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Abstract 

Probabilistic bankruptcy prediction models based on accounting numbers and other financial information are 
commonly estimated from non-random samples of firms, where the proportion of bankrupt firms is much larger than in 
most real world situations. This “choice based sample bias” leads to estimated bankruptcy probabilities that are biased. 
Given that unbiased probabilities are required in risk assessments or discounted cash flow valuation modelling, such 
probabilities can be severely misleading. The purpose of the paper is to analyze this bias in probabilistic bankruptcy 
prediction models (typically probit/logit analysis), and to investigate whether it can be mitigated without having to 
resort to cumbersome model re-estimations. The authors show that there is a clear-cut linkage between sample based 
probabilities and the corresponding unbiased probabilities. Also, the authors show that sample based probabilities can 
be calibrated for the choice based sample bias, provided that randomly selected firms from the sub-populations of 
bankrupt and survival firms are used in the estimation of a prediction model.  Non-calibrated bankruptcy probabilities 
are commonplace in previous empirical research, implying that reported misclassification errors and/or 
misclassification costs can be more or less misleading. Observed regularities in previous studies are in line with the 
presented analyses, demonstrating a need for a more insightful treatment of this bias in future research.  
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Introduction© 

A considerable number of empirical studies on the 
association between financial statement numbers 
and firm bankruptcies have been made for 
industrial, retailing and financial firms over the 
years1. Recently, researchers have taken a particular 
interest in insurer insolvency prediction2. Various 
statistical techniques have been used to explore this 
association, ranging from crude applications of 
regression analysis to more sophisticated variants of 
probit/logit analysis3. It has been observed that the 
statistical assumptions of regression analysis and 
discriminant analysis typically are not well fulfilled in 
the context of bankruptcy prediction4. The methods are 
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1 Early attempts go back to Smith & Winakor (1935) and Merwin (1942), 
but research of this kind has flourished from the mid 1960s and 
onwards, cf. Beaver (1966), Altman (1968), Edmister (1972), Altman 
(1973), Blum (1974), Altman et al. (1977), Ketz (1978), Ohlson (1980), 
Mensah (1983), Zavgren (1985), Skogsvik (1990), and more lately, 
Dewaelheyns and Van Hulle (2006), and Pereira Leal and Machado-
Santos (2007). 
2 Cf. for example, Cummins et al. (1997), Carson and Hoyt (2000), and 
Brockett et al. (2006). 
3 Cf. Jones (1987), Jones and Henscher (2004), and Bellovary et al. (2007). 
4 Inconsistent with the assumptions of regression analysis, the dependent 
variable is dichotomous in a prediction of firm bankruptcy. Multivariate 
discriminant analysis presumes that the independent variables are 
multivariate normally distributed in the sub-populations of bankrupt and 
survival firms, and that the variance/covariance matrices of the 
independent variables are the same for both sub-populations. As 
observed in Foster (1986, pp. 107-111) and Skogsvik (1987, pp. 210-
214), financial ratios typically do not fulfil these assumptions. 

also somewhat awkward since they do not directly 
provide estimates of bankruptcy probabilities. In 
this regard probit/logit analysis is better, as this 
method implies a probabilistic association between 
the independent variables (e.g. accounting numbers) 
and the outcome variable (e.g. “bankruptcy” versus 
“non-bankruptcy”)5. 

Bankruptcy probabilities constitute important para-
meters in many decision contexts. The relevance of 
such probabilities in discounted cash flow bond and 
equity valuation is illustrated in Shaffer (2004) and 
Skogsvik (2006). Valuation models involving 
“expected values” presume that it is possible to assess 
unbiased probabilities in the sense that the 
probabilities are representative for the population of 
firms. Unbiased bankruptcy probabilities are rarely 
directly observable, but have to be estimated. In the 
context of bankruptcy prediction, probit/logit 
analysis then has appeared to be particularly useful 
(cf. Ohlson, 1980). However, the issue requires 
careful attention to the distorting impact of non-
random sampling in the estimation of such models. 

Since bankruptcies tend to occur rather infrequently, 
prediction models have in general been estimated 
from non-random samples of bankrupt and survival 
firms. The proportion of bankrupt firms in the 
sample has then typically been much larger than the 
fraction of such firms in the population. Often a 
“matched-pairs” design has been used, implying a 

                                                      
5 In recent years, other statistical approaches have been suggested in the 
context of bankruptcy prediction (cf. Shumway, 2001; and Jones & 
Henscher, 2004). However, standard logit/probit is still the predominant 
method (Jones & Henscher, 2004). 
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sample proportion of bankrupt firms of 0.501. The 
sample proportion of bankrupt firms being 
exaggerated as compared to the population of firms 
is the root of the “choice based sample bias”, 
leading to more or less biased probabilities in 
standard probit/logit models2.  

There are statistical techniques that generate unbiased 
parameter estimates in probabilistic models, even in 
the presence of “choice based” sample proportions. 
These techniques require that the estimation procedure 
is calibrated for some a priori probability of 
bankruptcy. As long as an estimated prediction model 
is used in contexts where the a priori bankruptcy 
probability is the same as the proportion of bankrupt 
firms in the sample, the estimated probabilities will be 
appropriate. However, if the a priori probability in 
some context does not correspond to the proportion of 
bankrupt firms in the sample, the estimated 
probabilities will be biased. Changes in the a priori 
probability of bankruptcy can be due to, for example, 
variations in firm characteristics, business cycle effects 
or regulatory changes. A cumbersome way of dealing 
with this problem would be to re-estimate the 
prediction model with a new a priori probability. 
However, for a user of some prediction model this 
might not be a viable alternative – not having access 
to the original empirical data would obviously be an 
effective impediment.  

The main purpose of this article is to put forward an 
adjustment formula that will allow users of 
probabilistic prediction models to eliminate the 
impact of the choice based sample bias on 
bankruptcy probabilities. The paper provides 
guidelines for the use of probabilistic prediction 
models in out-of-sample contexts, potentially 
valuable for both academics and practitioners. 
Additionally, empirical consequences of not making 
any adjustments to model-based probabilities are 
addressed, with references to previous research. 

The outline of the article is as follows. The choice 
based sample bias of bankruptcy probabilities is 
analyzed in section 1. In section 2, the ranking 
characteristics of biased probabilities are evaluated, 
and in section 3 the calibration of biased probabilities 
is analyzed. Section 4 provides guidelines for choosing 
probability cut-off values when evaluating the classify-

                                                      
1 In a survey of failure prediction studies, Zmijewski (1984) observed 
that a “matched-pairs” design had been used in about 70% of previous 
studies. Similarly, “matched-pairs” sampling has been predominant in 
insurer bankruptcy studies (Carson and Hoyt, 2000). 
2 Ohlson (1980) constitutes an exception from the “matched-pairs” sampling 
procedure, as Ohlson’s sample included 105 bankrupt and 2058 survival US 
industrial firms (i.e. the proportion of failure firms was less than 5%.) One 
might hence expect that Ohlson´s prediction model became comparatively 
representative for the population of US industrial firms, which might have 
contributed to the fairly robust performance of this model over time (cf. 
Begley et al., 1997; and Boritz et al., 2007). 

cation accuracy of probabilistic models. Implications 
for the evaluation of the prediction performance of 
bankruptcy prediction models is discussed in section 5. 
The last section concludes the paper. 

1. The impact of the choice based sample bias 
on assessed probabilities 

Probabilistic bankruptcy prediction models have 
commonly been estimated from non-random 
samples in previous research. Given that standard 
(unweighted) statistical techniques have been used, 
estimated coefficients have then been affected by 
the chosen sample proportions. In order to analyze 
this effect, we use the following notation: π(t) is the 
proportion of bankrupt firms year t in the population of 
firms, i.e. the a priori probability of bankruptcy year t; 

)(
)(

π
tj,failp  is the unbiased probability of bankruptcy 

(consistent with the a priori probability of bankruptcy 
in the population) year t for firm j, conditioned on 
firm survival at the end of year t-1; prop is the 
proportion of bankrupt firms in the estimation 
sample; )(

)(
prop

tj,failp  is the sample based probability of 
bankruptcy (consistent with the proportion of 
bankrupt firms in the estimation sample) year t for 
firm j, conditioned on firm survival at the end of 
year t-1; and {Xj,t-1} is the set of financial descriptors 
for firm j, observable at time t-1. 

In a decision context, the idea is that a decision 
maker is armed with some (previously estimated) 
bankruptcy prediction model, and that: 

♦ Values of the descriptor variables for some firm 
{Xj,t-1} (including accounting numbers as 
indicators of profitability, interest cost, financial 
leverage, etc.)3 are measured.  

♦ Based on the probabilistic prediction model, a 
probability of firm bankruptcy ( ))(

)(,
prop

tfailjp  is 
calculated over some forecast horizon. 

In order to simplify the notation, let henceforth 
the indices j and t be suppressed. Recognizing that 
both sample based and unbiased probabilities are 
conditioned on the set of descriptor variables, we 
can then write: 

{ }( ) , )()( propprop
fail Xfail pp =   

= p π
fail

)( { }( ) )(πXfail p . 

Assuming that 0 < π < 1.00, the unbiased bankruptcy 
probability )(π

failp  can be analyzed in accordance 
with Bayes theorem as follows4:  

                                                      
3 Cf. for example, Skogsvik (1990, p. 145 and pp. 155-157). 
4 Cf. for example, Chou (1984, p. 411). 
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where { }( ) )(  πfailXp  is the unbiased probability of 
observing {X} (at time t) conditioned on firm 
bankruptcy in year (t+1); and { }( ) )(  πsurvXp is the 
unbiased probability of observing {X} (at time t) 
conditioned on firm survival in year (t+1). 

The sample based probability )( prop
failp  is affected by 

the proportion of bankrupt firms in the estimation 
sample, where prop can be viewed as the “a priori” 
fraction of bankrupt firms in the sample. Assuming 
that 0 < prop < 1.00, this probability can be 
analyzed in the same manner as the unbiased 
probability 

)(π
failp :  

 )( prop
failp  = { }( ) )( propXfailp =

{ }( )
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where { }( ) )(  propfailXp  is the sample probability of 
observing {X} (at time t) conditioned on firm 
bankruptcy the following year (t+1); and 
{ }( ) )(  propsurvXp  is the sample probability of observing 

{X} (at time t) conditioned on firm survival the 
following year (t + 1). 

We now presume that the sample of bankrupt firms 
constitutes a random drawing from the sub-population 
of bankrupt firms and the sample of survival firms 
constitutes a random drawing from the sub-population 
of survival firms, in the sense that { }( ) =)(  propfailXp  

{ }( ) )(  πfailXp=  and { }( ) =)(  propsurvXp  { }( ) )( π survXp . 

Given that both { }( ) )(  πfailXp  and { }( ) )(  propfailXp  

are positive, this means { }( ) { }( ) =)()(   /  ππ failXpsurvXp

{ }( ) { }( ) )()(   /  propprop failXpsurvXp= . Let this odds 
ratio be denoted Or({X}).  

The odds ratio for the population of firms can be 
solved through a rewriting of equation (1), i.e.: 
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{ }( ) .
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Inserting the above solution for Or({X}) in equation 
(2), and recognizing the equalities 

{ }( ) )(πXfailp  = )(π
failp  and { }( ) )( propXfailp  = )( prop

failp ,  

we get:  
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The sample based bankruptcy probability is hence a 
function of the unbiased probability )(π

failp , the 
fraction of bankrupt firms in the population (π), and 
the proportion of bankrupt firms in the estimation 
sample (prop). As expected, equation (4) shows that 

)( prop
failp  = )(π

failp  if the proportion of bankrupt firms in 
the sample is equal to the a priori bankruptcy 
probability. However, if prop = 0.5 (as in matched 
pairs sampling) and π = 0.02, the value of )( prop

failp

would be 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅+ )(

)(

9796.00204.0 π

π

fail

fail

p
p

, meaning that the 

sample based probability would be exaggerated as 
long as 0 < )( π

failp  < 1.00. For example, setting )(π
failp  

alternatively to 0.01, 0.02 or 0.10, the sample based 
probability  )( prop

failp  in a matched-pairs sampling design 
would be equal to 0.33, 0.50 and 0.84, respectively. 

In order to better understand the linkage between 
sample based probabilities and the proportion of 
bankrupt firms in the estimation sample, we can 
calculate the derivative of equation (4) with respect 
to prop:  

( ) ( ) ( )
( )[ ]  .

1

1  -1 
)( 2)()(

)()()(

ππ

ππ

π

ππ

failfail

failfail
prop

fail

pproppropp

pp
prop
p

⋅−−+⋅

−⋅⋅⋅
=

∂
∂ (5) 

Limiting the analysis to settings where 0 < π < 1.00, 
0 < prop < 1.00 and 0 <

)(π
failp  < 1.00, the RHS of (5) is 

positive, in turn meaning that  )( prop
failp is positively 

affected by the sample proportion of bankrupt firms. 
Alternatively, given that prop > π, equation (4) and (5) 
imply that the bias of  )( prop

failp  is positive and increasing 
in the proportion of bankrupt firms in the estimation 
sample. 
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2. Ranking characteristics of sample based 
probabilities 

In accordance with equation (4) above, a sample 
based bankruptcy probability ( )( prop

failp ) constitutes a 

biased assessment of the probability )(π
failp  when 

prop ≠ π. However, in some decision contexts, 
estimated probabilities are only used for classifying 
firms as bankrupt or non-bankrupt entities. The 
focus will then be on the ranking of firms based on 
the sample based probabilities, in combination with a 
chosen probability cut-off value. It is thus interesting 
to know whether a sample based probability 

)( prop
failp , 

being more or less biased in relation to )(π
failp , 

nevertheless might provide a correct ranking of firms. 
That is, reintroducing the company index and letting j 
and j′ denote two different companies − if 

)(
',

)(
,   ππ

jfailjfail pp >  will then )(
',

)(
,   prop

jfail
prop

jfail pp > ?  

In order to answer this question, we calculate the 
derivative of equation (4) with respect to the 
unbiased probability )(π

failp : 

( )
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( )( ) ( )[ ] 0.
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1 1   2)(

)(

>
⋅−−+⋅
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πππ π
ππ

failfailfail

prop
fail

pproppropp
propprop

p
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(6) 

Equation (6) shows that there is a positive 
relationship between )( prop

failp and )(π
failp , implying that 

a sample based probability is a consistent indicator 
of bankruptcy risk in the following sense: 

Proposition: Let )(
,

π
jfailp  denote the unbiased bankrupt-

cy probability and )(
,

prop
jfailp  the sample based bankrupt-

cy probability of firm j. Then it holds: 

♦ if )(
,

π
jfailp  > )(

',
π

jfailp , then 
)(

,
prop

jfailp  > 
)(
',

prop
jfailp ; 

♦ if )(
,

π
jfailp  = )(

',
π

jfailp , then )(
,

prop
jfailp  = )(

',
prop

jfailp ; 

♦ if )(
,

π
jfailp < )(

',
π

jfailp , then )(
,

prop
jfailp < )(

',
prop

jfailp . 

Given that a probabilistic prediction model has been 
estimated with a sample proportion of bankrupt firms 
prop ≠  π, the probability )( prop

failp  is biased but 
according to the Proposition the ranking of firms with 
the biased and the unbiased probabilities will 
nevertheless be the same. Hence the choice based 
sample bias in probabilistic bankruptcy prediction does 
not affect the reliability of )( prop

failp , only its ability to 
correctly depict the unbiased probability )(π

failp . 

3. Estimating unbiased bankruptcy probabilities 

In the previous section it was shown that even if the 
probability )( prop

failp  is biased, it still provides a correct 
ranking of firms. In a typical bond or equity valuation 
problem however, a decision maker needs to transform 

sample based bankruptcy probabilities into their 
unbiased counterparts. This section shows how to 
transform such biased probabilities into unbiased 
probabilities. 
According to equation (4), a sample based 
probability can be written as a function of the 
unbiased probability, the fraction of bankrupt firms 
in the population, and the proportion of bankrupt 
firms in the estimation sample. Our focus is now on 
estimating the probability )(π

failp . Rewriting equation 
(4) gives the following adjustment formula for how 
to calibrate the sample based probability: 

,
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where )(adj
failp  is the sample based probability of 

bankruptcy year t (for firm j) conditioned on firm 
survival at the end of year t-1, calibrated for the 
fraction of failure companies in the population. 
Equation (7) shows how an unbiased probability 

)(adj
failp  can be calculated as a function of  the fraction 

of bankrupt firms in the population (π), the 
proportion of bankrupt firms in the estimation 
sample (prop) and the biased bankruptcy probability 
( )( prop

failp ). For example, if the bankruptcy frequency in 
the population is 0.02, the sample proportion of 
bankrupt firms is 0.50, and an estimated prediction 
model generates )( prop

failp  = 0.60, the calibrated 
bankruptcy risk would be 

1
)(

60.0
)60.01(

)50.01(
50.0

02.0
)02.01(1

−

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

−
⋅

−
+=adj

failp = 0.03.1 

Note that )(adj
failp  in equation (7) constitutes an estimate 

of the unbiased probability )(π
failp . As standard 

probit/logit techniques do not provide any sampling 
errors associated with )( prop

failp , it is hard to make a 
precise statement on the sampling characteristics of 

)(adj
failp . However (as stated in section 1), a necessary 

condition for )(adj
failp  to be an unbiased estimator of 

)(π
failp  is that the samples of bankrupt and survival firms 

constitute random drawings from the sub-populations 
of bankrupt and survival firms, respectively. 

4. Implications for the use of probabilistic 
prediction models 

A couple of methodological consequences of the 
choice based sample bias will be addressed in this 
section. The first issue is concerned with the 

                                                      
1 Evidently, if there is no choice based sample bias, then prop = π and 

 )( adj
failp  =  )( prop

failp  in equation (7). 
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magnitude of estimated coefficients in standard 
probit/logit models and the second issue deals with the 
classification accuracy of estimated prediction models. 

Regarding the magnitude of the estimated 
coefficients, equation (4) shows that )( prop

failp  will be 
positively biased when prop > π. When the 
proportion of bankrupt firms in the estimation sample 
is larger than the fraction of such firms in the 
population (as typically has been the case in previous 
empirical research), the estimated coefficients can 
hence be expected to be “exaggerated”. However, as 
more carefully discussed in Manski & Lerman (1977), 
it is difficult to more precisely specify the bias of the 
coefficients of the independent variables. Empirical 
tests in Zmijewski (1984) and Bergström et al. 
(1999) show that significance tests of the 
coefficients in the main appear to be unaffected by 
variations in prop, at least as long as there are 40 or 
more bankrupt firms in the estimation sample. 

Concerning the classification accuracy of 
bankruptcy prediction models, tests of this kind 
involves the choice of a cut-off value failp  such 
that firms with fail

prop
fail pp  )(   )( <>  are classified as 

bankrupt (survival) firms. Defining “error type I” as 
an erroneous classification of a bankrupt firm and 
“error type II” as an erroneous classification of a 
survival firm, it is easily recognized that the choice 
of failp  involves a trade-off between the size of 
type I and type II errors1. 

Regarding the choice of failp , basically two 
approaches have been used in previous research − 
an “empirical” and an “analytical” approach. 
According to the former approach, a cut-off value, 
here denoted )(emp

failp , is determined empirically as 
the cut-off probability associated with the lowest 
“average error rate”, or “average error cost”, for the 
estimation sample. As regards the measurement of 
the average error rate, ( )(erate ), the following 
definitions have been used in previous research: 

)]/2,(  )( [  )( III erateerateerate +=                            (8a) 

),(   )(1  )( )´( III erateprope rateprop erate ⋅−+⋅=    (8b) 

=)´´(erate  π +⋅   )( Ierate ),(  )(1 IIerate⋅−π           (8c) 

where rate(eI) is error rate type I, i.e. the number of 
errors type I in relation to the number of bankrupt 
firms in the sample; and rate(eII) is error rate type II, 
i.e. the number of errors type II in relation to the 
number of survival firms in the sample. 

                                                      
1 As one extreme, if failp  = 0 there will be no errors type I but all 
survival firms will be classified as “bankrupt firms” (errors type II). On 
the other hand, if failp  = 1 there will be no errors type II, but all 
bankrupt firms will be classified as “survival firms” (errors type I). 

The error rate in equation (8a) is simply the arithmetic 
average of error rates type I and type II, while the error 
rates in (8b) and (8c) are functions of the relative 
frequency of bankrupt firms in the estimation sample 
and the population, respectively. Note that, if 0.5 = 
prop = π the average error rates in equations (8a) to 
(8c) coincide, in turn meaning that the corresponding 
cut-off values )(emp

failp  will be the same. 

Alternatively, an empirical cut-off value )(emp
failp can 

be determined as the cut-off probability that 
minimizes the average error cost, determined as: 

,      II2I1 costwcostwcost ⋅+⋅=                                   (9) 

where costI is the cost associated with a classification 
error type I; costII is the cost associated with a 
classification error type II; w1 is the weight of error 
cost type I; and w2 is the weight of error cost type II. 

In previous research, the weights w1 and w2 have 
commonly been specified as a function of the 
fraction of bankrupt firms in the population and 
empirically estimated values of rate(eI) and rate(eII), 
giving an average error cost equal to:  

[ ]
[ ] . )()(1

  )(  

II

II
)(

costerate
coste ratecost

II ⋅⋅−+
+⋅⋅=

π
π

π

       (10) 

Probability cut-off values based on equations (8a), 
(8b), (8c) and (9) are affected by the choice based 
sample bias in the same way as )( prop

failp , i.e. )(emp
failp  will 

be positively (negatively) biased if prop > π (prop < π). 
In principle, this bias is harmless as long as the cut-off 
values are used to evaluate correspondingly biased 
values of )( prop

failp . Since rankings based on )( prop
failp  and 

)(π
failp  coincide, there will always exist a biased cut-off 

value )(emp
failp  that generates the same average error 

rate, or error cost, as an unbiased probability cut-off 
value together with unbiased probabilities )(adj

failp 2. 

The analytical approach for determining a 
probability cut-off value is derived from some 
decision context where unbiased probabilities are 
presumed. In previous research this choice has often 
been guided by a simple trade-off between expected 
error costs, calculated as: 

♦ Expected error cost of “survival” classification: 
I

)(   costp fail ⋅
π . 

♦ Expected error cost of “bankruptcy” classify-
cation: ( ) II

)(    1 costpfail ⋅− π . 

                                                      
2 Cf. for example, Skogsvik (1990, pp. 149-150), and in the context 
of probabilistic predictions of firm profitability, Skogsvik (2008, 
pp. 803-804). 
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Decision rule. A “bankruptcy” classification is made 
when ( ) II

)(
I

)(    1   costp costp failfail ⋅−>⋅ ππ ; otherwise a 
“survival” classification is made. 

The probability cut-off value, *
failp , implied by this 

decision rule can easily be solved1: 

.
)/(  1

1  
I

*

II
fail costcost

p
+

=                                          (11) 

In contrast to empirically determined probability 
cut-off values, analytically derived cut-off values 
only make sense when unbiased bankruptcy 
probabilities are available. As noted previously, 

)( prop
failp  is biased when prop ≠ π and such probabilities 

should not be used with analytically derived cut-off 
values. One way to deal with this issue is to first 
transform the sample based probabilities )( prop

failp  into 
unbiased probabilities )(adj

failp
 in accordance with 

equation (7), and then use an analytically derived 
probability cut-off value. Alternatively, the problem 
could be handled by the adjustment equation (4), 
which transforms unbiased probabilities into biased 
probabilities, i.e.: 

)*( prop
failp

 

= .
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)*( prop
failp  here constitutes the adjusted analytical cut-

off probability *
failp , to be used with unadjusted 

bankruptcy probabilities )( prop
failp .  

5. Implications for reported classification/ 
prediction results in previous research 

A vast number of bankruptcy prediction models have 
been estimated and tested over the years, typically 
without any consideration of the importance of the 
choice based sample bias. An interesting issue is thus 
to what extent this negligence has misguided or 
distorted the evaluation of these models. 

Addressing various methodological issues related to 
standard probabilistic bankruptcy prediction 
modeling, the classification accuracy − measured as 

)´(erate  in equation (8b) above − for different 
proportions of bankrupt firms in the estimation 
sample was calculated in Zmijewski (1984). In all 
classification tests a cut-off probability of 0.50 was 
used, presumably viewed as an analytical cut-off 
value based on a symmetric loss function (i.e. 

                                                      
1 The probability cut-off value is implied in equation (11) in the sense 
that it is rational for a risk-neutral decision maker to classify a firm as 
“bankrupt” if *)(

failfail pp >π  and “non-bankrupt” if *)(
failfail pp <π . 

costI/costII = 1.00)2. With regard to the observed 
results, Zmijewski stated3: 

“The results… generally indicate the existence of a 
bias and the overclassification of bankrupt firms when 
using unweighted probit” (Zmijewski, 1984, p. 72). 

Zmijewski’s observation is not surprising. As the 
bias of )( prop

failp  is positively related to the sample 
proportion of bankrupt firms, there will be more 
firms with )( prop

failp  being larger than 
*
failp  = 0.50 

when this proportion is high. Hence, a lower 
fraction of misclassified bankrupt firms − and a 
higher fraction of misclassified survival firms − 
trivially follows. 

The prediction accuracy was evaluated by 
Zmijewski with a holdout sample including 41 
bankrupt and 800 survival firms, implying a fraction 
of bankrupt firms in the holdout sample of 0.049. 
The impact of the choice based sample bias on 

)( prop
failp  was clearly observed for this sample. When 

the proportion of bankrupt firms in the estimation 
sample was 0.50, the average value of )( prop

failp  was 
0.19 in the holdout sample. When the proportion of 
bankrupt firms in the estimation sample was 
reduced − to 0.286, 0.167, 0.091 and 0.048 − the 
average value of )( prop

failp  decreased − to 0.11, 0.09, 
0.07, 0.06 and 0.05, respectively4. Consistent with 
our analysis in section 1 above, average values of 

)( prop
failp  were larger than π  when prop > 0.048 and 

the average values of the sample based 
probabilities decreased as prop decreased. It is 
particularly worth noting that, when the proportion 
of bankrupt firms in the estimation sample was 
about the same as the fraction of such firms in the 
holdout sample (0.048 ≈ 0.049), the average value of 

)( prop
failp  (= 0.05) was very close to the “a priori 

probability” of bankruptcy in the holdout sample 
(0.049). This illustrates that )( prop

failp  is an unbiased 
estimate of )(π

failp  when prop = π (in line with equation 
(4) above). Hence, our analysis helps to clarify the 
empirical observations in Zmijewski (1984). 

Zmijewski also calculated weighted average error 
rates in accordance with equation (8c), setting the 
probability cut-off value to 0.50 for the estimated 
probit models. The reported results were as follows:  

“… the bankrupt firm correlation is positive … 
indicating an overclassification bias; the nonbankrupt 

                                                      
2 Cf. note 16, p. 72, in Zmijewski (1984). 
3 “Unweighted probit” in the quotation refers to an application of probit 
analysis where no adjustments are made to handle the choice based 
sample bias. 
4 From Table 5 in Zmijewski (1984, p. 71). 
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firm correlation is negative … indicating an under-
classification bias; and the overall correlation is 
negative, indicating that correct prediction rates 
increase when parameters which are less biased are 
used” (Zmijewski, 1984, p. 73). 

The overclassification bias for the bankrupt firms 
and the underclassification bias for the non-bankrupt 
firms are both consistent with the choice based 
sample bias effect on )( prop

failp , as noted above. 
However, claiming that the average error rate 
decreases as the model parameters are more 
unbiased, is more doubtful. As the chosen cut-off 
probability (0.50) was distinctively different from 
the proportion of bankrupt firms in the holdout 
sample (0.049), the cut-off value presumably was 
expected to be optimal in a decision context where 
costI/costII = 1.00. Minimizing the average error cost 
in equation (10) when costI/costII = 1.00 is equivalent 
to minimizing the average error cost calculated as  

0.1)()1(0.1)(
)(

⋅⋅−+⋅⋅= III erateeratecost ππ
π

, 

i.e. in this particular instance the same as 
minimizing the weighted average error rate in 
equation (8c). As argued previously, analytically 
derived cut-off probabilities are only consistent with 
unbiased probabilities, i.e. )( prop

failp  based on 
estimation samples for which prop = π or estimates 
of unbiased probabilities ( )(adj

failp ). Since the fraction 
of bankrupt firms in the holdout sample was 0.049 
in Zmijewski’s tests of prediction performance, the 
estimation sample with the lowest proportion of 
failure companies (prop = 0,048) should have 
generated the most unbiased values of )( prop

failp . It is 
then only to be expected that the lowest average 
error rate in equation (8c) should be observed for 
this estimation sample. However, about the same 
average error rate should also have been possible to 
observe if the biased probabilities )( prop

failp  from the 
other estimation samples had been calibrated in 
accordance with equation (7) above.  

Also, the analyses in Zmijewski (1984) fail to 
recognize that an analytical probability cut-off value 

*
failp  is linked to a specific decision context and that 

the evaluation of prediction models should be based 
on the goal function of that particular context. 
Setting *

failp  = 0.50 in Zmijewski (1984), the 
average error cost according to equation (10) 
happens to coincide with the average error rate in 
equation (8c). However, if − as one typically would 
assume − costI/costII  > 1,00, the cut-off probability 
should be less than 0.50 and the average error rate in 
equation (8c) would not have constituted a valid 
indicator of  prediction performance. In such cases, 

estimated average error costs in accordance with 
equation (10) should always be used to assess the 
prediction performance of probabilistic models1. 

Conclusions 

The purpose of the article has been to enhance the 
usefulness of (unweighted) probabilistic bankruptcy 
prediction models. Specifically, problems associated 
with the choice based sample bias have been 
addressed, as previous research is vague and 
sometimes even misleading on this issue. Future 
empirical research can benefit from the provided 
guidelines of how to handle the choice based sample 
bias in this type of prediction modeling. 

Bankruptcy probabilities have commonly been 
estimated in probabilistic statistical models, as, for 
example, in Ohlson (1980), Zavgren (1985), 
Skogsvik (1990) and more lately, Dewaelheyns & 
Van Hulle (2006) and Pereira Leal & Machado-
Santos (2007). A consequence of the choice based 
sample bias is that estimated probabilities in 
standard probit/logit models are not representative 
for the population, if the proportion of bankrupt 
firms in the estimation sample differs from the 
corresponding fraction in the population. In 
previous empirical research, the proportion of 
bankrupt firms in estimation samples has commonly 
been distinctively larger than the corresponding 
population fraction.   

We have shown that there is a specific linkage 
between sample based and unbiased (population 
based) probabilities. A sample based probability 

)( prop
failp  is a function of the unbiased probability 

)(π
failp , the proportion of bankrupt firms in the 

estimation sample, and the fraction of such firms in 
the population. Characterizing this linkage it was 
found that )()(  π

fail
prop

fail pp >  if prop > π and vice versa, 
but that the ranking of firms based on )( prop

failp or 
)(π

failp  is the same. Having specified the linkage 
between )( prop

failp  and )(π
failp , the choice based sample 

bias of )( prop
failp  can be disentangled to get a 

calibrated probability. There is hence no need to re-
estimate probit/logit models only because the 
sample proportion of bankrupt firms is non-
representative. Rather, it is important to collect 
sufficiently large samples of randomly selected 
bankrupt and survival firms. 

In sum, there are alternative approaches for handling 
the choice-based sample bias depending on the 
decision context. In situations where bankruptcy 

                                                      
1 In line with, for example, the methodology outlined in Skogsvik 
(1990, p. 150, in particular footnote 22). 
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probabilities are only used for classifying companies 
as bankrupt or survival firms, the choice-based 
sample bias is (in expectation) unproblematic as 
long as the probability cut-off value is empirically 
assessed. This approach has for example been used 
in Ohlson (1980), Zavgren (1985), and Skogsvik 
(1990). As a contrast, if the probability cut-off value is 
analytically derived, either the cut-off value itself has 
to be calibrated in order to be applicable to biased 
firm-specific probabilities, or the firm-specific 
bankruptcy probabilities have to be transformed into 
unbiased probabilities. However, in many situations 
unbiased probabilities are required, e.g. in financial 
risk management or in equity or bond valuation 
problems. Biased probabilities should then be 
transformed into unbiased probabilities by applying 
the calibration equation (7).  
An alternative approach to handle the choice based 
sample bias would be to estimate bankruptcy 
prediction models using “weighted” probabilistic 
statistical techniques, as suggested in Zmijewski 
(1984, p. 74). Since an a priori probability of bankrupt- 
  

cy has to be specified when estimating a model 
according to these techniques, re-estimations of the 
prediction model would then be necessary as soon as 
this a priori probability changes (due to e.g. shifting 
business conditions). Obviously, the approach 
proposed in the paper is more flexible and less costly, 
since no re-estimation of the prediction model is 
needed.  

Empirical observations in previous research can be 
explained by our results. In line with our inferences, 
average values of 

)( prop
failp  have been found to be larger 

than )(π
failp  when prop > π, and to increase as the 

proportion of bankrupt firms in the estimation sample 
goes up. Furthermore, with a probability cut-off value 
equal to 0.50, an “overclassification” bias of bankrupt 
firms and an “underclassification” bias of survival 
firms have been observed for samples where prop > π. 
This follows from the bias of 

)( prop
failp  being positive in 

situations when prop > π. However, suggestions in 
previous research that prediction results improve if the 
choice based sample bias is reduced, are misleading.  
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