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Abstract

This paper proposes a simplified methodology to price exotic options when the log returns follow a Lévy process. The
Markovian approach is simpler than others proposed in literature for these processes and it allows to define hedging
strategies. In particular, the authors consider three Lévy processes (variance gamma, Meixner and normal inverse
Gaussian) and show how to compute barrier, compound and lookback option prices. The article first discusses the use
of a homogeneous Markov chain approximating the risk neutral log return distribution. Then, it describes the method-
ology to price exotic contingent claims. Finally, the paper compares the convergence results considering the three dif-

ferent distributional assumptions.
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Introduction

It is well known that log returns are not Gaussian
distributed. In particular, exponential Lévy models,
that assume asset log returns follow a Lévy process,
have been widely used in the recent financial litera-
ture. This distributional assumption represents a
possible choice to overcome some drawbacks that
afflict the traditional Black-Scholes model. Many
empirical researches show the lack of the geometric
Brownian motion and highlight the necessity to
model asset returns by stochastic processes with
skew and fat-tails distributions (see, among others,
Rachev and Mittnik, 2000). Lévy non-Gaussian
processes meet this necessity because their distribu-
tions can take into account skewness and excess
kurtosis. Black-Scholes model also suffers the so
called volatility smile. Specifically, the implied
volatility, which should be a constant value, when
plotted against strike prices, displays graphs which
are smile shaped, that is, in-the-money and out-the-
money volatilities are higher than at-the-money
volatilities. Instead, empirical studies (Eberlein et
al., 1998; Rachev and Mittnik, 2000) show how
exponential Lévy models can reduce, at least in part,
this volatility behavior.

Geman et al. (2001) provide a theoretical motivation
to the use of Lévy processes in financial applica-
tions. They define an economic model where price
processes result to be differences of two increasing
stochastic processes, representing, respectively, the
up and down movements of the market. Then, the
resulting price processes are of finite variation and
with jumps. Thus, pure jump Lévy processes, such
as the variance gamma (VG) and CGMY processes
can be used as distributional assumptions in this
economic modeling. Moreover, since Lévy processes
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are semimartingale, their use can be justified by the
studies on no-arbitrage assumption (see Harrison
and Kreps, 1979; Harrison and Pliska, 1981; and
Delbaen and Schachermayer 1994). Unfortunately,
Lévy processes except the Brownian motion and the
Poisson process do not satisfy the so-called predict-
able representation property of a martingale and
thus there exist infinitely many equivalent martin-
gale measures. The choice of the right equivalent
martingale measure is still a delicate problem. Gen-
erally, it is the market to choose for us, that is, given
a set of current option prices, one should select the
equivalent martingale measure that approximates
better this set of data.

Option pricing under exponential Lévy models can
be performed in several ways and each method can
be more suitable according to the chosen Lévy proc-
ess and contingent claim to be priced. When the
option is European and we know the Lévy subordi-
nator process of the time-changed Brownian repre-
sentation, then Monte Carlo method can be very fast
and accurate. For example, Ribeiro and Webber
(2003; 2004) developed simulation schemes for the
Normal Inverse Gaussian (NIG) and VG processes
on the base of inverse Gaussian and gamma bridges,
respectively. Instead, more general Lévy processes
can be simulated through a compound Poisson ap-
proximation (see Asmussen and Rosinsky, 2001).
When the option is American, Monte Carlo method
is not so straightforward and an adjustment to opti-
mal stopping problems has to be carried out. Thus,
the least squares Monte Carlo method (see Long-
staff and Schwartz, 2001; and Carri¢re, 1998) can be
used to approximate conditional expectations. Va-
nilla options can be easily priced by Fast Fourier
Transform methods, which only need the knowledge
of the characteristic function of the risk-neutral
stock price process. Since Fast Fourier Transform
methods return option price surfaces within a sec-
ond, they make computationally efficient the cali-
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bration of exponential Lévy models to the market
prices. Barrier and lookback options can be treated
by Wiener-Hopf approaches, but this methods are
generally time consuming and quite complex (see
Boyarchenko and Levendorskii, 2002; and Yor and
Nguyen, 2001). Moreover, Wiener-Hopf factors
depend on the density function of the Lévy process,
which is usually unknown. The partial-integro dif-
ferential equation (PIDE) approach can be applied
to price vanilla and European barrier options. This
PIDE is derived by the Feynman-Kac formula for
Lévy processes (see Nualart and Schoutens, 2001;
and Raible, 2000). Numerical solutions are thus com-
puted applying finite difference schemes for PIDE
with boundary conditions (see Cont and Voltchkova,
2005; and Hirsa and Madan, 2003). Even American
options can be priced by PIDE approach, but, in this
case, we have to solve a system of partial-integro dif-
ferential inequalities. Numerical solution can be ob-
tained by the analytic method of lines or Garlekin
methods (see Meyer and Van Der Hoek, 1997; and
Matache et al., 2003). The above list of numerical
methods does not represent at all a complete review of
all existing methodologies. It only constitutes a partial
revision of some popular techniques. For example,
recently, there has been a considerable development of
quadrature methods, starting from the Sullivan’s
studies (see Sullivan, 2000; Andricopoulos et al.,
2003; O’Sullivan, 2005; and Lord et al., 2008).

The main contributions of this paper are: (1) the
extension of the Duan et al.’s approach (see Duan
and Simonato, 2001; and Duan et al., 2003) to price
exotic contingent claims when the underlying fol-
lows an exponential Lévy process; (2) a new meth-
odology to price lookback type options; (3) an em-
pirical analysis of the proposed methodology.

Thus we first describe how to extend the Duan et
al.’s lattice scheme (see Duan and Simonato, 2001;
and Duan et al., 2003) to price contingent claims
when the log return follows a Lévy process. The
possibility to use lattice schemes dates back to the
Amin’s work (Amin, 1993), where the author ap-
plies a lattice scheme to price Bermudan options
under jump-diffusion processes. Kellezi and Webber
(2004) described four methods to construct lattices
that approximate a general Lévy process. The first
construction is obtained from the density function of
the Lévy processes, whereas the other three ones are
obtained, respectively, from the generating triplet,
from a subordinated Brownian representation, and
from a time copula. In their paper, Kellezi and
Webber use the density function construction to
price vanilla and Bermudan options under NIG, VG
processes. Differently from Kellezi and Webber
(2004), we construct a sequence of Markov chains
converging weakly to the underlying Lévy process

on a finite set of dates. Then, the option pricing
problem is reduced to that one of pricing contingent
claims under Markov chains. The discretization
process presents the same advantages of the bino-
mial model, since it permits us to price path depend-
ent contingent claims. With this method it is simple
to obtain prices of Bermudan options, whereas
American prices can be computed as limits of Ber-
mudan prices, doing the sets of dates more and more
dense. In particular, we examine the Markovian
approach to price compound, barrier, and lookback
options assuming exponential Lévy models for the
underlying. Doing so, on the one hand, we extend
Duan et al.’s approach when applied to price com-
pound and barrier options. On the other hand, we
discuss a new approach for pricing fixed and float-
ing strike price lookback options.

In the proposed empirical analysis we compare op-
tion pricing results under the assumption that the log
return follows either a NIG process, or a VG process
or a Meixner process or a standard Brownian mo-
tion. Then, we show the convergence of the com-
pound option prices in the case analyzed by Geske
(1979) for the Brownian motion and we extend the
same analysis to the other three Lévy processes. For
compound and barrier options we just adapt the
Markovian approach to Lévy processes. Alterna-
tively to classic methods (see Babbs, 2000; and
Cheuk and Vorst, 1997) we propose a different ap-
proach to price fixed and floating strike price look-
back options in a Markov chain framework. More-
over, discretizing the continuous Markovian models
we can approximate very well the right prices of
floating strike lookback contracts, since in these
contracts the maximum and/or the minimum of the
underlying asset price are computed over some
dates only, such as daily, weekly or monthly.

The paper is organized as follows. Section 1 is a
brief introduction to Lévy processes and their use in
pricing problems. Section 2 discusses the Mark-
ovian approach and shows some convergence results
for Bermudan, European options and their Greeks
when the log return follows either a NIG process, or
a VG process or a Meixner process. In Section 3 we
deal with the compound, barrier and lookback op-
tions when we use the three different Lévy proc-
esses. Finally, we briefly summarize the results.

1. Pricing with exponential Lévy processes

In this Section we describe Lévy processes reporting
their characterization by the Lévy triplet and we
discuss the asset pricing with exponential Lévy
processes. Let us assume in the market there are two
assets: a riskless asset and a risky asset whose log
return process follows a Lévy process. In particular,
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we assume that the riskless asset has price process

B = exp(j(:r(s )ds) , where the right continuous with

left-hand limits time-dependent function 7(¢) de-

fines the short term interest rate. While we assume
the risky asset pays no dividends and presents price

process S, =S,exp(X,), where the log return
process X =(X,),, (e, X, =log(S,/S,)) is an
adapted RCLL Lévy process defined on a filtered
probability space (Q, 3, (S,) P), that satisfies

the usual conditions.

0<t<0?

Non-Gaussian Lévy processes generally take into ac-
count the skewness and the heavy tails often observed
in the log return distribution. As a matter of fact, Lévy
processes are all the stochastic processes with station-
ary, independent increments and stochastically con-
tinuous sample paths. Since they have infinitely divisi-
ble distributions, their characteristic function @(u) is

uniquely determined by the triplet [y,0°,v] that

identifies the so-called Lévy-Khintchine characteristic
exponent i (u) =log@(u) given by:

W) =im —% o + [ (expux) ~1 =iy, (),

where y€R, 0°>0 and v is a measure on
R\{0} with [ (Inx*)v(dx)<co. In particular

the Lévy triplet [y,07,v] identifies the three main
components of any Lévy process: the deterministic
component ( 7 ), the Brownian component (0'2) and

the pure jump component (Vv ). For further details on
the theoretical aspects we refer to Sato (1999). Un-
der the assumption the log return process follows a
Lévy process whose trajectories are neither almost
surely increasing nor almost surely decreasing we
can always guarantee that there exists at least one
equivalent martingale measure. Since the market is
generally incomplete, then more than one equivalent
martingale measure could exist. Given the risk neu-

tral probability measure P , We can use it to deter-
mine the free-arbitrage price of any contingent
claims with maturity 7. That is, given the contingent

function H : Q>R
function), then its price at time 7 is:

IT,(H) :exp(—J‘tTr(s)ds)Eﬁ(H|St). (1)

claims (3, -measurable

There exist several techniques to determine a risk
neutral martingale measure. However, the choice of
the equivalent martingale measure is not subject of
the present paper and we adopt the mean-correcting
measure just to follow other financial studies (see,
among others, Ribeiro and Webber, 2003, 2004;
Shoutens, 2003). A two steps methodology com-
monly is used:

1. To determine a class of equivalent martingale
measures.

2. To determine the risk neutral measure, among
the equivalent martingale measures, that mini-
mizes a distance with respect to some historical
contingent claim prices.

Typically, in order to determine the optimal parame-
ters that better approximate the risk neutral distribu-
tion, we minimize the root mean squared prediction
error (RMSE) with respect to the observed prices.
Therefore, we consider N historical contingent claim
prices cc;(i=1,---,N) and we determine the risk

neutral Lévy process parameters @ € ® that minimize
N —
RMSE = r;lel(glg(cci —Lpl.(zv))z , )

where Ei(w) is the price of the i-th contingent

claim obtained using the relation (1) under the
equivalent martingale Lévy density with the pa-
rameters @ € ® .

Next, we consider three Lévy processes alternative
to the Brownian motion that present skewness and
semi heavy tails: the normal inverse Gaussian proc-
ess (NIG), the variance gamma process (VG) and
the Meixner one.

1.1. Normal inverse Gaussian. Under the assump-
tion that the log return follows a NIG pro
cess NIG(a, f,0,q), with parameters o > 0,

pe(-a,a), 6 >0, g€ R, we have that the char-
acteristic function of the process at time ¢ is given by:

b, B.1S.1q) = exp(— (t5)(\/a2 —(B+iu)’ -’ - B )+ iuzq).

That is the density of the log return at time ¢ is given by:

Juc(X;a, B,to,tq) = td—aexp(té' a’—p* + B(x—
T

19))

\K (@ (t6) + (x—19)*)
J@8) +(x—1g)’

where K, (x) denotes the modified Bessel function of the third kind with index A .
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1.2. Variance gamma. The variance gamma

process can be also defined as the difference be-

tween two independent gamma processes. Under

the assumption that the log return follows a VG

process, VG(o, v, 0, q) , with parameters ¢ > 0, v > 0

and ¢, 0 € R, the characteristic function of the process
(x=qt)’

O(x—qt) t 1
4
2e ~ (7)
2 2
20° /v+0 K

viIV2rel(t/v) ¢

where K, | (x) is the modified Bessel function of

fVG(x:'O'\/;,V/t,tH,qt) =

the third kind with index * _% .
1%

1.3. Meixner. Under the assumption that the log re-
turn follows a Meixner process, Meixner(e, £,0,q),
with parameters « >0, pe(-n,7), 0>0,

at time ¢ is given by:

< |~

1 _
¢m[u;6\/;,;,t0,tqj = (1 —iulv + Eazmzj e

That is the density of the log return at time ¢ is given by:

1
(?\/(x — gt (2 /v + ez)j,
m € R the characteristic function of the process at
time ¢ is given by:

cos(B/2) " jua
cosh((au—if)/2) '

That is the density of the log return at time # is given by:

¢Meixner(u; a, ﬂ, é‘t, qt) = (

Table 1. MLE of parameters and Kolmogorov-Smirnoff test of daily S&P500 log returns assuming a
NIG process, or a VG process or a Meixner process.

NIG a=153.866 £=7.603 5= 1562 q=-0.00029 D =0.0653
VG 0=0.0756 0=0.0984 v=0.0024 g =0.00055 D =0.0667
Meixner a=0.0146 B=01116 5=94.676 q=-0.00026 D=0.0661
26 . 2
(2cos(B8/2)) B(x—q1) i(x - qt)
fMeixner ('x; a’ ﬂ’ 5t’ qt) = e‘xp r 5t + .
2420 a a

In order to value the best approximation of these
distributions, we consider quotations of the index
S&P500 from January 2006 to March 2007. Then
we compute the parameters maximizing the likeli-
hood function when the log returns follow either a
NIG process, or a Meixner process or a VG process
(see Table 1). Finally, we consider the Kolmogorov-
Smirnov test:

D =sup | F(x) = F;(x)],

XeR

where [, is the empirical cumulative distribution
and F the assumed distribution. Considering that the

QC plot of sarnple data versus standard normal

0y plot of zample wersuz MIG distribution
T T

Brownian motion hypothesis gives a value of the
test D = 0.0766, then the other three distributional
hypotheses present a better approximation. This
empirical result is confirmed by the QQ-plot
analysis of Figure 1.

Figure 1 reports a QQ-plot among the sample and
the Gaussian, NIG and VG distributions (we get
similar results with the Meixner distribution).
Thus we can see how the empirical and theoretical
distributions are closer on the whole real line
when we use the NIG or VG distributions to
model the log returns.

¢ plot sample versus WG distribution
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Fig. 1. QQ plot among the sample and the Gaussian, NIG and VG distributions

in our following empirical analysis (see, among
others, Cont and Tankov, 2003; Schoutens, 2003).

Here in the following we briefly recall the mean-
correcting equivalent martingale measure that we use
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Mimicking the Black and Scholes model, the dis-
counted price process §[ = exp(— i r(s)ds)St be-
comes a martingale if we change the price process
S, =8, exp(X,) with S, =S, exp(Jou(s)ds + X,),
where u(s)=¢qg+r(s)—logd(—i) and ¢ is the

translation parameter previously introduced for the
three distributions. Therefore, we have to define a

new equivalent probability measure P on (Q,3)
under which the log returns follow the Lévy process
{loue(s)ds + X,}. In the three processes defined

above, we have:

,LI(NIG)(S):I’(S)+5(\/6¥2—(ﬂ"‘l)z _\/a2_ﬁ2 ), (3)

’u(VG)(S) _ r(S)+llOg[1_9V_%GZVj 5 4
|4

1M (5) = r(s) =26 (log(cos(B/2)) -
—log(cos((a+ )/ 2))).

2. A lattice method to price Bermudan and
European options with Lévy processes

)

In this Section, we opportunely adapt to Lévy proc-
esses the Markovian methodology proposed by
Duan et al. (2003). Since Lévy processes are
Markov processes we suggest to use an approximat-
ing Markov chain in order to price exotic options
when the log return follows a Lévy process. This
discretization process provides the same ductility of
the binomial model and for this reason it is possible
to price almost every path dependent contingent
claim once we know the risk neutral distribution of
the underlying Markov process.

2.1. The Markovian approach. Assume the matur-
ity of the contingent claim is 7. Our task is to ap-
proximate, under the risk neutral probability P , the
log price process {ln(St)}OS oy at

{0,At,2A¢,...,sAt =T} by a sequence of Markov

chains {Y",n=0,1,2,...,8}, 5, ..y With state

times

space {p,, P,,...,P,,+ and transition probability
matrix Q) =[g; 1,4 ;<. » Where m is an odd integer
and p,.;, =1n(S,) . In order to fix the ideas, we

adopt the mean correcting risk neutral valuation
considering the riskless rate 7(¢)=r constant.

Thus, we build a sequence of Markov chains
Y n=0, 1,2,...,8},5s1ey  With state space
{p»Pys---» D, }, converging weakly to the risk
neutral Lévy process {In(S,)+ ut+X,, t =0, At

2A¢t,..., T} (here X =(X,),, is the log return pro-
144

cess) as the state number m of the states tends to infi-
nite, where g is defined (for the three processes in-

troduced in the previous section) by equations (3), (4),
(5). Therefore, given the current price S,, we define

an interval centered in In(S;) such that the probabil-

ity that In(S; )+ u7" belongs to the interval is almost
equalto 1,1i.e.:

P(In(S,) + uT €[In(S,)—1(m),In(S,) + I(m)]) = 1,

where 2[(m) is the length of the interval
[In(S,)—1(m),In(S,)+1(m)]. The quantity I(m)
depends on the number of the states of the Markov
chain since to get the convergence we have to guar-
antee that I(m)—>oo and I(m)/m—>0 as the

number of the states converges to infinity (m — o0)
(see, among others, Pringent, 2002). For example,
when the Markov process Y = {ln(S[)}OS <y admits

finite mean (i.e., Ean(SA[)|)< ), we can use
I(m)=max(|z,, ||z, ), where z, is the k%
quantile of In(S;)+ uT . Since I(m)—>oo and

I(m)/m— 0, we can guarantee the convergence

of the Markov chain sequence. However, the speed
of convergence is strictly linked to the choice of
I(m) . Thus, we have to choose opportunely 7(m).

Duan et al. (2003) suggest to use I(m) =
= (2 +ln(ln(m)))0'ﬁ for the Brownian motion.

When we assume the mean correcting risk neutral
valuation for the three processes introduced in the
previous section, we observe an higher speed of

log(log(m))
2

convergence using /(m) =z + , where

with log we mean logarithm with base 10,
z=max(| Zyo; || Zogo I)» Zpo and z,4, are respec-
tively the 1% and 99% quantiles of the
In(S; )+ uT distribution. Thus in the following we

will use this definition of /(m). The m states of the
Markov chain are defined as:

1(m),
that p, =In(S,)—-1(m), p, =In(S,)+1(m) and
Py = In(S,).

i-m—1

pl_zln(SO)+2 i=1,...,m. Note
m_

Remark. Fixed the ‘m’ values p,, we can always

determine other ‘m’ values starting by any other

2k—m—

state  p = p. + L (m). In particular, we

get the transformation p,i =p; if and only if

k= j—i+*~, thatis:
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; 2k—m—-1 2(i+k—21)y—m—1
pl=pt 2 ) = o)+ 2 ), ©
The transition probability between the i-th state and . I(m) log(log(m))
the k-th state is given by: Cy =€ =Cppy—C, = 1 + m -0,

gy = PIn(S,) + pdt e (ch e, 1),
log(log(m))

(7

s =P+ D)/ 2,

log(log(m))  Then

2
we deduce the convergence of the sequence of

Markov chains  {¥{,n=0,1,2,.
with state space {p,, p,,..
Lévy process {1# +1n(S,),t =

where cl" = pl" -

k=2,...

i
2L and Cni1 = P +

m

ces S} pivtien
D} to the risk neutral
0,At,2At,...,T} because

as m — o and c,i+1—c,i:2(Mj—>O,asm—>oo,
m_

k=2, m-1.

Since p; = p; if and only if k= j—i+"1, then

we have not to compute all the entries g, of the

transition matrix Q.. As a matter of fact, if we
define k(j)=j—-i+2, j=1,...,m, then the

i+
entries of the transition matrix Q,, are given by:

Lol P '
o o fy, () if j =1,
£ o mt Ch(jyn—Pi= L . m—1
ifi<ogtigy =g [0 " f, (0dxs i ] =2, 04—, (8)
+1
0 1f ]—z+m e
2
. +1
0, if j=1,...,i- "%
2
ifi>mg = [onem o g e o ML )
y C(j)—Pi—HAL A 2
k:m_iw“ﬁ:*'pp‘w Sy, )dx, if j=m,
m+1 j’+1‘P;‘,UAt .
ifi="":¢q; = L,__p_w Sy, ()dx, j=1,....m (10)

where fy () is the density function of the log re-
turn Lévy process. When m increases, the intervals
(c;,c;,,] become so small that we can well ap-

proximate any integral with the area of only one
rectangle, i.e.:

J'CI’cH

Cp—p;—HAL
2.2. Pricing of European contingent claims. When
the maturity of an European contingent claim is T
and we consider s steps (i.e., sSAt =T), then the

price of the contingent claims is given by the
((m +1)/2)-th component of the price vector:

V(pao):(Q(m))rZa (12)

where Z is the m-dimensional vector of payoff at
the maturity correspondent to the vector of log

prices p = [pl,pz,...,pm]. So we can assume that

fXA, (x)dx = fXA [M)(Clm —¢,).(11)

the payoff vector is given by Z =[ o lseees gwm]’

where &, = max{wlexp(p,) - K1,0} w is equal
to 1 for a call and -1 for a put. Analogously, to the
example reported by Duan and Simonato (2001)
with the Black and Scholes model, in Table 2 we
show the convergence of this methodology under the
three different distributional assumptions. In this Table
and in all the following ones we use the mean correct-
ing risk neutral measure applied to the parameters
estimated in Table 1. This choice is a simplification to
the classic methodology that determines the risk neu-
tral measure obtained from the market (as suggested
by equations (1) and (2)). Moreover, this choice
satisfies the main objectives of our empirical analy-
sis consisting in showing the applicability of the pro-
posed methodology and the convergence to a unique
price. Clearly these objectives should be obtained with
any assigned parameters. Finally, the chosen parame-
ters refer to the same underlying stock process and
thus the obtained option prices should be similar even
for different distributional hypothesis.
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Table 2. European put option prices under NIG, VG,
and Meixner process

States NIG process VG process Meixner process
Weekly | Daily | Weekly | Daily | Weekly | Daily

m =101 17428 | 1.7984 | 1.6795 | 1.7489 | 1.7343 | 1.8022
m =501 1.7442 | 17442 | 16809 | 1.6852 | 1.7357 | 1.7357
m=1001 17442 | 1.7442 | 16810 | 1.6840 | 1.7358 | 1.7358
m = 1501 17442 | 1.7442 | 16810 | 1.6810 | 1.7358 | 1.7358
m = 2001 1.7442 | 17442 | 1.6810 | 1.6810 | 1.7358 | 1.7358
m = 2501 17442 | 17442 | 1.6810 | 1.6810 | 1.7358 | 1.7358
m = 3001 1.7442 | 17442 | 16810 | 1.6810 | 1.7358 | 1.7358

Table 2 reports European put option prices at the
money under NIG, VG, and Meixner processes on a
stock price with current value S, = 100 euro, matur-
ity T = 0.5 years, short interest rate » = 5% a.r.
Moreover, we consider that the temporal horizon is
shared either in 24 periods or in 126 periods (i.e.,
At is equal respectively either to one week or to
one day). In both cases we observe the convergence
of the option prices when the number of the states m
increases. The convergence price is the same we
obtain approximating the integral that defines the
risk neutral put option price:

S,exp(-rT)[°,(1—¢e" )f)?r (x)dx .

2.3. Pricing and hedging of Bermudan contin-
gent claims. Let us consider an Bermudan option
with maturity 7 and strike price K. We assume
that the contract may be exercised at times
{0,At,2A¢,...,sAt}, where T = sAt and the prede-

termined exercise dates are given every Af. If At is
very small the Bermudan option price approximates
the American one. For several contingent claims it
is sufficient to consider daily exercise dates to get
a good approximation of American type options if
the log returns are Gaussian distributed. However,
when we use non-Gaussian Lévy processes the
convergence to the American type price is slow
(see, among others, Ribeiro and Webber, 2003;
2004). For this reason in the following we will
always refer to Bermudan type options (with daily
exercise dates). By fixing the number of states m,

_or, 1 ~Vw(p%+l+5=0)—Vw(pL;—8,0)
_alnSoS_o~ 2¢e

1
S,

we build the vector of the state values
p= [pl, 2T pm] of an approximating Markov
chain {Z(A';’),n:0,1,2,...,s}m:2i+l,l.€N, with risk

neutral transition matrix Q.. Since the states remain
the same for all the time steps, then at each time
{0,At,2At,...,sAt} there is an unique payoff vector:

gw(p7K):[gw,l""’gw,m]" (13)

where g, =max{wlexp(p,) — K],0}, w is equal
to 1 for a call and -1 for a put. For every couple of
vectorsa =[a,,...,a, ], b=[b,,....b, ] we assume
the vectorial notation:

max|a,b]:=[max(,,b),max(a,,b,),....max(,,,b,)] .

Therefore, the price of the Bermudan option can be
computed using the recursive vectorial formula:

V.(p,T)=g,(p,K),

V. (pot) = max|g, (0. K)e ™ O VPt (14)
i=0,.,s—1, t,=iAt, sAt=T.

The option price at time 0 is given by the
((m+l)/ 2)-th element of V, (p,0). When we
price a contingent claim with the Markovian ap-
proach we get the vector V, (p,0) whose elements
are option prices corresponding to discrete values of

the stock price. Thus, we can compute the Greeks in
a way very similar to the finite-difference approach

using the option prices adjacent to the ((m +1)/ 2) -th
element of V (p,0). However, as suggested by

Duan et al., in order to obtain higher quality Greeks
it is advisable to have adjacent prices very close to
the initial stock price. This approximation problem

can be easily solved considering the states p,., + &,
2

and p,, —¢& in the Markov chain with & oppor-

tunely small. In this way we can use the following
approximation of delta and gamma values:

" as, \oims, S,

o ov, i
2¢

j~ Vw(pmT+l —8,0)— Vw(p%l +g,0)l V“(‘DT‘ +g,0)+ Vm(pmTl —&, 0)— 2Vw(p%l,0) 1

2 2"
£ S,

T

Table 3. Delta, gamma and Bermudan put option prices with daily exercise dates under the assumption
the log returns follow NIG, VG, Meixner processes and their Monte Carlo valuation

NIG process

VG process

Meixner process

K=98

K'=102

K=98

K =102

K=98

K'=102

m=501

1.2419

3.0101

1.2067

2.9527

1.2349

3.0025
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the log returns follow NIG, VG, Meixner processes and their Monte Carlo valuation

NIG process VG process Meixner process

K=98 K =102 K =98 K=102 K=98 K =102
Delta -0.2919 -0.5686 -0.2914 -0.5739 -0.2914 -0.5692
Gamma 0.0560 0.0816 0.0572 0.0829 0.0561 0.0820
m=1001 1.2419 3.0101 1.1882 2.9529 1.2349 3.0025
Delta -0.2919 -0.5686 -0.2881 -0.5732 -0.2914 -0.5692
Gamma 0.0560 0.0816 0.0571 0.0847 0.0561 0.0820
m=1501 1.2419 3.0101 1.1869 2.9509 1.2349 3.0025
Delta -0.2919 -0.5686 -0.2879 -0.5732 -0.2914 -0.5692
Gamma 0.0560 0.0816 0.0571 0.0848 0.0561 0.0820
m=2001 1.2419 3.0101 1.1868 2.9507 1.2349 3.0025
Delta -0.2919 -0.5686 -0.2879 -0.5732 -0.2914 -0.5692
Gamma 0.0560 0.0816 0.0571 0.0848 0.0561 0.0820
m=2501 1.2419 3.0101 1.1868 2.9508 1.2349 3.0025
MC 1.2431 3.0121 1.1891 2.9552 1.2356 3.0047
Delta -0.2919 -0.5686 -0.2879 -0.5732 0.2914 -0.5692
MC delta -0.2911 -0.5682 -0.2886 -0.5741 -0.2911 -0.5688
Gamma 0.0560 0.0816 0.0571 0.0848 0.0561 0.0820
MC gamma 0.0559 0.0814 0.0574 0.0852 0.0560 0.0818

Consider Bermudan put options with predetermined
daily exercise dates and exercise prices K = 98
euro or K = 102 euro under the assumption the log
returns follow either a NIG, or a VG, or a Meix-
ner process. Moreover let us consider the mean
correcting risk neutral measure applied to the
parameters estimated in Table 1 for puts on a
stock price with current value Sy = 100 euro, ma-
turity 7 = 0.5 years (120 working days), short
interest rate » = 5% a.r.

In order to simulate Lévy processes recall that any

semi-martingale X = {X , }IZO can be represented as

time changed Brownian motion, i.e.:

X, =+l +oW,, (15)

where {/,} and {W,} are respectively: a positive

intrinsic time process and, a standard Brownian
motion. Lévy processes are particular semi-
martingales. In particular, the intrinsic time process

{I,} is: an inverse Gaussian process when
X = {X t }tzo
variance gamma and it is defined by a proper proc-
ess (see Madan and Yor, 2008) when X is a Meix-
ner process. The equation (15) is generally used to
simulate Lévy processes using the antithetic variates
method as variance reduction technique. In the lit-
erature there exist several variance reduction tech-
niques (see, among others, Ribeiro and Webber,
2003; 2004; Kawai, 2008), but in this paper we use
only the antithetic variates method. Let us explain
the procedure when the underlying asset follows
one of the three Lévy processes. A sample path on

is NIG, a gamma process when X is

time points {kAr : k=0,1,...,n} can be generated as
follows:

¢ generate n independent random numbers {/;, k =
=1,..., n} from a the intrinsic time distribution;

¢ generate n independent random numbers {Z;, k =
=1,...,n} from a standard normal distribution;

¢ asample path on time points {kAt, k=0,1,..., n}
is given by:

Xo=0, X, =Xy +uA+0 +
+o.l,Z,, k=1,...,n.

Now, we can use this sample path to calculate the
final payoff of the derivative. Let us denote this
value by fi. According to the antithetic variates
method, we can compute a second value f, of the
final payoff by using the following sample path:

Xo=0, Xy =X pa + 1A +06l, _O-\/zzka
k=1,...,n.

Finally, an estimate of the final payoff is given by
the mean:

r_ Lt S
S==7

Say we have generated M final payoff f , then the
standard error is much smaller than that obtained
with 2M standard simulations.

In Table 3 we report the option prices and the values
of delta and gamma obtained either with Monte
Carlo (MC) simulations or with the Markovian ap-
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proximation when we assume & =10"° Even in this
case we observe the convergence of these values for
a number of states m greater than 500.

Observe that the prices and the Greeks obtained
with Meixner and NIG processes are very similar
and are always higher than the prices obtained with
the VG process. These results confirm the analogous
obtained for the European put prices of Table 2.
Clearly these differences are essentially due by the
different evolution of the processes and by the risk
neutral measure used in this analysis. We compare
the results using Monte Carlo simulations with vari-
ance reduction techniques and we need 5 millions
simulations to get similar results to those given by
the Markovian approach. The prices difference be-
tween the Markovian approach and those obtained
by generating Monte Carlo simulations is generally

of order 107

3. Compound, barrier and lookback option
prices with Lévy processes

In this Section we propose to value exotic option
prices assuming that a sequence of Markov

chains {X,(A',"),n=0,1,2,...,S}m:21.+1,i5N describes the

risk neutral behavior of In(S,) at times {0,Az, 2Az,

.., SAt = T}. We compute compound, barrier, and
lookback option prices under the three distributional
assumptions. In particular, the methodology pro-
posed is innovative for compound, and lookback
options that have not been dealt by Duan and Si-
monato (2001) and Duan et al. (2003).

3.1. Compound options. Compound options are
options written on options and can be of four types:
a call on call, a put on call, a call on put, and a put
on put. Consider a call on call. At the first maturity

T, the compound option holder has the right to pay

Meixner

VG

NIG

BM

the first exercise price K, and get a call. Then, the
call gives to the compound option holder the right to
buy the underlying asset at the second maturity 7,

paying the second exercise price K,. The Mark-
ovian approach allows to price easily compound
options. Using the recursive system to price an op-
tion with maturity 7, —7, and exercise price K,,
we find a vector which represents the possible prices
at time 7, of the European option on which the first
option is written. Denote this vector as:

V. (p.T) =V, iV, T,

2" wy,m

(16)

where w; is equal to 1 for a call and -1 for a put. The
payoff at time 7, of the compound option is given
by the vector

v, (p.T,) = max{w,[V, (p.T,)- K,11,0}, (17)

where 1 and 0 are respectively vectors of ones and
zeros, w; is equal to 1 for a call and -1 for a put.
Thus, using again the recursive system with s steps

(i.e., sAt=1,), the price at time 0 of an European
option on an European option is given by the
((m +1)/ 2) -th element of the vector

sz (p’ O) = e*”} Q(Sm)sz (pa T;) .

Table 4 and Figure 2 exhibit the prices of compound
options obtained under Brownian motion, NIG, VG,
and Meixner processes (considering different num-
ber of states m). Figure 2 shows that the biggest
differences are between the prices obtained either
with the VG process or with the Brownian motion.
Generally the prices obtained with the VG process are
lower than those obtained with the Brownian motion
as also observed in the previous Tables 2 and 3.

0 0.5 1 1.5

2 2.5 3 3.5 4

Fig. 2. Compound option prices under Brownian motion, NIG, VG, and Meixner processes when K, is respectively 102 (a),
100 (b), 98 (c) and K, =2.
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Table 4 describes the evolution of the estimates
prices when we use different number of states m.

In particular, we compare the results we get under
the Brownian motion and those given by Geske’s
closed formula (see Geske, 1979). These prices con-
cern European calls on European calls, where the
current asset price is S = 100, the first call has strike
price K; and maturity 7} = 0.25 years, and the second

call has strike price K, and maturity 7, = 0.25 years.
We consider two possible strike prices Ki-(K; =
= 1.5, 2) and three possible strike prices K, «(K, =
= 98, 100, 102). Moreover, the short interest rate is
r = 5%, the annual volatility of the Brownian motion
is 0 = 10.14%, and the parameters of the NIG,
Meixner and VG processes are (for simplicity) those
ones of Table 1.

Table 4. Compound option prices under Brownian motion, NIG, VG, and Meixner processes.

Ki=2 Brownian motion Ki=15 Brownian motion
K2=98 K2=100 K2=102 K2=98 K2=100 K2=102
m =101 3.7530 2.5803 1.6764 m =101 4.1629 2.9332 1.9609
m =501 3.7540 2.5851 1.6747 m =501 4.1637 2.9381 1.9598
m=1001 3.7542 2.5851 1.6747 m=1001 4.1637 2.9385 1.9598
m = 1501 3.7542 2.5852 1.6746 m = 1501 4.1637 2.9386 1.9598
m = 2001 3.7542 2.5852 1.6747 m = 2001 4.1637 2.9386 1.9597
Geske 3.7542 2.5852 1.6747 Geske 4.1637 2.9386 1.9597
Ki=2 NIG process Ki=15 NIG process
K2=98 K2=100 K2=102 K2=98 K2=100 K2=102
m =101 3.7380 2.5584 1.6607 m =101 4.1479 2.9127 1.9438
m =501 3.7360 2.5655 1.6577 m =501 4.1459 2.9189 1.9415
m=1001 3.7359 2.5660 1.6574 m=1001 4.1459 2.9190 1.9413
m = 1501 3.7359 2.5660 1.6275 m = 1501 4.1459 29191 1.9414
m=2001 3.7359 2.5660 1.6575 m = 2001 4.1458 29191 1.9414
Ki=2 Meixner process Ki=15 Meixner process
K2=98 K2=100 K2=102 K2=98 K2=100 K2=102
m =101 3.7304 2.5519 1.6552 m =101 4.1394 2.9065 1.9365
m =501 3.7289 2.5578 1.6494 m =501 4.1389 2.9107 1.9330
m=1001 3.7288 2.5578 1.6496 m=1001 4.1388 2.9108 1.9329
m = 1501 3.7287 2.5580 1.6495 m = 1501 4.1388 29110 1.9329
m = 2001 3.7287 2.5580 1.6495 m = 2001 4.1387 29110 1.9330
K= 2 VG process Ki=15 VG process
K2=98 Kz=100 K»=102 K2=98 Kz=100 K.=102
m =101 3.6634 24874 15795 m =101 40738 2.8397 1.8610
m =501 3.6800 2.5043 1.5965 m =501 4.0904 2.8564 1.8776
m=1001 3.6805 2.5048 15971 m=1001 4.0909 2.8570 1.8781
m = 1501 3.6806 2.5049 15971 m = 1501 4.0910 2.8571 1.8782
m = 2001 3.6807 2.5050 1.5972 m = 2001 40911 2.8571 1.8783

Notes: We conseder European calls on Europeans calls, where the current asset price is S = 100, the first call has strike price K; and
maturity 7} = 0.25 year, and the second call has strike price K, and maturity 7, = 0.25 years.

3.2. Barrier options. Barrier options may be of
two types, knock-out and knock-in. We proceed
explaining how to use the Markovian approach to
price knock-out options and we refer to Duan et al.
(2003) for knock-in options. An option is said
knock-out when it becomes worthless if the underly-
ing asset touches or crosses a constant barrier H at
any monitoring time. The barrier can be lower or

upper (i.e., Hor H"). A barrier option is double when

for every time v, (p,,t;; a, =1)=0,

there are two barriers and the underlying asset must
remain between these two barriers at the monitoring
days. Following Duan et al. (2003), we introduce an

auxiliary variable a, which takes the value 1 if the

barrier condition is triggered before or at time ¢, and
the value 0 otherwise. If we denote with

v(p,,t; a,) the option price at time ¢, for a knock-

out option we have:

ift, =sAt=T,v, (p,,T; a, =0)=max{wexp(p;,)—K],0},

if £, = kAt k=0,5-1,

149



Investment Management and Financial Innovations, Volume 8, Issue 1, 2011

v (ptisa, =0)= max[gw(pi K,a, = O), e™ Py 13()(

where w is equal to 1 for a call and -1 for a put, and

e P, :Othk =pia, :O)V(pjal‘lwrl;az,ﬁI :0)]’

max{w[exp(p[)—K],O} if Bermudan

g.(p,K.a, =0)=1
0 if Europan.

To compute the transition probability, we define the set of the states for which the option is knocked out and be-

comes worthless:

{iefl,...,m}: exp(p,) < H} down -and - out option,
A=<{iefl,....m}: exp(p,)=H"} up-and - out option,
{ie{l,....m}: exp(p,)< H orexp(p,)>H"} double option.

When the states p, and p; do not belong to A,

the conditional probabilities are the same of the
matrix Oum) = [g, ] as described in the previous

section, otherwise they are equal to zero. There-
fore, the probabi-lity to transit from state p, to

state p; are given by:
ﬂzj :P{Xt+1 :pj’atﬂ :0|Xt :pi’at :O} =

q;if ie Aand j=A,

0 otherwise,

where A° is the complement of A . Therefore the
matrixes that define the conditional probabilities
(that we call quasi-transition probabilities matrices)
for the down-and-out, up-and-out, and double bar-
rier-out options are respectively given by:

Ok—l, m—k+1

O(k,m;k,m) [

Ok—l,k—l

I, =

Om—k+1, k-1

_ Q(lala lal) Ol,m—l
vo — )
Om—l,l Om—l,m—l
Ok—l,kfl Okfl,l—k+1 Okfl,m—l
Mo =0 s QLKD) 04y,
Om—l,k—l Om—l,l—k+l Om—l,m—[

where k is the index number of the log price located
immediately above the lower barrier H, / is the index
number of the price located immediately below the
upper barrier H', 0; j1s an i x j matrix of zeros, and
O(ij; k.I) is the sub-matrix of O, taken from rows i to
j and from columns £ to / inclusively. Thus the knock-
out option price with maturity 7 and strike price K can
be computed using the recursive vectorial formula:

V,(p.T;a, =0) = as)
=0)]

= [vw(pl’T;aT = 0)9"'avw(pmaT;aT

and for ¢, =kAt,k=0,s-1,

Vw(p,t,(,atk =0)= [vw(p,,t,(,atk 20),...,vw(pm,tk,a,k 20)] zmax[gw(p,K,alk :0),e_’A’l_U/'w(p,thrl;alhI :0)], (19)

where g (p,K,a, =0)=[g,(p,K,q,

and IT is either I1,,,, or I, or IT,,,, depend-

ing on the nature of the knock-out option. The
knock-out option price at time 0 is given by the

((m + 1)/2) -th element of V, (p,0; a, = 0). Barrier

=0),....g,(p,.K,a, =0)],

option prices are very sensitive to the position
between discrete asset prices and barrier value.
Thus, to reduce this effect it is important to define
the cells of the Markovian approach so that the
barrier value correspond exactly to a cell’s border.

Table 5. European barrier option prices under NIG, VIG, and Meixner processes. The current asset price,
the short interest rate and the maturity are respectively S =100, » = 5% and 7= 0.5

European down-out call options under European down-out call options under European down-out call options under
NIG process VG process Meixer process

Strike price Weekly Daily Weekly Daily Weekly Daily

K =100 H=94 H=98 H=9 H=098 H=94 H=098 H=94 H=98 H=94 H=98 H=94 H=98
m =501 4.1358 3.1026 41059 2.8162 40826 | 3.0813 | 4.0536 | 2.7955 4.1288 3.0986 4,0993 2.8123
m = 1001 4.1359 3.1033 4.1059 2.8183 40825 | 30820 | 4.0625 | 2.8071 4.1288 3.0993 4.0993 2.8145
m = 1501 4.1359 3.1031 4.1058 2.8177 40825 | 3.0812 | 4.0553 | 2.7991 4.1288 3.0991 4.0991 2.8139
m = 2001 4.1359 3.1029 4.1059 28171 40825 | 3.0815 | 4.0544 | 2.7996 4.1288 3.0989 4.0990 2.8132
m = 2501 4.1359 3.1028 4.1059 2.8168 40825 | 3.0813 | 4.0546 | 2.7991 41288 3.0988 40991 2.8129
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Table 5 (cont.). European barrier option prices under NIG, VIG, and Meixner processes. The current asset price,
the short interest rate and the maturity are respectively S =100, » = 5% and 7= 0.5

European up-out call options under European up-out call options under European up-out call options under
NIG process VG process Meixner process
Strike price Weekly Daily Weekly Daily Weekly Daily
K =100 H=102 | H=106 | H=102 | H=106 | H=102 | H=106 | H=102 | H=106 | H=102 | H=106 | H=102 | H=106
m =501 1.1594 4.1648 0.9289 3.8133 11844 | 4.2817 | 0.9680 | 4.0230 1.1610 4.1780 0.9301 3.8265
m = 1001 1.1563 4.1616 0.9203 3.8025 1.1847 | 4.2820 | 0.9439 | 3.9200 1.1579 4.1730 0.9210 3.8096
m = 1501 1.1568 4.1607 0.9217 3.7997 11847 | 4.2818 | 0.9420 | 3.9126 1.1579 41735 0.9210 3.8115
m = 2001 1.1565 4.1607 0.9206 3.7996 11849 | 42820 | 09425 | 39123 1.1580 4.1730 0.9214 3.8099
m = 2501 1.1564 4.1604 0.9204 3.7995 11847 | 4.2818 | 09420 | 3.9119 1.1579 41732 0.9211 3.8103

Table 6. Bermudan down-out and up-out put option prices, where both early exercise and monitoring are
on daily basis under NIG, VG, and Meixner processes.

Bermudan down-out put with daily monitoring Bermudan down-out put with daily monitoring Bermudan down-out put with daily monitoring

Strike price NIG VG Meixner

K =101 H=96 H =99 H=96 H =99 H =96 H=99
m =501 2.2453 1.1477 2.2568 1.1579 2.2496 1.1452
m = 1001 2.2453 1.1462 2.23% 1.1540 2.2496 1.1438
m = 1501 2.2454 1.1459 22382 1.1535 2.2497 1.1436
m = 2001 2.2454 1.1458 2.2380 1.1534 2.2497 1.1434
m = 2501 2.2454 1.1455 2.2380 1.1533 2.2498 1.1432

Bermudan up-out put with daily monitoring Bermudan up-out put with daily monitoring Bermudan up-out put with daily monitoring

Strike price NIG VG Meixner

K =101 H=101 H=104 H=101 H=104 H=101 H=104
m =501 1.1425 2.0802 1.1174 2.0635 1.1302 2.0747
m = 1001 1.1334 2.0800 1.1165 2.0417 1.1308 2.0744
m=1501 1.1335 2.0793 1.1164 2.0407 1.1309 2.0736
m = 2001 1.1341 2.0793 1.1164 2.0405 1.1316 2.0736
m = 2501 1.1337 2.0795 1.1165 2.0404 1.1312 2.0737

Notes: The current asset price, the short interest rate and the maturity are respectively S = 100, » = 5% and 7= 0.5.

Table 5 exhibits European barrier option prices. We
consider two possible strike prices K = 100 and
K =90 for different fixed barriers and different dis-
tributional assumptions (NIG, VG, and Meixner).
Even for this Table we assume that the temporal
horizon is shared either in 24 periods or in 126 peri-
ods (i.e., At is equal respectively either to one week
or to one day). These prices refer to European
down-out and up-out call options on a stock price
with current value Sy = 100 euro, maturity 7 = 0.5
years, short interest rate » = 5% a.r. We also com-
pare some of these results for European barrier
options with those obtained with Monte Carlo
simulations with variance reduction techniques. In
this case we need more than 10 millions simula-
tions to get the same results we get with the
Markovian approach. In particular, the Monte Carlo
approximation appears more time consuming for
the VG process. Similarly, Table 6 displays Ber-
mudan barrier option prices with daily exercise
dates on a stock with the same current asset price,
short interest rate and maturity. In this case, we
consider Bermudan down-out and up-out put op-
tion prices assuming a strike price K = 101 and
that the early exercise and the monitoring are on
daily basis. As for Bermudan and European vanilla

options Tables 5 and 6 show a good tendency to-
wards a specific price when we increase the num-
ber of states of the Markov chain.

3.3. Lookback options. Lookback options belong
to the class of path-dependent options and can be
of two types, fixed and floating strike price. In the
case of European fixed strike lookback option, the
strike price is fixed at purchase but the option is
not exercised at the market price. For a call, the
option holder can look back over the life of the
option and choose the highest price of the under-
lying asset, whereas, for a put, the option holder
can choose the lowest price. Thus, the fixed look-
back option is exercised at the selected market
price against the fixed strike. If American, the
right of the option holder is extended to the whole
time to maturity. In the case of European floating
strike lookback option, the strike price is fixed at
maturity. For a call, the strike price is fixed at the
lowest price reached by the underlying asset during
the life of the option, whereas, for a put, it is fixed at
the highest price. At maturity the floating lookback
option is exercised at the market price against the
floating strike. If American the lookback option can
be exercised at any time during its life.
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In this Section we explain how to price and hedge
such types of contracts by the lattice built in the
previous section. Given the time interval [0,7],

where T is the temporal horizon, we remember
that [0,7] is discretized by the set of times

{0,At,2At,...,sAt =T}
process {In(S,,,),n=0,1,2,...,s} is approximated,

and that the log-price

under the mean-correcting martingale measure P,
by a Markov chain {Y,,,n=0,1,2,...,s} with state

At

space {p,, P,,..-,P,,+ and transition probability
matrix Q = [qi,j]lgi,jgm .

Consider an European floating strike lookback put,
then the payoff at maturity 7T is given by:

MT_ST7

where M, :maX{SnN n :0,1,2,...,S}. The evolution

of the price process {S, : n=012,..,s} is ap-

A

proximated under P by the Markov chain {Yn A=
=0,1,2,...,s} with {y, =exp@,):
i=l,...,m}and probability matrix
0 =14, ;]i<i, jem - We define the function Z(h,w),

how=1,...,m,and n=0,1,2,...,5, as the value at

state space

transition

time nAf¢ of the contingent claim with final payoff
M, —S,, when the current asset price is equal to

», and the maximum asset price up to time
(n—1)At has been y,. Therefore, at time sAt =T

we consider the final payoff matrix:

0 0 e 0
Z7(2,1) 0 e 0
Z*(m,) Z'(m,2) --- 0

where, by definition, Z”(h,w)=max(y, —,.0).
According to the risk-neutral pricing, at time
(s —1)At we have:

Z\(how) = q,,ZF (h, e™™, if h>w, (20)
j=1

VAS l(h,w)zz%jZf (w, e™, if h<w. (21)
=

Equations (20) and (21) have a quite immediate

explanation: ¢, is just the probability to move

from the state y, to the state y;; on the right-hand
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of (20) we have Z?(h,j) because y, >y, and
thus the maximum at time (s —1)Az is p,, whereas

on the right-hand of (21) we have Z”(w,j) be-

~ ~ . . A —rAt -
cause y, <P and the maximum is p, ; e ™ is

just the discount factor. Iterating the procedure, at
time nAf we obtain:

m

Zf (hﬁ W) = z quan+1 (max(h, W)’ j)e_rAt' (22)
Jj=1

After s backward steps we have a matrix whose
element ZJ(h,w) is the value at time 0 of the
contingent claim with payoff M, —S,, when the
current asset price is y, and the maximum before
time O has been p,. Therefore, the price of the
contingent claim is given by any value ZJ (h,”)
with 4 < ’”T” Bermudan (American) style options
can be priced by:

Z"(h,w)= max{Z:qijf+l (max(h,w), j)e"™,p, — fzw}

=)
for n=0,1,...,5s—1,

and then taking the element Z; (h,%”) with
h < mil
<EE

Example. Let us describe better the method show-
ing a simple numerical example. Assume that we
have only three times, ¢ = 0, 1, 2, that is, the ma-
turity of the European lookback put is 7 = 2 and
At = 1. Then, the current asset price is So = 100
and its evolution is described by the Markov chain

{fn : n=0,1,2} with state vector and transition
matrix given respectively by:

97 ] [2/5 3/10 1/5 1/10 0 |

98 /5 2/5 1/5 3/20 1/20
y=|100|> Q=|1/10 1/5 2/5 1/5 1/10}

102 1/20 3/20 1/5 2/5 1/5

1103 | | 0 1/10 1/5 3/10 2/5|

The function Z7 (h,w) is given by:

Z7(h,w)=

AN N W= O
wn kA NN O O
w ph O O O
—_ o O O O
S O O O O
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where Z7(h,w) =maxy, —3,.,0}, hw=1,....5, 3,
and y,, are the h-th and w-th element of the state

vector y . Now, assuming that the short interest rate

is ¥ =5% and using equation (22), we obtain:

0.6659 13317
0.6659 1.3317
0.6659 13317
1.9976 1.3317
2.8537 13317

1.1890
1.1890
1.1890
1.1890
1.9500

0 0.1902
0.3805 0.1902
1.7122 1.3317
34244 2.8537

14.3757 3.7574

Z! (h,w) =

and

1.9635]
1.9635
1.9635|
1.9635
1.9635

[0.2941
0.4388
12713
26105

3.4655

1.6559
1.6559
1.6559
1.6559
22825

0.5044
0.5044
1.9121
2.3503
3.1466

1.0225
1.0225
1.0225
1.9816
2.7145

Z0(h,w) =

Then, in this simple example, we have that the
price of the

= Z7(2,3)= Z} (3,3) = 1,0255). In this example we
have done a little abuse of notation, that is, we have
used Z”(h,w) to denote whether the same function

Z”(h,w) or the matrix of the values of Z” (h,w).

As the finite-difference approach, where the final
output is a vector of option prices corresponding to
discrete values of the asset price, with the lattice
scheme above we also obtain a vector of option prices
corresponding to asset prices. This vector is exactly
given by the principal diagonal of the matrix

Zy(h,w) (we are continuing with our abuse of

notation). Then, the Greek letters delta and gamma
can be computed from the option prices adjacent to

P (m+l m+l
ZO(Z > 2

remembering that the price partition is constructed
on the logarithmic asset price, the following equa-
tions can be used to approximate the delta and
gamma (see Duan et al., 2003):

along the principal diagonal. Indeed,

lookbacuik put is given by Ax ZE (2, 3y — 7y (et e 1 23)
Z§ (h,1) =1.0255 for h <=1 (ie., ZF(1,3) = 2¢ S,’
o [ 20 o5 ) 220 ) 23 ) - 20, m) | L o
2 P
& 2¢ S,

where & = Pinstyr2 = Pin-1y/2 = Pim+3yr2 = Pims1y/2 =
_2x1
m—1

In the case of European floating strike lookback
call, we have at maturity 7 the payoff Sr — Mz,

where M, =min{S , : n=0,1,...,s}
Then, we define the function Z (h,w), hw=1,...,m,

and n = 0,1,..., s, as the value at time nAf¢ of the
contingent claim with final payoff S, —M,, when

the current asset price is equal to p,, and the mini-

mum asset price up to time (n —1)At has been y, .

In this case our final payoff matrix becomes:

0 Z/(12) Z:(1,m)
0 0 Z°(2,m)

where Z¢(h,w)=max{p, — 3,,0}, and, with an
argument similar to one for floating lookback put
options, at time nAt¢ we have:

er (h’ W) = zqwjzrfﬂ(min(h’ W)’ j)e_mt'
Jj=1

After s backward steps we obtain a matrix whose ele-

ment Z;(h,w) represents the value at time O of the
contingent claim with final payoff S, —A/,, when the
current asset price is y,, and the minimum before time 0

has been , . Then, the price of the contingent claim is

m+1
2

lookback call options can be priced by the equation:

given by Z;(h,22%) with ;> 24  Bermudan floating

Z,(h,w) = maX{qu_,ZZH (min(h,w), )e™, 3, 3, }

=
forn=0, 1,...,s—1, and then taking the element
Z&(h, ) with h >

Let us now study the pricing and hedging of fixed
strike lookback options. We begin with the case of
fixed strike lookback put options which have at matur-

ity T the payoff K-M,, where M, =
= min{SnAt :n=0, L..., s} and K is the fixed strike
price. Then, we define the function Wnp (hw),
how=1,....m,and n=0, 1,..., s, as the value at
time nAt of the contingent claim with final payoff
K — M, when the current asset price is y, and the

minimum asset price up to (7 —1)A¢ has been y, .
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The final payoff matrix is:

W) (h,w) =2 q,, W} (min(h,w), je"™.

wrALD - wE(,2) W (1,m) =

wren wl22) Wr(2,m) Finally, after s backward steps, we obtain a matrix
: : : ’ whose element W, (h,w) represents the value at time

W (m,1) Wf(m,2) W (m,m) 0 of the contingent claim with final payoff K — M,

where, by definition,
VI/;P (h7 W) = maX(K - .)/}min(h,w)’o> .
In order to compute at time nA¢, n=0,1,...,5 -1,

the vales of the function W' (h,w) we can use the

recursive equation:

when the current asset price is y, and the minimum
before time O has been y, . Then, the price at time 0
is given by W/ (h,”51) with & > For Bermudan

(American) fixed lookback put options, we have:

W (h,w) = max(K = py.0:0)

W;zp (h,W) = maX(Zm: qijfkl(min(h’w)’j)e_rAt’K - )/}min(h,w)] h= O’ 1” sy S 1 ’
j-1

and the price at time 0 is given by W,” (h,”!) with
> mil
> mi

European fixed strike lookback call options have
at maturity 7T the payoff M, —K, where
M, =max{S , : n=0,1,...,s}, and K is the
fixed strike price. For this type of options we de-
fine the function W/ (h,w), h,w=1,...,m, and
n=0,1,...,s, as the value at time nAt of the con-
tingent claim with final payoff M, — K, when the
current asset price is p, and the maximum asset
price up to (n—1)Az has been y,. Then, at maturi-
ty T our payoff matrix is:

where W' (h,w)=max(y, —K,0). In this case

max(h,w)
we can compute the function W°(h,w) by the re-

cursive formula

We(h,w) = q, W, (max(h,w), j)e™,
Jj=l
n=0,1,...s-1,

and, at time 0, W, (h,w) represents the value of the
contingent claim with final payoff M, — K, when
the current asset price is ﬁw, and the maximum be-

fore 0 has been y,. Then, the price of the fixed

weL)  weQ,2) we,m) lookback call is given by W (h,2%) with h <21,

weR,1) wW(2,2) W<(2,m) In the case of Bermudan fixed strike lookback call
: : : ’ options, we have:

We(m,1) W (m,2) W (m,m) W (hyw) = Max(P oy — K,0)

We(h,w) = max(z q,,W,.(max(h, w),j)e”m,j/max(hww) —KJ n=0,1,...,s—1,
J=1

and the price at time 0 is given by W (h,2%) with
h < mtl
<z

Observe that the equations (23) and (24), which return

delta and gamma values, continue to be valid not
only for floating strike lookback put options, but
even for all other types of lookback options, Euro-
pean and Bermudan (American).

Table 7. European and Bermudan (early exercise on daily basis) floating strike lookback put option
prices, where monitoring is on daily and weekly basis using NIG, VG and Meixner processes

European lookback put
Brownian motion NIG process VG process Meixner process
Weekly Daily Weekly Daily Weekly Daily Weekly Daily
m =501 2.7121 3.1344 2.6680 3.0511 2.5998 3.0058 2.6605 3.0439
m =801 2.7125 3.1355 2.6683 3.0524 2.6000 2.9866 2.6609 3.0452
m = 1001 2.7126 3.1358 2.6684 3.0528 2.6001 2.9843 2.6610 3.0456
m = 1501 2.7127 3.1361 2.6685 3.0531 2.6002 2.9832 2.6611 3.0459
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Table 7 (cont.). European and Bermudan (early exercise on daily basis) floating strike lookback put option
prices, where monitoring is on daily and weekly basis using NIG, VG and Meixner processes

Bermudan lookback put
Brownian Motion NIG process VG process Meixner process
Weekly Daily Weekly Daily Weekly Daily Weekly Daily
m =501 2.8587 3.2919 2.8176 3.2253 2.7528 3.1780 2.8113 3.2195
m =801 2.8695 3.3216 2.8180 3.2266 2.7532 3.1646 2.8117 3.2209
m=1001 2.8696 3.3218 2.8181 3.2269 2.7533 3.1630 2.8118 3.2212
m = 1501 2.8697 3.3221 2.8182 3.2273 2.7534 3.1624 2.8119 3.2215

In Table 7 we show the prices of European and
Bermudan floating strike lookback put options,
based on daily and weekly monitoring under the
Brownian motion, NIG, VG and Meixner processes.
The current asset price, the short interest rate and
the maturity are respectively S = 100, » = 5% and
T = 0.25. We compare the results for the European
put with NIG and the VG processes (for all the
processes we use the same parameters of Table 1).
We compare part of these results using Monte Carlo
simulations with variance reduction techniques.
Even in this case we need more than 5 millions
simulations to get the similar results for pricing
European floating strike lookback put options.

In order to value the differences among computa-
tional times of the different option valuations we
propose to compute the average times and the root
mean squared errors (RMSE) of the times needed to
compute the above European Bermudan lookback
put options. In particular we repeat the 100 times the
computation of the values with the Markov and the
Monte Carlo simulation and then we compute the
average times and the RMSE of these times. Table 8
reports the main differences observed among the aver-
age computational times of European floating strike
lookback put option prices. From the comparison it
appears evident the better performance of the Mark-
ovian approach in terms of computational time.

Table 8. Average computational times for European Bermudan lookback put options obtained with Mark-
ovian (m = 801 states) and Monte Carlo valuation

NIG VG Meixner
Daily Weekly Daily Weekly Daily Weekly
Markov average time 977 sec 186 sec 1445 sec 275 sec 1116 sec 212 sec
Markov RMSE in % 0.0004 0.00001 0.007 0.00067 0.0009 0.00007
MC average time 1140 sec 217 sec 1693 sec 322 sec 1398 sec 266 sec
MC RMSE in % 0.014 0.003 0.103 0.0097 0.09 0.007

Conclusions

The paper shows the simplicity of the Markovian
approach to price vanilla options and some types of
exotic options when the log return follows a Lévy
process. Clearly, we couldn’t be exhaustive since this
approach can be used to price many other Markovian
processes and exotic options. In particular, the discre-
tization process with Markov chains permits to price
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