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Abstract 

Motivated by the growing importance of systemic risk in the global banking system, the authors measure the risk of the 
system and the marginal contributions of the institutions in several ways in terms of stock markets. The undiversifiable 
risk appearing in specific market sectors is called systematic risk rather than systemic risk. The paper focuses on global 
banking stocks comprising global systemically important financial institutions (G-SIFIs), and discusses the global 
systematic risk measurement. To forecast future joint distribution of returns, the authors utilize the multivariate 
autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model 
with the multivariate normal tempered stable (MNTS) distributed and multivariate normal distributed innovations. This 
work statistically demonstrates that the ARMA-GARCH model with the MNTS distributed innovations is a more 
realistic model for G-SIFI stocks. In line with previous studies, the authors estimate four systematic risk measures: 
joint probability and conditional probability of negative stock return movements, CoVaR, and CoAVaR. It is found 
that the joint probability of negative movements is a good indicator for a significant increase in systematic risk. 
Subsequently, the authors investigate the relationship among the other three measures and find the following. Cross-
sectional linkages between AVaR and CoAVaR are few, if any, but there is a strong time series linkage. On the other 
hand, the conditional probability of negative movements and CoAVaR show similar cross-sectional magnitude 
relations, though their time series linkage is not clear. Thus, both AVaR and conditional probability of negative 
movements reinforce each other and serve a useful reference for CoAVaR-based systematic risk measurement. 
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Introduction  

In the modern financial system, global financial 
institutions become strongly interconnected, leading to 
awareness of the so-called “systemic risk”. According 
to the definition given by Kaufman and Scott (2003), 
in contrast to the risk that there will be a breakdown in 
individual parts or components of the financial system, 
systemic risk refers to the probability that there will be 
a breakdown of the entire financial system. Moreover, 
this risk is evidenced by the comovements of the 
different parts of the financial system. 

We can observe the applicability of this definition of 
systemic risk in the case of global financial system 
in 2008, following the bankruptcy of the United 
States (U.S.) investment banking firm Lehman 
Brothers. The financial crisis triggered by the failure 
of Lehman Brothers, referred to as the “Lehman 
shock”, had a spillover effect in every sector of the 
global financial market (stock, bond, currency, 
credit markets, and the like). 

Following the Lehman shock, the Basel Committee 
on Banking Supervision (BCBS) began to formulate 
a new regulatory framework for international banks 
known as Basel III to mitigate the risk of a 
reoccurrence of financial crises due to the problem 
of large financial institutions. One of the most 
significant enhancements in Basel III relative to 
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Basel I and II is that of protecting the global 
financial system from systemic risk. More specifically, 
Basel III calls for additional capital requirements for 
global systemically important financial institutions (G-
SIFIs), in contrast to the uniform capital requirement 
imposed on every bank in Basel II. More recently, an 
initial list of 29 G-SIFIs (8 from the United States, 17 
from Europe, and 4 from Asia) was identified and 
published based on the BCBS methodology (Financial 
Stability Board, 2011). See the Appendix for the list of 
financial institutions. 
The recent debt crisis in Greece calls for greater 
attention to systemic risk in another way. Because 
financial institutions typically have large positions in 
sovereign bonds, there was great concern in the market 
that a systemic downturn would occur because of the 
European sovereign debt crisis. This, in fact, did occur 
for one G-SIFI, Dexia Group, because of exposures to 
these countries. There are some market observers with 
such a pessimistic view that if Greece collapses, the 
adverse impact on the financial system would be 
greater than that of the Lehman shock. 

Motivated by the growing importance of systemic 
risk, the purpose of this paper is to investigate such 
risk in the global banking system. This is done by 
focusing on systemic risk observed in stock markets 
and investigating stocks that are included in G-
SIFIs, as of November 2011. Our methodology 
involves time series analysis to generate a future 
joint distribution of stock returns, and accordingly 
we estimate risk measures. 
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We emphasize that, strictly speaking, we are not 
going to quantify systemic risk itself given that we 
exclusively deal with stock returns. There are systemic 
risk and systematic risk. Even though both emerge 
with a downslide of total market returns, systemic 
risk is considered as the risk that specifically arises 
from intense interconnectedness and results in a 
breakdown of the entire system. Aggregate adverse 
impact in a specific sector of a market should be 
classified as systematic risk. For this reason, we 
hereafter refer to the risk that we quantify based on 
stock returns as systematic risk rather than 
systemic risk1. 

For time series analysis, we use a multivariate 
autoregressive moving average generalized auto-
regressive conditional heteroscedasticity (ARMA-
GARCH) model, where the innovation terms are 
assumed to follow the multivariate normal tempered 
stable (MNTS) and multivariate normal distributions. 
The MNTS distribution is a relatively new non-
Gaussian stock return model proposed by Kim et al. 
(2012). Each marginal of the MNTS distribution is 
referred to as a univariate normal tempered stable 
(NTS) distribution. For systematic risk measures, we 
use the CoVaR methodology proposed by Adrian 
and Brunnermeier (2011). CoVaR, or more 
specifically, CoVaRj i, is defined between two 
institutions i and j. CoVaRj i is the Value at Risk 
(VaR) of j on a certain condition of i. Setting j as the 
market index, we consider the difference between 
CoVaR on i’s distress and “normal” conditions, 
denoted by CoVaRindex i. CoVaRindex i can be 
interpreted as the marginal contribution of i to the 
overall market risk. 

There are two problems we address in this issue. 
The first is how to measure and predict systematic 
risk. The second is how to determine the influence 
of a financial institution on the entire financial 
system, i.e., how to quantify the risk spillover effect. 
From a regulatory perspective, it is critical to 
recognize signals of a meltdown of the financial 
system and specify the financial institutions that 
potentially have considerable influence on the 
financial system. 

For the first problem, we propose the joint 
probability of negative stock return movements as a 
measure of systematic risk. This is necessary 
because although CoVaR can be a measure of 
marginal contribution to systematic risk, it is not a 
measure of systematic risk itself. For the second 
problem, we employ CoVaR to quantify the risk 
spillover effect. In addition, we extend CoVaR 

                                                      
1 The basic measure of systematic risk is beta. Similar to beta, we focus 
on the comovement between the entire system and each institution in 
the global banking stock market. 

into the counterpart of average VaR (AVaR), which 
we refer to as CoAVaR. An alternative approach 
for the risk spillover effect is to describe an 
institution’s power of influence on the system as 
the probability of a negative comovement of the 
market return on the condition that a return of the 
institution moves downward. The idea underlining 
the use of conditional probability is parallel to the 
idea of addressing the first problem via joint 
probability. We examine the relationship among 
AVaR, CoAVaR, and conditional probability using 
regression analysis. 

The rest of this paper is organized as follows. In 
section 1, we introduce an ARMA-GARCH-MNTS 
model for time series analysis. Subsequently, we 
define the following systematic risk measures: the 
joint probability and conditional probability of 
negative movements, CoVaR, and CoAVaR. 
Section 2 describes the data to be used. Section 3 
presents the results and discussion. After we 
demonstrate that the ARMA-GARCH-MNTS model 
is a better model for G-SIFI stocks, we present the 
estimation results of systematic risk measures. We also 
discuss the relationship among the different types of 
measures. The final section concludes the paper. 

1. Methodology 

Our methodology for the investigation of systematic 
risk has the following two steps: (1) generating the 
future joint distribution of stock returns via the 
ARMA-GARCH model; and (2) deriving systematic 
risk measures from the predicted joint distribution. 
We also briefly explain our simulation-based 
estimation methods. 

1.1. ARMA-GARCH-MNTS model. Our time 
series model for stock returns is the ARMA(1,1)-
GARCH(1,1) model given by 
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where the index j =1, 2,…, J corresponds to each 
institution, t represents a time period, j

tR  is the 
stock return, j

t  is the conditional mean, j
t  is the 

conditional standard deviation, j
t  is i.i.d. with zero 

mean and unit variance, called (standardized) inno-
vation, and the other symbols are model parameters. 
We describe the multivariate distribution whose 
every marginal has zero mean and unit variance as 
standard. Thus, ),...,,( 21 J

tttt  forms a standard 
multivariate distribution. Note that ARMA(1,1)-
GARCH(1,1) is a standard specification for financial 
data in the GARCH framework. 
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There are several candidate models for each 
marginal j

t . We choose the NTS distribution because 
it has the ability to capture stylized properties of 
stock return distributions such as fat-tailness and 
skewness, which the normal distribution lacks. In 
addition, we use the normal distribution for the 
purpose of comparison. The standard NTS 
distribution is characterized by three parameters: 
two fat-tailness parameters ( , ) and one skewness 
parameter . If we assume common ( , ) among NTS 
marginals with  as a still free parameter for 
calibration, we can join marginals into MNTS via the 
variance-covariance matrix of t without computa-
tional difficulty even in a considerably high-
dimensional system. See Kim et al. (2012) for the 
definition and estimation of the MNTS distribution. In 
the case of the normal model, we can also join 
marginals into the multivariate distribution via the 
variance-covariance matrix, because it is the single 
parameter of the standard multivariate normal 
distribution. The multivariate distribution of t 
accounts for the dependent structures among stock 
returns. Following the same approach as Kim et al. 
(2012), we first estimate the univariate NTS 
parameters )ˆ,ˆ,ˆ(),,(  for the innovation of 
the representative stock, i.e., the market index. Then, 
we use the estimated parameters )ˆ,ˆ(  as those of 
MNTS. For the CoVaR estimation, Adrian and 
Brunnermeier (2011) mainly use quantile regressions 
supplemented with the GARCH model with the 
normal distributed innovations as a robustness check. 
Girardi and Ergün (2013) use the GARCH model with 
Hansen’s skewed t distributed innovations. Our 
methodology is different from the previous studies 
because we first apply the multivariate tempered stable 
distribution to the CoVaR estimation. Another 
advantage of MNTS is that it has the reproductive 
property; the linear combination of NTS distributed 
random variables still follows NTS. This property 
enables us to easily deal with the portfolio of stocks. 
Model (1) forecasts the joint distribution of stock 
returns at t+1 period on the basis of the information 
up to t. We refer to Model (1) with the standard 
MNTS distributed and standard multivariate normal 
distributed t as the ARMA-GARCH-MNTS 
(AGMNTS) model and ARMA-GARCH-multi-
variate normal (AGMNormal) model, respectively. 
We primarily use an AGMNTS forecast, whereas we 
use an AGMNormal forecast as a reference. 
1.2. Systematic risk measures. Before introducing 
systematic risk measures, we begin with VaR. VaR is 
the most standard market risk measure used by finan-
cial institutions. Consider the VaR of j’s stock return 

j
tR  at the confidence level 1  q(0  q  1), denoted 

by j
tqVaR , . The definition of j

tqVaR ,  is given by 

}.)(obPrinf{, qRRRVaR j
t

j
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If j
tR  is continuous, j

tqVaR ,  is the q-quantile of the 
distribution of j

tR , which satisfies 
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An alternative risk measure is AVaR. The definition 
of j

tqAVaR ,  is given by 
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If j
tR  is continuous, AVaR is equivalent to 
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which is called expected tail loss. Henceforth, for 
simplicity, every stock return distribution is assumed 
to be continuous. AVaR has more desirable properties 
than VaR as a risk measure (e.g., the ability to account 
for risk above the VaR level, often referred to as “tail 
risk”)1. In literature, AVaR is also called conditional 
VaR (CVaR2) or Expected Shortfall (ES). 

While VaR and AVaR are micro-prudential risk 
measures on the premise of an institution being 
isolated, alternative macro-prudential risk measures 
for systemic risk have recently been explored in the 
context of global financial turmoil. While some 
consider probability-based approaches (Segoviano and 
Goodhart, 2009; Zhou, 2010; Giesecke and Kim, 
2011), others put weight on quantifying systemic risk 
such as CoVaR (Adrian and Brunnermeier, 2011), 
SES and MES (Acharya et al., 2010). In line with the 
previous studies of systemic risk, we introduce four 
systematic risk measures in stock markets on the basis 
of VaR and AVaR, in which two out of four are 
probability-based indicators: joint and conditional 
probabilities of negative movements. The other two 
are measures to quantify the marginal contribution to 
systematic risk: CoVaR and CoAVaR. 

1.2.1. Joint probability of negative movements 
(JPNM). We consider systematic risk as simul-
taneous negative movements of stock returns, where 
the negative movement simply means the return 
being less than the conditional mean. Note that this 
definition is consistent with the definition of 
systemic risk given by Kaufman and Scott (2003). 
Accordingly, we introduce the joint probability of 
negative movements (JPNM), 
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1 For further information, see Rachev et al. (2008). 
2 Note that CoVaR is a different concept from CVaR, despite the 
analogous name. 
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as a measure of systematic risk. Because massive 
simultaneous negative comovement is a very rare 
event, the joint probability is low. However, we 
expect that such a low probability captures the 
common distress factor among financial institutions 
and signals crisis. In a previous study, Segoviano 
and Goodhart (2009) estimate the joint probability 
of distress among financial institutions from the 
credit default swaps data. 

1.2.2. CoVaR. To investigate and quantify the risk 
spillover effect, we adopt Adrian and Brunner-
meier’s CoVaR methodology. CoVaR is a bivariate 
concept between two institutions i and j. While j

tqVaR ,  
is the q-quantile of the unconditional distribution of 

j
tR , ij

tqCoVaR ,  is the -quantile of the conditional 

distribution of j
tR  on a certain condition of i, more 

specifically, .i
tR  When we specify the condition of i

tR  

as )( i
tRC , we denote )(

,

i
tRCj

tqCoVaR  instead of 
ij
tqCoVaR , . The implicit definition of )(

,

i
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tqCoVaR  for 

continuous j
tR  is given by 
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Let )( i
t

d RC  and )( i
t

n RC  be the distress and “normal” 
conditions of i

tR , respectively. Adrian and Brunner-
meier (2011) suggest that the difference of ij

tqCoVaR ,  
between the two conditions )( i

t
d RC  and )( i

t
n RC , 
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accounts for the risk contribution of i to j. 
For the application of CoVaR to systematic risk in 
stock markets, we highlight the case of j being a 
market index. iindex

tqCoVaR ,  is regarded as the mar-
ginal contribution of i to the overall systematic risk. 
Regarding the conditions, Adrian and Brunnermeier 
(2011) define the distress and normal conditions as 
the institution’s loss and return being exactly at its 
VaR and median, respectively,  
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However, we adopt the modified definition by 
Girardi and Ergün (2013), where the distress and 
normal conditions denote the institution’s loss and 
return being above its VaR and within the range of 
one standard deviation from its mean state, 
respectively, 
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We make the confidence level 1  q of Cd coincide 
with that of CoVaR, which is conditioned by Cd. As 
Girardi and Ergün point out, the modified definition 
has several merits. First, it focuses on tail risk, i.e., 
the loss above the VaR level, and thus, the resulting 
CoVaR becomes more insightful. Second, it allows 
backtesting of CoVaR. We can apply the ordinary 
VaR backtesting methods to )(

,

i
t

d RCindex
tqCoVaR  for 

the days during which VaR violation of i occurs. 
Here, the VaR violation of i means the event when the 
observed loss i

tR  exceeds i
tqVaR , ; i.e., the condition 

)( i
t

d RC  actually occurs1. The simplest way of VaR 
backtesting is to observe how often VaR violations 
occur. If one attempts to estimate 100(1 – q)% VaR, 
violations should occur at 100q% of whole 
observations. Following Girardi and Ergün (2013), we 
shall use the likelihood ratio (LR) tests of the 
unconditional and conditional coverages by 
Christoffersen (1998) as a more sophisticated VaR 
backtesting method. The conditional coverage test is 
more desirable than the unconditional one because it 
can consider the tendency for consecutive 
violations, which is observed for ordinary VaR 
during financial turmoil. We define the CoVaR 
violation of i as the event when the observed loss

index
tR  exceeds )(

,

i
t

d RCindex
tqCoVaR  during the VaR 

violation days of i. Through the Christoffersen tests, it 
can be tested whether CoVaR violation occurs with a 
reasonable probability during VaR violation days; that 
is, )(

,

i
t

d RCindex
tqCoVaR is appropriately estimated at the 

given confidence level. In the conditional test of 
)(

,

i
t

d RCindex
tqCoVaR , the conditions are considered 

between two adjacent days of the VaR violations of i. 
The last convenience of the modified definition (10) 
for our study is to make scenario simulation-based 
estimation of CoVaR feasible (see section 1.3). 
1.2.3. Conditional probability of negative movements 
(CPNM). We can create an alternative probability-
based indicator for the risk spillover effect. Given 
that systematic risk is the simultaneous negative 
movement of stock returns, the probability of the 
market index going down contingent on the 
institution being distressed is regarded as the 
indicator for systematic risk originating from that 
institution. Then, we introduce the conditional 
probability of negative movements (CPNM), 
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concentrate on the distress condition Cd, which is more associated with 
systematic risk, as Girardi and Ergün (2013) do. 
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We still follow equation (10) regarding the definition 
of Cd. In this case, CPNM is proportional to the joint 
probability of both a market index and an individual 
institution incurring the loss beyond their respective 
VaRs. Note that, in contrast to the case of JPNM, 
negative movement does not stand for the return 
being less than the conditional mean but rather the 
loss exceeding VaR in the case of CPNM. This is 
because the joint probability of returns less than 
conditional means appears insufficient to inspect 
bivariate tail dependency. 

1.2.4. CoAVaR. We can consider the Co-version of 
AVaR by considering equations (4) and (5).  
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In an analogous fashion to CoVaR, the risk 
contribution of i to j in terms of CoAVaR is 
expressed by 
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In Adrian and Brunnermeier (2011), CoAVaR is 
mentioned as CoES. Because AVaR has some merits 
compared with VaR, we primarily use CoAVaR rather 
than CoVaR for the assessment of systematic risk. 
1.3. Scenario simulation. We rely on scenario 
simulation for estimation of systematic risk measures. 
It flexibly enables the estimations of various risk 
measures. On the basis of the AGMNTS 
(AGMNormal) model, we generate a large number S 
of scenarios about one-period-ahead multivariate stock 
returns SsRRRR sJ

t
s

t
s

t
s
t 1),,...,,( ,

1
,2
1

,1
11  via a 

Monte Carlo simulation. For the AGMNTS model, 
the random variables that follow the MNTS 
distribution are easily simulated using its subor-
dinated representation1. The risk measures can be 
estimated from the selected scenarios, where a 
relevant or conditioning event like )( i

t
d RC  or 

)( i
t

n RC  is realized out of the overall scenarios. For 

the estimations of iindex
tqCoVaR , , iindex

tqCoAVaR , , 

and iindex
tqCPNM , , we specify the bivariate ARMA-

GARCH model of the market index and institution i. 

                                                      
1 It is specifically a mixture of the multivariate normal distribution and 
classical tempered stable (CTS) subordinator. See Kim et al. (2012). 

2. Data 

For empirical research, we use daily stock logarithmic 
return data for 28 out of 29 G-SIFIs, as of November 
2011. We refer to each stock by its ticker symbol or 
abbreviation. The list of G-SIFIs is given in the 
Appendix. The only exclusion is Banque Populaire 
CdE because it is unlisted. We use the S&P global 
1200 financial sector index to represent the global 
banking stock market. The sample period is from 
January 1st, 2000 to June 30th, 2012. We exclude the 
U.S. non-business days from this period, which leads 
to 3260 observations for each stock. BOC, ACA, and 
three Japanese G-SIFIs (MUFG, MHFG, and SMFG) 
do not have sufficient length of historical data to cover 
the whole sample period. Regarding BOC and ACA, 
we backfill historical data using Cognity2. Regarding 
the three Japanese G-SIFIs, we extrapolate historical 
data using those of their representative affiliates, which 
had been listed before the establishments of holding 
companies3. All stock return data are downloaded 
from Bloomberg. 

We set the 1  q = 0.95 confidence level for risk 
measures unless otherwise noted. The number of 
scenarios in the Monte Carlo simulation is S = 106. 
The forecast of stock returns is made on a daily basis. 
Each business day, the model parameters are updated 
from a moving window of the most recent 1250 days’ 
sample return data. It means that we have 2011 daily 
parameter estimates starting from October 15th, 2004. 
In individual model parameter estimations, the 
variance-covariance matrix of t is estimated from the 
most recent 250 days’ sample innovations. 

3. Estimation results 

We present the estimation results of systematic risk 
measures. The measures are estimated on the basis 
of the AGMNTS model unless otherwise noted, 
whereas they are estimated on the basis of the 
AGMNormal model, if needed for a reference. 

First, we validate the usage of the AGMNTS model 
with G-SIFI stocks. For this validation, we test the 
standard NTS and normal distributional assumptions 
for the innovation of each stock in the ARMA(1,1)-
GARCH(1,1) model (1) through the Kolmogorov-
Smirnov (KS) test. Because we have 2011 daily 
estimations of the ARMA-GARCH model, the KS test 
is accordingly applied 2011 times for each stock. 
Table 1 reports the number of days on which the NTS 
and normal assumptions for each stock are rejected at 
three different significance levels: 1%, 5%, and 10%. 

                                                      
2 Risk management software provided by FinAnalytica, Inc. 
3 Specifically, we substitute Bank of Tokyo-Mitsubishi UFJ (8315 JP) 
for MUFG, Dai-Ichi Kangyo Bank (8311 JP, until September 2000) and 
Mizuho Holdings (8305 JP, from October 2000) for MHFG, and 
Sumitomo Mitsui Banking Corporation (8318 JP) for SMFG. 
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The result is that NTS provides much better fitting for 
innovations than normal. The only exception is BOC. 
Both NTS and normal assumptions are rejected by all 
2011 estimations for the innovations of BOC. 
However, except BOC, the rejections of the NTS 
assumption are much lower than those of the normal 
assumption at every significance level. The normal 
assumption is totally rejected by BOC, BK, MUFG, 
MHFG, STT, and SMFG even at the 1% significance 
level. These observations support the usage of 
AGMNTS model with G-SIFI stocks. 

To illustrate the basic risk profiles of G-SIFI stocks, 
we refer to VaR and AVaR. We adopt an equally 
weighted portfolio as the most representative portfolio, 
and consider the VaR and AVaR of the portfolio to be 
equally weighted by the 28 G-SIFI stocks. Figure 1 
represents the time series plot of the VaR and AVaR of 
the equally weighted portfolio estimated by the 
AGMNTS and AGMNormal models. AVaR estimated 
from the AGMNTS model tends to be higher than the 
AGMNormal model, especially during financial crisis, 
because of its capability of accounting for fat-tailness, 
whereas both models give similar VaR at the 95% 
confidence level. Through a simple graphic 
comparison, we find that the AGMNTS model and 
AVaR is the best combination for the purpose of 
warning of distress of individual institutions or their 
portfolios in terms of micro-prudential perspective. 
Subsequently, we apply the unconditional and 
conditional Christoffersen’s likelihood ratio tests to the 
estimated daily VaR of each stock to clarify whether 
 

the estimations of VaR are reasonable. Tables 2 and 3 
report the number of violation days and p-values of the 
tests for 90% VaR, 95% VaR, and 99% VaR, respect-
tively. Both AGMNTS and AGMNormal models 
show similar performance on the 90% VaR and 95% 
VaR estimations. The AGMNTS model gives fewer 
VaR violations and higher p-values for some stocks, 
whereas the AGMNormal model does this for other 
stocks; a higher p-value means less probability of 
rejection of the VaR estimation. However, this is not 
the case for the 99% VaR estimation; the AGMNTS 
model clearly gives a better forecast of VaR than the 
AGMNormal model. The AGMNTS model generally 
has fewer violation days and higher p-values. The 
number of 99% VaR violations based on the 
AGMNTS model is lower than the AGMNormal 
model, except for BOC and MUFG. In addition, the 
number of rejections of each stock’s 99% VaR 
estimation under the unconditional and conditional 
tests are 10 and 17 at the 5% significance level for 
AGMNTS, whereas 22 and 25 for AGMNormal, 
respectively. The fact that the 99% VaR estimation of 
the AGMNTS model is relatively more accurate than 
the 90% VaR and 95% VaR estimations implies that 
the deeper tail structure of the distribution is better 
captured by the AGMNTS model than the 
AGMNormal model. This property of the AGMNTS 
model is desirable for our study because our main 
interest CoVaR casts a spotlight on the deeper tail 
structure. Therefore, the AGMNTS model is 
preferable in terms of risk measure estimation as well 
as fitting performance. 

Table 1. Number of rejections of distributional assumptions for each stock on the basis of the KS test  
(out of 2011 estimations) 

 Significance level: 10% Significance level: 5% Significance level: 1% 
AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal 

 1463 2007 1219 2007 400 1979 
BOC 2011 2011 2011 2011 2011 2011 

 1890 2011 1617 2011 997 2011 
BARC 4 1635 4 1017 2 302 
BNP 16 1527 4 1345 3 841 

 1446 1960 1224 1846 523 1460 
 694 2002 486 2002 59 1963 

CSGN 1388 2011 943 2011 152 1548 
DBK 367 1898 72 1553 6 864 
DEXB 1076 2009 547 1888 6 1176 
GS 893 1883 591 1608 3 855 

 138 1744 38 1502 0 918 
HSBA 159 2011 13 2008 1 1421 
INGA 1183 1804 765 1551 4 571 
JPM 1437 2011 891 1984 82 1601 
LLOY 342 1945 93 1838 15 1092 
MUFG 1775 2011 1436 2011 436 2011 
MHFG 1558 2011 1288 2011 385 2011 
MS 1718 1807 1087 1476 272 1205 
NDA 663 2011 577 2010 317 1528 
RBS 628 2011 396 1927 100 1556 
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Table 1 (cont.). Number of rejections of distributional assumptions for each stock on the basis of the KS test  
(out of 2011 estimations) 

 
Significance level: 10% Significance level: 5% Significance level: 1% 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal 
SAN 1677 1930 1453 1640 654 888 
GLE 665 1988 334 1855 9 913 
STT 1311 2011 1198 2011 961 2011 
SMFG 1695 2011 1352 2011 770 2011 
UBSN 1449 2010 1012 1960 245 1111 
UCG 74 1256 4 1027 1 555 
WFC 722 1425 597 1272 409 1164 

 
Fig. 1. Time series of the VaR and AVaR of the equally weighted portfolio 

Table 2. Number of VaR violations (out of 2011 estimations) 
 90% VaR 95% VaR 99% VaR 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal 
 214 178 111 112 29 46 

BOC 155 151 75 79 29 29 
 188 186 104 104 35 39 

BARC 214 196 112 113 31 42 
BNP 216 202 118 116 24 35 

 219 203 120 124 34 48 
 203 195 102 100 31 34 

CSGN 204 189 100 102 21 28 
DBK 226 205 126 122 23 36 
DEXB 235 216 131 129 33 44 
GS 209 187 109 109 25 29 

 218 198 109 105 29 35 
HSBA 212 188 103 105 31 38 
INGA 239 220 126 122 26 35 
JPM 211 196 99 94 27 33 
LLOY 220 204 107 104 31 39 
MUFG 180 167 91 85 26 24 
MHFG 186 173 89 80 20 23 
MS 217 203 108 111 28 37 
NDA 211 180 112 104 27 36 
RBS 211 196 104 105 36 45 
SAN 239 225 124 130 23 43 
GLE 236 206 116 113 32 41 
STT 168 141 84 80 22 35 
SMFG 179 161 99 87 22 24 
UBSN 221 199 118 118 21 34 
UCG 247 235 140 139 25 41 
WFC 202 195 116 115 33 42 
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We now proceed to the estimation results of 
systematic risk measures. Figure 2 illustrates the 
time series of JPNM1. We can see that JPNM has 
high sensitivity to important financial events. We 
distinguish three turmoil periods when JPNM 
rapidly goes up: Period 1 is from July 2007 to 
September 2008 (subprime loan problem and 
Lehman’s collapse), Period 2 is from April 2010 to 
March 2011 (dawn of Greek sovereign problem), 

and Period 3 is from August 2011 to May 2012 
(U.S. credit rating downgrading and Greek political 
turmoil). It is remarkable that JPNM warns the 
adverse impact of the very recent Greek crisis 
(Period 3) even more seriously than the Lehman 
shock (Period 1), whereas VaR or AVaR in Figure 1 
describes Period 3 relatively moderately. JPNM 
could be a reference for a forthcoming crisis beyond 
VaR or AVaR. 

 
Fig. 2. Time series of JPNM 

To quantify risk spillover effects, we estimate 
iindex

tqCoVaR ,  and iindex
tqCoAVaR , . We backtest 

)(
,

i
t

d RCindex
tqCoVaR  as well as VaR, on the basis of the 

Christoffersen tests. Tables 4 and 5 report the violation 
rates and p-values of the tests for 90% CoVaR, 95% 
CoVaR, and 99% CoVaR, respectively2. Note that it is 
not the number of CoVaR violations but the rate of 
CoVaR violations to VaR violations that is reported in 
Table 4, because the number of VaR violations differs 
among individual stocks. In general, the rates of 
CoVaR violations are lower and the p-values of the 
tests are higher for the AGMNTS model than for the 
 

AGMNormal model. The number of rejections of each 
stock’s 95% CoVaR estimation under the uncondi-
tional and conditional tests are 3 and 8 at the 5% 
significance level for AGMNTS, whereas 26 and 27 
for AGMNormal, respectively. The AGMNormal 
estimation of CoVaR is rejected by almost all stocks. 
These imply that, unlike the case of VaR, the 
AGMNTS model gives a better forecast of CoVaR 
than the AGMNormal model regardless of significance 
levels. As can be observed from the definition, CoVaR 
addresses tail dependencies among stocks. A better 
estimation of CoVaR reflects the superior descriptive 
power for tail dependencies of the MNTS distribution. 

Table 4. Rate of CoVaR to VaR violations12 
 90% CoVaR 95% CoVaR 99% CoVaR 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal 
 0.150 0.213 0.063 0.143 0.034 0.065 

BOC 0.142 0.146 0.067 0.139 0.034 0.103 
 0.186 0.210 0.087 0.135 0.029 0.051 

BARC 0.136 0.179 0.071 0.124 0.032 0.048 
BNP 0.144 0.163 0.076 0.138 0.000 0.057 

 0.146 0.197 0.067 0.137 0.029 0.021 
 0.138 0.190 0.088 0.170 0.032 0.059 

CSGN 0.162 0.196 0.090 0.127 0.048 0.071 
DBK 0.128 0.156 0.071 0.139 0.043 0.056 

                                                      
1 The resulting value of JPNM is in the order of 10 2. The number of simulation, S = 106, is enough for the estimation because the standard deviation 
of the estimated JPNM is about .10/)ˆ1(ˆ 4Spp  
2 We do not deal with the likelihood ratio tests for 99% CoVaR because 99% VaR violations are not frequently observed to test 99% CoVaR. 
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Table 4 (cont.). Rate of CoVaR to VaR violations 

 
90% CoVaR 95% CoVaR 99% CoVaR 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal 
DEXB 0.132 0.190 0.084 0.155 0.030 0.091 
GS 0.139 0.182 0.083 0.147 0.040 0.069 

 0.147 0.182 0.083 0.143 0.034 0.057 
HSBA 0.108 0.149 0.087 0.114 0.000 0.053 
INGA 0.121 0.164 0.087 0.139 0.000 0.029 
JPM 0.142 0.199 0.111 0.191 0.037 0.061 
LLOY 0.118 0.157 0.075 0.144 0.000 0.026 
MUFG 0.094 0.120 0.055 0.094 0.000 0.042 
MHFG 0.086 0.110 0.022 0.088 0.000 0.000 
MS 0.147 0.187 0.056 0.135 0.036 0.081 
NDA 0.147 0.222 0.089 0.163 0.037 0.083 
RBS 0.133 0.173 0.077 0.143 0.000 0.022 
SAN 0.121 0.160 0.081 0.131 0.043 0.070 
GLE 0.127 0.155 0.095 0.133 0.000 0.024 
STT 0.179 0.213 0.095 0.188 0.045 0.086 
SMFG 0.101 0.112 0.051 0.103 0.000 0.000 
UBSN 0.140 0.181 0.076 0.144 0.048 0.059 
UCG 0.134 0.162 0.079 0.122 0.000 0.000 
WFC 0.168 0.200 0.095 0.148 0.030 0.071 

Table 5. p-values of the likelihood ratio test for CoVaR 
 90% CoVaR 95% CoVaR 

Unconditional Conditional Unconditional Conditional 
AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal 

 0.023 0.000 0.023 0.000 0.543 0.000 0.250 0.000 
BOC 0.099 0.078 0.082 0.076 0.528 0.003 0.289 0.002 

 0.000 0.000 0.000 0.000 0.120 0.001 0.115 0.001 
BARC 0.098 0.001 0.079 0.001 0.327 0.002 0.138 0.000 
BNP 0.044 0.005 0.012 0.001 0.223 0.000 0.084 0.000 

 0.032 0.000 0.019 0.000 0.424 0.000 0.181 0.000 
 0.087 0.000 0.067 0.000 0.108 0.000 0.104 0.000 

CSGN 0.006 0.000 0.005 0.000 0.097 0.002 0.033 0.000 
DBK 0.172 0.013 0.079 0.013 0.298 0.000 0.115 0.000 
DEXB 0.118 0.000 0.042 0.000 0.102 0.000 0.102 0.000 
GS 0.076 0.001 0.060 0.001 0.152 0.000 0.055 0.000 

 0.030 0.000 0.007 0.000 0.152 0.000 0.055 0.000 
HSBA 0.684 0.036 0.026 0.010 0.114 0.009 0.039 0.002 
INGA 0.286 0.004 0.172 0.002 0.081 0.000 0.023 0.000 
JPM 0.053 0.000 0.038 0.000 0.015 0.000 0.003 0.000 
LLOY 0.381 0.012 0.380 0.012 0.272 0.000 0.226 0.000 
MUFG 0.802 0.408 0.535 0.353 0.831 0.094 0.426 0.034 
MHFG 0.516 0.671 0.454 0.307 0.183 0.162 0.172 0.069 
MS 0.028 0.000 0.026 0.000 0.795 0.001 0.377 0.000 
NDA 0.032 0.000 0.013 0.000 0.084 0.000 0.084 0.000 
RBS 0.130 0.002 0.127 0.002 0.241 0.000 0.205 0.000 
SAN 0.286 0.005 0.002 0.002 0.149 0.000 0.144 0.000 
GLE 0.181 0.013 0.180 0.013 0.047 0.001 0.012 0.000 
STT 0.002 0.000 0.001 0.000 0.089 0.000 0.032 0.000 
SMFG 0.980 0.624 0.467 0.313 0.982 0.044 0.463 0.044 
UBSN 0.058 0.001 0.037 0.001 0.223 0.000 0.084 0.000 
UCG 0.092 0.003 0.006 0.003 0.151 0.001 0.047 0.001 
WFC 0.003 0.000 0.002 0.000 0.047 0.000 0.012 0.000 
# of p-values less than 5% 10 24 16 24 3 26 8 27
# of p-values less than 1% 4 20 7 21 0 25 1 25
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An alternative approach to risk spillover effects is 
CPNM. We compare CoAVaR and CPNM 
separately, both in time series and cross-section 
directions. Recall that CoAVaR is preferable to 
CoVaR for risk assessment. 
To compare time series, we prepare three regional 
portfolios in the United States, Europe, and Asia. 
These are equally weighted portfolios comprising G-
SIFI stocks belonging to each region, and are 
intended to represent the time series of stock returns 
in each region. In Figure 3, the AVaR of regional 
portfolios and CoAVaR and CPNM of each 
regional portfolio on the market index are plotted in 
the time series direction. The estimations are made 
using both AGMNTS and AGMNormal models. We 
observe that the AGMNTS model gives more conser- 
 

vative estimations of systematic risk measures than 
the AGMNormal model because of its superior 
descriptive power for tail dependencies. From a 
comparison among risk measures, CoAVaR is 
found to move significantly parallel to AVaR in the 
time series direction. It is a natural consequence 
that higher risk leads to higher risk spillover 
effects. On the other hand, neither does CPNM 
show strong linkage with AVaR or CoAVaR, nor 
it is very sensitive to global adverse impacts. 
However, CoAVaR and CPNM agree with the 
magnitude relation; the influence of Asia on the 
system is relatively lower than that of the United 
States and Europe. It also follows our assumption 
regarding the regional power of influence on the global 
financial system. 

 
 

Fig. 3. Time series of AVaR, CoAVaR, and CPNM by region 

The situation is different in the cross-section 
direction. To gain visual understanding, the scatter 
plots of cross-sectional CoAVaR vs. AVaR and 

CoAVaR vs. CPNM are depicted in the upper and 
lower halves of Figure 4, respectively, where the 
average of risk measures is taken over each stock’s 
time series during the three turmoil periods 
suggested by JPNM in Figure 2. It appears that the 
cross-sectional AVaR has very weak linkage with 
the cross-sectional CoAVaR. This result supports 
the idea that the institution that has higher risk is not 
necessarily the same one as the institution whose 
risk contribution to the entire system is larger. The 
contribution to systematic risk should be dependent 
not only on the institution’s stand-alone risk 
measured by, for example, VaR, but also on other 
factors such as interconnectedness with other 
institutions. By contrast, CPNM has strong positive 
linear linkage with CoAVaR. Though four points 
corresponding to the Asian G-SIFIs outlie others in 
each scatter plot, they still appear to be on a line. This 
suggests that CoAVaR and CPNM are consistent 
when ranking the power of influence on the entire 

system among institutions at the same time. This 
consentience is already observed about the ranking 
among three regions in Figure 3. We further 
investigate the relationship among cross-sectional 
AVaR, CoAVaR, and CPNM via the single linear 
regression, where the explained variable is CoAVaR 
and the explanatory variables are AVaR and CPNM. 
Because we have 2011 daily cross-sectional datasets 
for 28 G-SIFI stocks, we iteratively run the regression 
2011 times. Table 6 reports the number of significantly 
non-zero regression coefficients at the 1% level by 
signs and average R2 out of 2011 tests by risk measures 
at three different confidence levels. For AVaR, 
significantly positive coefficients at the 1% level to 

CoAVaR are obtained from less than 10% of all 
trials and R square is, on average, quite low regardless 
of confidence levels. For CPNM, in contrast, all trials 
result in a significantly positive coefficient at the 1% 
level with very high average R2. Therefore, from 
statistical evidence, we confirm that AVaR has almost 
nothing to do with CoAVaR, but that CPNM has 
very strong positive linkage with CoAVaR in the 
cross-section direction. 
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Fig. 4. Cross-sectional linkage among AVaR, CoAVaR, and CPNM 

Table 6. Iterative single regression analysis for 2011 cross-sectional datasets  
among AVaR, CoAVaR, and CPNM 

Explanatory variable  Sign of coefficient Confidence level: 90% Confidence level: 95% Confidence level: 99% 

AVaR 
# of significant coefficients at the 1% level Positive 

Negative 
155 
231 

170 
218 

188 
177 

Average R2 0.129 0.127 0.124 

CPNM 
# of significant coefficients at the 1% level Positive 

Negative 
2011 

0 
2011 

0 
2011 

0 
Average R2 0.982 0.973 0.943 

 

Concluding remarks 

In this paper, we measure global systematic risk and 
the marginal contributions to it of the institutions by 
using stock return data of G-SIFIs, which constitute 
a large portion of the global banking system. To 
generate the future joint distribution of stock 
returns, we utilize the ARMA-GARCH-MNTS and 
ARMA-GARCH-MNormal models. The statistical 
tests demonstrate that the ARMA-GARCH-MNTS 
model is highly preferable to the ARMA-GARCH-
MNormal model, mainly because of its capability of 
describing fat-tailness and skewness of stock return 
distributions. 
We prepare both probability-based indicators and 
measures to quantify the marginal contribution to 
systematic risk. To be specific, we estimate the joint 
probability and conditional probability of negative 
stock return movements, CoVaR, and CoAVaR 
against the market index. The joint probability of 
negative movements turns out to vividly describe a 
significant increase of systematic risk. It provides 
information that VaR or AVaR lacks and could be 
referred to as a signal of financial turmoil. The other 
measures are for risk spillover effects rather than 
  

systematic risk itself. We find that AVaR has very 
weak linkage with CoAVaR in the cross-section 
direction, even though both are strongly connected 
to each other in the time series direction, implying 
that the institution having higher risk is not necessarily 
the institution having a larger power of influence on 
the entire system. Therefore, exclusively referring to 
VaR can be misleading for a macro-prudential 
purpose. These results are consistent with those of 
Adrian and Brunnermeier (2011) for the U.S. financial 
institutions. On the other hand, the probability of 
negative movements of the market index on the 
condition of the instituion’s distress tends to provide 
very similar implications to CoAVaR about the 
ranking of the institution’s power of influence on the 
entire system. The relative merit of CoAVaR to 
conditional probability is a stronger sensitivity to 
adverse impact on the global financial system and the 
ability to quantify the impact, whereas the relative 
merit of conditional probability to CoAVaR is the 
easiness of estimation. From these observations, we 
conclude that combining AVaR and the conditional 
probability of negative movements would give a 
useful reference for CoAVaR-based systematic risk 
measurement. 
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Appendix  

Table A1. List of 29 G-SIFIs as of November 20111 

United States Europe Asia 
Bank of America (BAC) 
Bank of New York Mellon (BK) 
Citigroup (C) 
Goldman Sachs (GS) 
JP Morgan Chase (JPM) 
Morgan Stanley (MS) 
State Street (STT) 
Wells Fargo (WFC) 

Banque Populaire CdE 
Barclays (BARC) 
BNP Paribas (BNP) 
Commerzbank (CBK) 
Credit Suisse (CSGN) 
Deutsche Bank (DBK) 
Dexia (DEXB) 
Group Crédit Agricole (ACA) 
HSBC (HSBA) 
ING Bank (INGA) 
Lloyds Banking Group (LLOY) 
Nordea (NDA) 
Royal Bank of Scotland (RBS) 
Santander (SAN) 
Société Générale (GLE) 
UBS (UBSN) 
Unicredit Group (UCG) 

Bank of China (3988)  
Mitsubishi UFJ FG (8306)  
Mizuho FG (8411)  
Sumitomo Mitsui FG (8316) 

Note: Characters in parentheses stand for the ticker symbols in each domestic market. We refer to G-SIFIs by their ticker symbol 
except the Asian G-SIFIs. We refer to the Asian G-SIFIs by their abbreviations: BOC (Bank of China), MUFJ (Mitsubishi UFJ FG), 
MHFG (Mizuho FG), and SMFG (Sumitomo Mitsui FG). 

                                                      
1 The most recent list contains revisions owing to the update on November 2012. See Financial Stability Board (2012). 


