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Abstract 

Convertible bond is difficult to value since it is a hybrid financing instrument. The concept commonly accepted is that 
the convertible bonds can be divided into pure bonds and call options. However, it makes the pricing of convertible 
bonds become complicated for more and more additional provisions embedded in the bonds. In the background, nu-
merous methods are developed for finding the most accurate pricing model of convertible bonds. With the default risk 
concern, Ayache, Forsyth and Vetzal (AFV, 2003) propose a model where the stock price of the bond issue firm drops 
at a specified percentage and obtain a total risk hedge result. Nowadays, most convertible bonds have reset clauses. For 
reacting to the reality, the aim of this paper is to extend AFV model (2003) to incorporate the reset clause to price the 
conversion option of the risky convertible bond. 
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Introduction© 

Among all financing instruments, convertible bonds 
(CBs) have become the most commonly issued se-
curity. From 2001, 1240 bonds included European 
convertible bonds (ECBs), straight bonds, equity 
warrant bonds, exchangeable bonds, CBs and so on, 
are issued, and 911 of them are issued in terms of 
CBs. Obviously, the historical data shows that firms 
prefer issuing CBs to raise funds. 

CBs are bonds that give the bondholders right to con-
vert debt securities into stocks at a specified price in 
the future. In other words, CBs can be viewed as a mix 
security which comprises a straight bond and a call 
option. The concept has been accepted widely. 

Why do most firms choose CBs to finance at the 
first place? First, the interest rate of CBs is usually 
much lower than straight bonds, some of the CBs 
even pay zero coupon rate. Second, Nyborg (1996) 
states that the management of the bond issue firm 
view convertible debt as delayed equity. Through 
issuing CBs, firms can mitigate dilution effect com-
pared to issuing stocks directly since conversion 
always happen at high stock price. From the inves-
tors’ point of view, since the nature of CBs is debt, 
they can receive coupons periodically until the bond 
is converted. Besides, the bondholders also benefit 
greatly when the stock price of the issue firm goes 
up by exercising the conversion right. 

For avoiding the investors’ loss, a reset clause is 
embedded into the bond. Typically, a reset clause 
allows the conversion price to refix when the issue 
firm’s stock price drops over a specified percentage. 
Usually, a conversion price reset is restricted to be 
upward adjusted. Since reset clause raise the proba-
bility of conversion when the issue firm’s stock price 
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goes down, a CB with reset clause is more valuable 
than the one with no reset. Chang (2003) show us that 
reset clause has critical influence on the bond value. 

Nowadays, the design of CBs has become compli-
cated. Except reset clause, putable and callable provi-
sion also can be seen in most CBs. The putable provi-
sion protects bond holders when bond value drops at 
a very low value, while callable provision reduce the 
firm’s potential loss when the bond value rises at a 
high level. So, when comes to pricing CBs, it be-
comes difficult under considering all provisions. 

Originally, when there is only one option embedded 
in the CBs and conversion is restricted to exercise at 
maturity (called European type), Black-Scholes 
model (1973) might be a usual choice to price CBs 
since Black-Scholes (1973) have derived the closed-
form solution of the value of the option. However, 
the common situation is that conversion time is un-
certain. That is, the call option embedded in the CBs 
is American type rather than European type. After 
Black-Scholes (1973), there has developed several 
methods. And since CBs are issued by corporate 
issuers, default risk should be considered. 

For pricing convertible bonds with default risk, two 
approaches with different underlying state variable 
of the model have been expanded. Structural-form 
which is originated from Merton (1974) employs 
firm value as the underlying state variable. Howev-
er, firm value is difficult to estimate, so stock price 
become an alternative to represent firm value. In 
practice, reduced-form model is a better method 
than structural-form one since stock price is quiet 
easy to observe in the market. 

In the reduced-form model, TF model is one of the 
commonly used methods. They divided CBs into 
two parts, bond and option, then price separately. 
AFV model (2003) correct the assumption that the 
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stock price jump to zero immediately when the issuer 
face bankruptcy. They address that stock price drops at 
a percentage on default should be a normal case. We 
can observe in the real world that the issuer’ stock 
price drops dramatically though, not at zero. 

In this paper, AFV model (2003) is extended by 
adding reset clause into consideration which makes 
the conversion ratio k become a variable rather than 
a constant. Finally, the Partial Differential Equation 
(PDE) is solved by finite difference method. 

This paper is organized as follows. Section 1 
presents a review of the extant literature. Section 2 
reviews the previous methodologies and introduces 
the model of AFV (2003). The reset clause and ap-
plication of the finite difference method (FDM) are 
incorporated into the proposed model in section 3. 
The last section draws the conclusions. 

1. Literature review 

Ingersoll (1977) and Brennan and Schwartz (BS, 
1977) are the first to value CBs. Under Black-
Scholes (1973), Ingersoll (1977) derived closed-
form solution of the CBs with callable provision. 
Brennan and Schwartz extend the model of Black-
Scholes (1973) and Merton (1974) by relaxing the 
restriction of the coupon payments and stock divi-
dend payments to price CBs. Besides, they also 
permit the bondholders to convert the bond into 
common shares at any point of time. In their ap-
proach, firm value is employed as the underlying 
variable. Under the optimal strategy for call and 
conversion, they then derive PDE that can be solved 
to value CBs. For more accurate valuation, Brennan 
and Schwartz (1980) incorporate stochastic interest 
rate into the model developed in 1977. Then, they 
conclude that the difference between stochastic in-
terest rate model and fixed interest rate model are 
very small, so for a reasonable range of interest rate, 
they suggest that a simpler model with fixed interest 
rate is preferable for practical purpose. 

The model, such as BS model (1977, 1980), which 
the CBs value are determined by the firm value is 
called structural-form model. The problem is that 
the firm value is not traded asset, so the firm value 
as a variable in the model cannot be directly observ-
able. To circumvent the problem of the structural-
form model, some authors introduce stock price that 
can be directly observable in the market to replace 
firm value. Such approach is called reduced-form 
model which began with McConnell and Schwartz 
(1986). They use this method to price Liquid Yield 
Option Note (LYON) issued by Merrill Lynch in 
1985 with the characteristic of zero coupon rate, 
convertible, callable and putable. In their paper, they 
state that “the value of the LYON depends upon the 

value of the issuer’s common stock rather than the 
total market value of the firm.” However, they also 
argue that since the value of the issuer’s common 
stock precludes the possibility of bankruptcy, the 
value of LYON will be overestimated. 

For reducing the difference of the model price and 
the market price, the default probability is proposed 
to be added into the model. Duffie and Singleton 
(1999) employed the default hazard rate to value the 
risky bond. Thus, the discount rate which is defined 
as Rd(t) = r(t) + L(t)λ(t); r(t) is the default-free rate. 
L(t) is the fractional loss rate of market value at 
default, L(t) is the default hazard rate. 

Furthermore, they state that since the conversion of 
the CBs is exercised by the investors when the stock 
price is high, the idea can be captured that the bond 
issuer has lower credit risk as the stock price is 
higher. Under the Duffie and Singleton model 
(1999), Takahashi and Kobayashi (2001) model the 
hazard rate as a decreasing function of the stock 
price since the stock price is easily observed in the 
market. They defined the default hazard rate as 

b
t

t s
ctS += θλ ),( , where θ ≥ 0, b and c are some 

constants. Finally, they use four issues of CBs to do 
the empirical study and find there exists 2.25% ab-
solute error ratio. 

Tsiveriotis and Fernandes (TF, 1998) argue that if 
the underlying equity is that of the issuer, the equity 
upside has zero default risk since the issuer can al-
ways deliver its own stock. On the other hand, cou-
pon and principle payment which are related to cash 
depend on the issuer’s timely access to the required 
cash amounts, and thus introduce credit risk. Fol-
lowing this thinking, TF model (1998) divided the 
CBs into two parts: cash-only part and the equity 
part. Since the cash-only part is defaultable, the 
authors discount it at a risky rate. The equity part is 
discounted at a risky-free rate for it is default-free. 
This leads to two PDE which can be solved. 

Madan and Unal (2000) and Davis and Lischka 
(1999) both assume that the stock price jumps to 
zero immediately in the event of default. However, 
AFV model (2003) state that the assumption that the 
stock price instantly jumps to zero when default 
event occurred is highly questionable. Stock price 
does decline sharply around the announcement of 
the default, but the range is less than 100%. So, they 
propose a model that the firm’s stock price drops at 
a specified percentage (between 0% and 100%) on 
default. In addition, AFV (2003) model compare the 
difference between TF model (1998) and the hedge 
model they develop, and find that TF (1998) model 
is internally inconsistent. 
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The Chicago Board Options Exchange (CBOE) and 
the New York Stock Exchange (NYSE) start to 
trade S&P 500 index bear market warrants with a 
three-month reset in the late 1996. Gray and Whaley 
(1997) priced these put warrants with periodical 
reset. Latter, Gray and Whaley (1999) also provide 
a close-form solution to the put warrants with a 
single reset day. Besides, Cheng and Zang (2000) 
mentioned that an option holders always like the 
option be in the money. An option with periodical 
reset has higher possibility to keep the option value 
in the money. 
Reset options are discussed often by latter research-
ers, while few studies investigate how a reset clause 
affects the bond value. Kimura and Shinohara 
(2006) use Monte Carlo method to price convertible 
bond with reset clause. The authors address that if 
the underlying stock has no credit risk of the issuer, 
no conversion occurs prior to maturity, i.e., conver-
sion may only occur at maturity. However, if the 
bond is risky, the bond holder might convert earlier, 
so the conversion right becomes American type. 
They use classical Black-Scholes model (1973) to 
calculate the former case, and estimate the latter 
case by Monte Carlo simulation. Besides, they pro-
pose the original conversion price X is adjusted 
downward to mSt when 

m
XSt <  for a pre-specified 

constant m ≥ 1. 

2. Methodology and the review of the  
AFV model 

2.1. Assumption. Consider a CB with no credit risk 
at the beginning. Assume risk free interest rates are 
the known function of time, and the process of stock 
price is as follow: 

dS Sdt Sdzμ σ= + ,      (1) 

where S is the stock price, μ is the drift rate, σ is 
volatility, and dz is the increment of a Wiener 
process. In order to improve the problem of the be-
havior of stock price that supposed in reduced-form, 
AFV model (2003) assume the drop rate of stock 
price be η in default, then S+ represents the stock 
price immediately after default and S− refers to the 
stock price before default. They assume: 

)1( η−= −+ SS ,       (2) 

where 0 ≤ η ≤1. When η = 1, it is defined as total de-
fault; while equaling to 0, partial default is identified. 
2.2. Hedging portfolio construction. Let Vt denotes 
the value of the CBs at time t. When there is no 
default risk, a hedge portfolio can be constructed as 
follow: 

t tV SβΠ= − .       (3) 

Then, obtain the change of the value of this portfolio 
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where o(dt) denotes terms that go to zero faster than dt. 

Now, incorporate the hazard rate denoted by p = p(t) 
into consideration, conditional on no default event 
occurred prior time t. With the following assumptions: 

♦ In default, the stock price behaves as equation (2). 
♦ In default, the CBs holders have the option to 

receive: (1) the amount of RB, where B is de-
fined as the face value of CBs here; R is the 
recovery rate, 0 ≤ R ≤ 1; (2) shares worth 
κSt(1 − η), where κ is the conversion ratio. 
However, κ here is not constant as the one in 
AFV model (2003). 

In this paper, κ is changeable. Once the bond issue 
firm’s stock price drop through certain level that 
defined in advance, the conversion ratio will be-
come a new one. 

Equation (4) becomes: 
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In the above equation, βSη pdt represents the gain 
with hedging the default risk. By assuming default 
risk is diversifiable, obtain: 

( )E d r dtΠ = Π ,      (6) 

where E is the expectation operator. Equation (6) 
means a risk-free portfolio can earn only risk-free 
interest rate. Combining (3), (4) and (5), the follow-
ing PDE equation can be obtained: 
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which implies: 
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Finally, their paper uses FDM to solve the above 
PDE, so the boundary conditions are necessary: 

),,(Max tpt SBV κ≥       (9) 

).,(Max tct SBV κ≥      (10) 

Equations (9) and (10) imply that neither the call 
constraint nor the put constraint are binding. While 
this is perhaps an obvious point, it is worth remem-
bering that in some popular existing models for 
convertible bonds no explicit assumptions are made 
regarding what happens to the stock price with fea-
ture of the reset clause. 

3. Proposed model 

We now consider adding the reset clause to the con-
vertible bond model described in section 2, using 
the FDM discussed in subsection 3.2 for incorporat-
ing the reset clause. 

3.1. Proposed model with the reset clause. We 
follow the same idea as described in AFV (2003) 
model to establish the proposed model. 

Define 
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Add q into the equation (11), which means the stock 
pays a continuous dividend yield. Then, PDE equa-
tion becomes: 

( ) .0),1max( =−− RBSpMV ηκ   (12) 

According to Brennan and Schwartz (1977), they 
proposed that “a convertible bond can be valued 
only if the call and conversion strategies to be fol-
lowed by the corporation and the investors respec-
tively can be determined.” For the bond holders, it is 
never optimal to convert the bond into stock if the 
conversion value is less than the call price. On the 
other hand, the bond will be called once the conver-
sion value exceeds the call price. That is, both the 
bond issuers and the investors will make a choice 
under the optimal strategy. 

Through the above analysis, there are two conditions 
to discuss separately: Bc > κS and Bc ≤ κS, where Bc 
means the call price and Bp represents the put price. 
When Bc > κS, there are three situations: 
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For the condition (13), the firm will not call the bonds, 
neither the bond holder put the bond; both sides will 
not take actions. Since the firm’s hedge portfolio re-
turn is greater than the risk-free rate in the condition 
(14), the firm will not call, but the bonder may choose 
to put or to convert. In the condition (15), the firm’s 
hedge portfolio return is less than the risk-free rate, so 
the firm will choose to call the bond and the bond 
value will equal to the call price. When Bc ≤ κS, the 
bond holder will exercise the conversion certainly, so 

.SV κ=       (16) 

From equations (13), (14), (15) and (16), the con-
straints are the same as equations (9) and (10), but 
we notice some slight difference for κ. Since the κ 
could be down adjusted as this paper discuss before, 
the following constraint should be considered on the 
reset day: 

1If ,  then , else  tS X k kκ κ< = = ,  (17) 

where St is the stock price on the reset day; X refers 
to the pre-specified conversion price; k represents 
the original conversion ratio and k1 is the new con-
version ratio when reset occurs. 
Once the stock price on the reset day is smaller than 
the original conversion price, the conversion price 
could be reset according to equation (17). To the 
best of our knowledge, we are the first to incorpo-
rate the concept of the reset clause into the CB mod-
els that have been discussed before. In order to solve 
the PDE in equation (12) and boundary constraints 
in equations (9), (10) and (17), we use the FDM 
which has been introduced in section 3.2. 
3.2. Reviews on FDM. FDM is one of the numeri-
cal analysis. The idea of this method is to solve PDE 
through approximating the differential equation. At 
first, both the forecasting period from time t to the 
maturity T and the underlying stock are divided into N 
and M parts equally. Assume a maximum stock price 
as Figure 1 shows, each part equal to ΔS. That is: 

0, , 2 , ..., ( max)S S S M S S= Δ Δ Δ = . 
The same as time T − t is divided into N parts, so 
each part equal to Δt. Then: 

0, , 2 , ..., ( )t t t N t T= Δ Δ Δ = . 
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Therefore, we can know that the value of the CB 
with different stock price and time can be denoted 
as Vi,j = V (iΔt, jΔS) which is shown by each grid 
point in Figure 1. 

maxS
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N

Δ = i

maxSS
M

Δ =

j

,i jV

, 1i jV −

1, 1i jV− +
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1, 2i jV− − ja
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Fig. 1. Vi,j = V (iΔt, jΔS) which is shown by each grid point 

Three difference methods solve the differential equ-
ation, included Implicit Finite Difference (IFD), 
Explicit Finite Difference (EFD) and Crank-
Nicolson Method (CNM). IFD method uses back-
ward difference for the derivative with respect to t, 
and central difference for the derivate with respect 
to S. EFD method uses central difference for the 
derivative with respect to S, and forward difference 
for the derivate with respect to time t. However, 
CNM takes the average of the difference of Implicit 
and Explicit Finite Difference. The following is the 
ways to approximate the differential equation. 

1. Forward difference: 
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3. Central difference 
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For solving the proposed model, this paper adopts 
IFD method. Then, get the following equation: 
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Put equations (24), (25) and (26) into equation (11). 
Therefore, equation (11) can be transformed into: 
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Then equation (27) can be rewrite as: 
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where 
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At each time i, there are M − 1 equations and M − 1 
unknown elements as follow: 
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However, the boundary value is known at each time 
i and time T through the boundary condition pre-
scribed. So, the unknown elements can be solved by 
solving the M − 1 equations. Actually, each value of 
the grid point is figured out by the next period val-
ue. The bond value Vi,j as showed in the Figure 1 
can be used to calculate Vi-1,j+1, Vi-1,j and Vi-1,j-1 
through aj, bj and cj. That is, the bond value at time t 
will be obtained first, then compute the bond value 
in previous period t − 1, and so on. 

As to the model in this thesis, because reset clause 
would be considered and the reset clause is related 
to the change of stock price, a stock price at each 
time t will be necessary. Therefore, a trinomial tree 
method is employed to solve the CBs price. Besides, 
since the EFD method is approximate trinomial tree 
method, an EFD method can be used to calculate the 
probability of stock price up, down and unchanged. 

As described by Brennan and Schwartz (1977), it is 
more efficient to transform the stock price S as 
follows: 

( ) log ( )y t S t= .    (33) 

Then, equation (1) becomes: 
21
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So, PDE, equation (11), turns into: 
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When using EFD method, the difference for deriva-
tive with respect to t and y: 
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Puting equations (36), (37) and (38) into equation 
(35), we obtain: 
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Equation (39) can be rewrited as: 
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Then, equation (40) can be rewrited as: 
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Here, pd refers to the probability of the drop of stock 
price; pm refers to the probability of the unchanged 
stock price; and pu represents the probability of the rise 
of the stock price. So, pu, pm and pu are as follow: 

2 21 1 1 1
2 2 2 2 2( )u
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y y
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Δ Δ
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2 2 2 2 2( )d
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y y

σ σΔ Δ
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As demonstrated by Boyle and Tian (1998) that the 
numerical analysis literature shows: 

y tλσΔ = Δ . 
Thus, pu, pm and pd become: 
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Regarding to λ, Kamrad and Ritchken (1991) 
showed that the proper value for standard option 
would be 1.5 . In fact, the EFD is equivalent to the 
trinomial tree approach. The expression for pu, pm 
and pd are shown in equations (42), (43) and (44). 
We can interpret terms (pu, pm and pd) as probability 
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of stock price increasing from jΔS to (j + 1) ΔS, 
probability of stock price remaining unchanged at jΔS 
and probability of stock price decreasing from jΔS to (j 
− 1) ΔS in time Δt, respectively. The concept of the 
trinomial tree calculation just as Figure 2 shows. We 
have discussed the FDM to solve the PDE. 

S

t
1t 2t 3t

1S

2 1S

22S

23S

31S

32S

33S

34S

35S

0

1X X=

 
Fig. 2. Expression of the reset clause changes 

conversion price 

3.3. FDM with reset clause. How the reset clause 
changes conversion price can be explained by Fig-
ure 2. Assume the conversion price X equals to X1, if 
the stock price goes to S21 which is below X1 at 
time t2, the conversion price from X1 turns into S21. 
However, if the stock price goes to S22 or S23 which is 
 

above conversion price X1, the conversion price is 
unchanged. Similarly, if the stock price becomes S31 
at time t3, then the conversion price X1 resets to S31. 
In the other words, once the stock price drops below 
the conversion price, the conversion price resets 
according to the provisions; while if the stock price 
at reset day is above the conversion price, the con-
version price is unchanged. 

Summary and conclusions 

We provide a new pricing formula for the risky con-
vertible bond by incorporating the reset clause. We 
note that the reset clause is one of the critical elements 
in pricing the risky convertible bond. The objective of 
this paper is to improve the AFV model (2003) by 
considering the reset clause into the model and to use 
IFD method for solving the AFV model (2003). When 
considering reset model, the EFD method is employed 
to solve the partial differential equation since the EFD 
can be approximated the trinomial tree model. Thus, 
the EFD is used to calculate the probability of the 
stock price up, down and unchanged. Then, the tri-
nomial tree is used to obtain the model price. Finally, 
for comparing the proposed model with AFV model 
(2003), in the future we could pay more attention to 
use empirical data. 
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