 0.042 3.054 0.954 0.996 0.170 
Palladium futures index (NYM) MA(1, 250, 0, 0, 10) 2087 0.088 3.798 -0.010 -0.427 0.672 0.736 0.028 
Platinum futures index (NYM) MA(50, 125, 0, 0, 50) 2496 0.048 2.521 0.048 2.521 0.928 0.982 0.116 
Silver 5000 OZ futures index (CMX) OBV(10, 25, 0, 0, 25) 7649 0.044 1.886 0.030 1.293 1.000 1.000 0.386 
Copper, grade a cash spot index (LME) MA(10, 75, 0, 0, 5) 2156 0.103 3.801 0.103 3.801 0.578 0.578 0.066 
Gold bullion spot index (LBM) MA(30, 250, 0, 0, 25) 2425 0.057 4.562 0.057 4.562 0.636 0.912 0.076 
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Table 5 (cont.). Bootstrapped test results for the technical rules amongst the precious metal market futures 
and spot indices with transaction costs adjustment 

Daily return Old best rule returnb  Best  rulea Orderc 
(%) t-value (%) t-value 

SPAd RCe Nominal 
RCf 

London palladium free market spot index MA(50, 100, 0, 0, 0) 566 0.101 3.851 0.007 0.274 0.554 0.618 0.034 
London platinum free market spot index MA(100, 125, 0, 0, 25) 2393 0.051 2.802 0.051 2.802 0.964 0.990 0.340 
Silver spot index (LBM) MA(2, 30, 0, 0, 50) 2448 0.050 2.221 0.050 2.221 0.996 1.000 0.496 

Notes: a“Best rule MA” denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; 
m-days is the long-term horizon line; b is the filter rate (%); d-days is the time delay; and c-days are the holding days. b“Old best 
rule return” refers to the return of the best rule without institutional adjustments, as indicated in Table 2. c“Order” refers to the loca-
tion of the best universal rule. d“RC” refers to the p-value for the White (2000) “reality check” to the full universe. e“SPA” refers to 
the p-value for the Hansen (2005) ‘superior predictive ability’ test to the full universe. f“Nominal RC” refers to the p-value obtained 
by applying the “reality check” to the best rule only, without relating it to the full set of rules. 

Conclusions 

We carry out a detailed investigation in this study of 
the profitability of technical analysis amongst ten 
precious metal market indices over the period of 
1968-2009. We employ the bootstrap results of the 
White (2000) “reality check” and the Hansen (2005) 
“superior predictive ability” test in order to deter-
mine whether any profitable trading rule exists, 
drawing from the “universe” of technical strategies 
proposed by Sullivan et al. (1999). Our empirical 
findings first indicate that, when non-synchronous 
trading bias and transaction costs are ignored, the 
best strategies in our sample are provided by short-
window “moving averages” rules, which are Palla-
dium futures index (NYM) (1, 2, 0, 0, 0) and Lon-
don palladium free market spot index (1, 2, 0, 0, 0). 
The accompanying profits of these rules are signifi-
cant according to the traditional test employed by 
Brock et al. (1992) and Bessembinder and Chan 
(1995). Furthermore, the results, remain valid in, are 
palladium futures index (NYM) and London palla-
dium free market spot index, even after controlling 
for data snooping bias through the bootstrap reality 
check and superior predictive ability test. 

Second, we find that when a one-day lag scheme is 
implemented to account for non-synchronous trading 
bias, there are changes in the optimal trading rules, 

but they are similar in trading profits. Furthermore, 
there is different result with ignoring non-
synchronous trading bias, no indices through the 
bootstrap tests in both the White (2000) reality 
check and the Hansen (2005) superior predictive 
ability test. Third, when transaction costs are 
taken into account, there entails a similar effect in 
trading profits as non-synchronous adjustment 
dose. As a result, both, the reality check and the 
superior predictive ability test, reject the existence 
of economically profitable rules in all of the pre-
cious metal market indices. The empirical evi-
dence seems suggest the relative magnitude of 
noises surrounding the true efficacy of technical 
analysis rank most from data snooping and the 
next from both non-synchronous trading and 
transaction costs.  

This study brings together powerful bootstrap tests, 
along with two institutional adjustments (non-
synchronous trading and transaction costs) to ascertain 
the profitability of technical analysis in ten precious 
metal market indices. The empirical results indicate 
that these adjustments have an enormous impact on the 
performance of the technical analysis rules. Indeed, 
our results clearly show that economic profits are 
unlikely to be earned from the use of technical analysis 
within these particular markets. 
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