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Abstract 

Recent research has revealed the usefulness of Monte Carlo simulation for valuing complex American options which 
depend on non-conventional stochastic processes. This paper analyzes the possibilities to improve flexibility of 
traditional real options models by the use of simulation. The authors combine simulation and dynamic programming 
for valuing American real options contingent on the value of a state variable which evolves according to a mixed 
Brownian-Poisson process. The paper estimates the optimal exercise strategy using two alternative models, which are 
based on algorithms developed for financial derivatives. The authors evaluate both valuation proposals using a simple 
numerical example. The results highlight the need to achieve a trade-off between the accuracy of the estimations and 
the computational effort needed for this type of proposal. They also reveal the existence of non-monotonous and 
occasionally counterintuitive relations between the value of the growth option and the volatility and frequency of 
discontinuous jumps, which should be explained by the characteristics of the stochastic process under consideration.  
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Introduction© 

Now the superiority of the real options approach to 
discounted cash-flow (DCF) models is widely 
accepted, research on valuation faces a no less 
important challenge, namely, its diffusion into the 
practical arena. This objective requires simplifying and 
making current real options valuation more flexible. 

Whereas the DCF approach is directly implemented to 
virtually all investment opportunities, the option model 
lacks any similar general formulation. By contrast, the 
real options approach comprises numerous and 
complex analytical as well as numerical methods, each 
of which is suitable for evaluating a particular decision 
right contingent on specific underlying assets. No 
“traditional” real options model allows direct treatment 
of alternative stochastic processes, multiple American-
style options or many sources of uncertainty. 

Particularly, most real options models assume pure 
diffusion processes in the evolution of state variables. 
These processes have been widely used to describe 
price movements, particularly of commodities and 
financial assets, yet they are hard to apply to the state 
variables on which the value of real options depends. 
Frequently used state variables – such as demand, 
profit or even costs – could adjust better to mixed 
processes, which combine continuous Brownian 
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movement with the probability of discontinuities. 
These kinds of discontinuities or “jumps” are due, 
depending on the nature of the variable, to the 
disruption of an economic crisis, a change in 
customers’ preferences, a corporate bankruptcy or, 
quite simply to technological progress. 

In addition, the possibility of exercise at more than 
one future date is probably one of the most common 
characteristics of real options. The same arguments 
put forward by advocates of the real options approach 
when criticising the DCF model for excluding the 
possibility to defer investment or to decide when to 
initiate the project (McDonald and Siegel, 1986; 
Pindyck, 1991; Ingersol and Ross, 1992), are now 
applicable to “European real options” models.  
The possible occurrence of random jumps makes 
valuing American-type options by traditional 
techniques – closed-form solutions, analytic approxi-
mations and numerical procedures – complicated if not 
impossible. Merton (1976) derives the analytic 
solution for the European option when the underlying 
asset follows a mixed process, comprising a geometric 
Brownian (continuous) motion subject to discrete 
Poisson jumps. Merton’s proposal allows valuing 
options the exercise of which is restricted to its 
expiration date, although it cannot be used in 
valuing American-type options. 
For their part, analytic approximations and the more 
widely used numerical procedures – the binomial 
model (Cox, Ross and Rubinstein, 1979) and finite 
differences (Brennan and Schwartz, 1977) – can be 
used to consider the possibility of early exercise, yet 
their implementation in computational terms is costly 
when including multiple sources of uncertainty and/or 
stochastic processes other than the geometric-
Brownian family. 
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By contrast, models based on Monte Carlo 
simulation (Boyle, 1977) can be applied to the case 
of multiple state variables regardless of the 
stochastic processes to which they are subject, yet 
they “are not suitable” for American-type options. 
At least this was held to be true until quite recently. 
To quote two examples, in the second edition of his 
well-known options manual, Hull (1993, p. 334) 
stated that “one limitation of the Monte Carlo 
approach is that it can be used only for European 
style derivatives securities”, and Hull and White 
(1993, p. 1) wrote that “Monte Carlo simulation 
cannot handle early exercise since there is no way of 
knowing whether early exercise is optimal when a 
particular price is reached at a particular time.” 

The seeming inability to value American-type 
options by simulation is due to the nature of the 
technique. Since exercise of an option at a given 
date prevents its subsequent exercise, the strategy 
that determines optimal exercise of American 
options depends not only on previous paths for the 
state variables but also on their future value. Future 
expectations can only be performed through 
procedures that include backward induction, such as 
binomial trees or finite difference procedures. 
However, standard Monte Carlo simulation is a 
forward induction procedure, which generates future 
values for variables based on their previous value 
and is, therefore, an appropriate technique for assets 
whose cash-flows at a given moment do not depend 
on future events, as is the case of European options.  

In order to overcome this restriction, recent research 
has proposed combining simulation with some 
backward induction procedure that may lead to a 
valuation model applicable both for European as 
well as American type options, whatever the number 
of state variables and the nature of the stochastic 
processes. The greater flexibility of the Monte Carlo 
approach is due to the fact that the evaluation 
problem is overcome by directly approximating the 
underlying asset process, meaning that the partial 
differential equation describing the path of the 
option does not need to be resolved. 

The first attempt at applying simulation in valuing 
American style options is to be found in the work of 
Tilley (1993)1, who proposes a model for valuing 
financial options dependent on the stochastic value 
of a single state variable coinciding with its 
underlying asset. Tilley suggests sorting the 
simulated values of the underlying asset for each 
exercise date and grouping them into “bundles” for 
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which a single value of keeping the option alive 
until the next period is assigned, as the mean of the 
continuation value of the whole of these paths2. 

Tilley’s approach has been followed by a growing 
number of papers that propose different combinations 
of simulation and backward induction procedures for 
valuing American-type financial derivatives. Promi-
nent within this approach are Barranquand and 
Martineau (1995) or Raymar and Zwecher (1997), 
who propose the use of a partition algorithm on the 
unidimensional space of the cash-flow yielded by the 
option, instead of the division of the multidimensional 
space of the underlying assets defined in Tilley [1993]. 
Grant, Vora and Weeks (1996) as well as Ibáñez and 
Zapatero (2001) directly estimate the values of the 
state variables for which the value of holding the 
option alive until the following period matches the 
value of its immediate exercise at each exercise date. 

By way of an alternative proposal, Broadie and 
Glasserman (1997a, 1997b) and Broadie, Glasserman 
and Jain (1997) propose the use of non-recombinatory 
simulated trees3 and stochastic meshes to determine 
two estimates of the option value, one biased 
“upward” and another biased “downward”, both 
asymptotically unbiased and convergent towards the 
certain value. Finally, Longstaff and Schwartz 
(2001) opt for least square regressions as a method 
for approaching the expected value of maintaining 
the option alive at each decision point. 

In the light of this type of proposal, recent corporate 
finance literature has embraced Monte Carlo 
simulation procedures for valuing real options. 
Barranquand and Martineau (1995) model and its 
extension by Raymar and Zwecher (1997) have 
been used to value American-type options where the 
state variables follow mean reverting and geometric 
Brownian processes. This is the case of Cortazar 
and Schwartz (1998) who resolve the optimal timing 
of the exploitation of oil reserves, and Cortazar (2001) 
who evaluates the optimal operations of a copper 
mine, initially modelled by Brennan and Schwartz 
(1985). Other papers apply the Longstaff and Schwartz 
algorithm (2001) in valuing real options linked to 
patents and R&D projects (Schwartz, 2004; Schwartz, 
and Miltersen, 2002), licences (Albertí et al., 2003, 
dot-com companies (Schwartz and Moon, 2000; 
Schwartz and Moon, 2001), pharmaceutical companies 
(León and Piñeiro, 2004; Rubio and Lamothe, 2006), 
Internet portals (Sáenz-Diez et al., 2008), and 
electricity business (Alonso et al., 2009a and 2009b).  

                                                      
2 This procedure suffers from notable drawbacks, such as the need to 
store all the simulated paths – with the subsequent loss of time – as well 
as the enormous complexity inherent to the sorting process when 
considering multiple sources of uncertainty. 
3 Unlike binomial and trinomial trees, the values that appear at each 
node are placed in the order in which they are generated and not 
following a hierarchic order.  
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The general purpose of our paper is to examine how 
simulation techniques can improve flexibility of real 
options models. We analyze different issues that 
arise when combining Monte Carlo simulation and 
dynamic programming to value real options. The 
optimal exercise strategy is estimated using two 
different proposals, both based on specific 
algorithms from financial derivatives valuation. The 
first proposal is based on Grant, Vora and Weeks 
(1996), and Ibáñez and Zapatero (2004) algorithms, 
which approximate the optimal exercise boundary 
(critical values of the state variable) by comparing 
the payoff from immediate exercise and the 
expected continuation value. The second approach is 
based on the Longstaff and Schwartz (2001) 
algorithm, which focuses on the conditional expected 
function of the difference between immediate exercise 
value and continuation value. 

Applying these algorithms to the valuation of real 
options requires their adaptation, both in estimating 
the underlying asset value from the state variable on 
which its cash-flow depends, and in approximating 
the “non pure diffusion” stochastic process followed 
by this variable. Particular attention is focused on 
the analysis of pseudo-American options to growth 
whose underlying variable evolves following a 
mixed Brownian-Poisson process. 

We evaluate both simulation proposals through the 
valuation of a simple numerical example. Our 
analysis shows that applying unsuitable techniques 
to the valuation of this option may significantly affect 
efficiency of the managerial decision-making process. 
In particular, our results highlight the advisability of 
considering the trade-off between accuracy of 
valuations and effort required in terms of abstraction, 
modelling and computerization. Moreover, our 
numerical example underlines the significance of 
errors when applying traditional models for valuing 
real options contingent on a state variable whose 
expected path recommends consideration of discrete 
discontinuities. 

The rest of the paper is organized as follows. The 
next section describes two alternative proposals of 
combining Monte Carlo simulation and dynamic 
programming for estimating the optimal exercise 
frontier. Section 2 presents numerical results obtained 
when applying both proposals to valuing a simple 
numerical example of a growth option. The paper 
ends with a summary of the main conclusions. 

1. Alternative proposals for estimating the 
exercise frontier in real options 

Combining Monte Carlo simulation and dynamic 
programming to value American options requires 
estimating the optimal exercise policy. Two 
alternative estimation procedures have been used in 

the area of financial derivatives, which application 
to real options valuation is not direct. On the 
contrary, it requires their adaptation, both in terms 
of determining the value of the underlying asset 
from the state variable on which its cash-flow 
depends, as well as of modelling the actual 
stochastic process followed by the state variable. 

The first proposal is based on Grant, Vora and 
Weeks (1996 and 1997) and Ibáñez and Zapatero 
(2004) algorithms, and aims to determine what are 
known as, in the words of Merton (1973), critical 
values of the state variable. These values are 
estimated by comparing the immediate exercise 
payoff with the continuation payoff, and serve to 
estimate the current expanded value (with the 
option) derived from optimal exercise through a 
series of simulated paths. The second takes the 
Longstaff and Schwartz algorithm (2001) as a 
reference. Thus, it focuses on the estimation of the 
conditional expected function of the difference 
between the value from immediate exercise and the 
value of maintaining the option until the following 
period at each point early exercise is allowed, 
therefore obtaining a complete specification of the 
optimal strategy at each exercise date. 

The real option valuation starts by identifying the 
ultimate state variable on which the company cash-
flow depends, St, and estimating its stochastic 
evolution in time. Without loss of generality, we 
assume that the state variable follows a mixed process, 
comprising a continuous geometric Brownian type 
motion subject to random jumps distributed following 
a Poisson variable. Therefore, the infinitesimal 
variation of the state variable dSt responds to the 
following equation: 

( ) ( ) ,1 dqSdzSdtSkdS tttt −++−= πσλα     (1) 

where α and σ represent the expected drift and 
volatility of the continuous motion, respectively; λ 
is the mean frequency of the discrete jumps per time 
unit; (π-1) is a random variable measuring the size 
of the proportional jumps in asset value, and k is the 
mean value of these jumps1; and dzt and dqt 
represent, respectively, stochastic Wiener and 
Poisson processes which we assume to be 
independent and characterised by their usual 
expressions: 
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1 Therefore, the mean growth rate caused by the discrete jumps is λk. 
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As regards the discrete motion, we assume that jumps 
are independent and log(π) is normally distributed with 
mean μπ and deviation σπ, in such a way that: 

[ ] .1
2
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⎠
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π
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Discrete discontinuities are linked to “unusual” and 
important events that give rise to upward or 
downward variations in the uncertain variable, whereas 
 

the continuous process – geometric Brownian motion 
– is linked to the idea of “normal” events. Following 
standard practice, we assume the direction of the 
jump to be unknown a priori and therefore the 
effect of the jump in the drift term to be null, in 
other words, μπ = –σπ

2/2 and k = 0. 
Assuming the existence of complete markets and 
thus applying the risk neutral valuation, the 
expression representing the future balance value of 
the “twin” financial asset for the state variable is:  
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where r and δ symbolize the continuous risk-free 
rate and the convenience yield1, respectively, z0 
represents a standard normal random variable linked 
to the diffusion process; zi are normally distributed 
independent variables that determine the size of 
each jump; and q, as has already been pointed out, 
reflects the number of discrete jumps determined by 
a Poisson distribution with frequency λ2. 

1.1. The critical values proposal. One of the 
differences between financial options and real 
options is direct knowledge in the former, and lack 
of knowledge in the latter, of the critical state 
variable value at expiration. In financial options, 
this value coincides with the exercise price. By 
contrast, in real options the critical value at 
expiration depends on the value of the underlying 
asset, which in turn depends on future evolution of 
cash-flows and their state variable. 
Hence, determining the series of critical state 
variable values must be started on the option 
expiration date and be prolonged, recursively in time 
 

time, at each of the points at which early exercise is 
allowed. Through simulating a set of M values of the 
state variable at maturity3, we estimate the critical 
value, *

oTS , as that for which the value of the 
underlying project, assuming immediate exercise of 
the option, matches the non-exercise value. The 
estimation of this critical value also requires 
simulating K paths for the state variable to expiration 
of the underlying project, T, ji

TOS ,
τ+ , ji

T OS ,
2τ+

, … , ji
TS ,  

for i = 1, 2, …, M and j = 1, 2, …, K, namely, as is 
shown in Figure 1. 
Each of these paths enables us to estimate both 
cash-flow series, derived from option exercise and 
expiration without exercise, from option maturity date 
through underlying project conclusion date (TO, T). 
Evidently, discounting each of these cash flows at 
option expiration, TO, provides the corresponding 
contingent value of the investment, ( )i

T
i

decisionT OO SV , , 
and the comparison of these M pairs enables us to 
identify the desired critical value, *

OT
S . 

 
Fig. 1. Simulation paths for the state variable123 

                                                      
1 Following Merton (1976), we assume the risk associated to the discontinuous jump of the state variable to be diversifiable. The risk-neutral simulation would 
then show a continuous modified drift, r-δ, rather than the initial α drift. This is equivalent to subtracting from the continuous drift the corresponding risk 
premium (Trigeorgis, 1996, p. 102). 
2 The number of jumps at a time interval, Δt, is obtained by applying Monte Carlo simulation to the accumulated probability function P[q≤ X]. 
3 Simulation may be initiated at any moment and for any value of the state variable (Grant, Vora and Weeks, 1996). However, American options optimal 
exercise at each moment depends on optimal exercise at all future dates, and so the first critical value needs to be that corresponding to expiration. 
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Having estimated the critical state variable value at 
maturity, we go back in time to the moment 
immediately prior to the early exercise of the option, 
TO−τ. At this point, we repeat the approximation 
routine to the state variable value, *

τ−OT
S , in which 

the payoffs from the option exercise and non-
exercise at that date converge, ( )*

, ττ −− OO T
i

exerciseT
SV  = 

= ( )*
, ττ −−− OO T

i
exercisenonT

SV . 

Once more, to determine *
τ−OT

S  we generate a set of 

new M values of the state variable, Mi
T OS ,...,1=

−τ
– at a 

range close to the previously determined critical 
value – from which we simulate other K paths up to 
the conclusion of the project – values of ji

T OS , , ji
TOS ,

τ+
, 

ji
T OS ,

2τ+
, … , ji

TS ,  for i=1, 2, …, M and j=1, 2, …, K. 
These paths in turn serve to determine the cash-flow 
generated by the project from this date in both 
exercise and non-exercise. 

In this case, the procedure requires not only 
considering whether to exercise the option at TO − τ, 
but also the possibility of exercising the option at a 
subsequent moment, which mainly influences 
evaluation of the expected value of the project in the 
following period. If the option is exercised at TO − τ, 
the expected value of the project at the following 
period, [ ]i

exerciseT OVE
,

, should be determined bearing 

in mind the early exercise that has already taken 
place, which in turn prevents any new decisions to 
exercise being taken at subsequent dates.  

However, if the option is not exercised at TO-τ, 
obtaining the expected value of the project involves 
considering the possibility of adopting a new 
contingent decision at the following period, TO, 
comparing the simulated value of the variable ji

T OS ,  
with the critical value obtained at the previous step, 

*
OT

S . As a result, for certain ji
T OS ,  values the option 

will be exercised at TO, whereas for the remainder 
the option will expire without being exercised. 
Thus, we calculate the expected value of the project 
at TO, [ ]i

T OVE  – without exercise subscript – 
averaging the estimated j values, whether with or 
without exercise of the option. Once the expected 
value of the project at TO has been evaluated, 
assuming non-early exercise of the option at TO − τ, 
[ ]i

T OVE , to determine the value of the project, 
i

exercisenonT OV
−− ,τ

, merely requires adding the flow 

generated at that date. What remains is to compare 
the value from early exercise, i

exerciseTOV
,τ− , with the 

value from continuation, i
exercisenonTOV
−− ,τ

, with the aim 

of identifying the critical value at TO − τ, *
τ−OTS , for 

each i
TOS

τ−
. 

We repeat the procedure to determine *
τ−OT

S  at each of 
the dates in which early exercise is possible until we 
find the remainder of the values that make up the 
optimal exercise frontier. Evidently, as we approach 
to the initial moment and although the logic of the 
estimation is always the same, the complexity and 
number of operations involved in determining the 
critical values grows exponentially. 

Having determined the critical state variable values 
at the discrete dates for which option exercise is 
possible, *

0S , *
τS , *

2τS , ..., *
τ−OT

S , *
OT

S , we estimate 
the value of the American option by traditional 
simulation as if it were a European option. In this 
case, simulation involves estimating a sufficient 
number of paths for the state variable from the 
current moment to the project expiration date, h

tS  for  
h = 1, 2, …, H and t = τ, 2τ, … T, and the moment of 
optimal exercise along each path is determined in 
accordance with the optimal early exercise 
boundary. Finally, the current value of the option 
is estimated discounting the resulting payoff from 
each path, and then taking the average over all paths. 

1.2. The OLS regression proposal. To approach 
the optimal exercise frontier by least-squares 
regression we estimate the conditional expected 
function of the difference between the values from 
immediate exercise and continuation. We only 
regress the simulated paths for the state variable that 
are in the money at any particular moment. By 
estimating this conditional expected function at each 
exercise date, we obtain a complete specification of 
the optimal exercise strategy. 

Estimating the expected function of this difference 
marks a contrast not only with the proposal 
developed by Longstaff and Schwartz (2001) for 
valuing American financial options, but also with 
other real options applications (Schwartz, 2004; 
León and Piñeiro, 2003; Schwartz and Moon, 2000; 
Schwartz and Moon, 2001; Lamothe and Aragón, 
2002), which basically focus on valuing abandon 
options, where the payoff from immediate exercise 
at each moment does not depend on stochastic 
evolution of the state variable. In these cases, what 
is estimated is the function of the expected 
continuation value, in such a way that the optimal 
exercise strategy is provided by merely comparing 
at each exercise date the expected value and the 
value derived from immediate exercise. 
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The procedure for estimating the successive functions 
of the conditional expected difference follows a 
recursive process which takes expiration date of the 
option as the starting point. Then, at each exercise 
point, it requires the simulated paths for the state 
variable that are in the money to be determined 
since, a priori, these are the only ones for which it is 
worth considering the decision to exercise or not1. 

With these paths we propose a regression in which 
the dependent variable is calculated as the 
difference between the underlying asset values from 
immediate exercise and from maintaining the 
option. The independent variables are based on the 
simulated values of the state variable (whether 
raised to the square, to the cube, ..., or as a result of 
another type of function). By means of this 
regression, we estimate the coefficients that make 
up the optimal exercise boundary. Thus, for 
example, at any given moment t, and considering a 
parabolic regression, the equation to be estimated is  

( ) ,)( 2
210

tttt l
t

l
t

l
t

l
t SSSY βββ ++=  

where the superscript lt represents the paths for the 
state variable which are in the money at the moment t 
of the total set of H approximated simulations in each 
period; and the dependent variable is calculated as: 

( ) ( ) ( ).,,
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l
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The value of the underlying asset when the option is 
exercised at t (with t ≤ TO) is the discounted cash-

flow of the “altered” project between t and the 
project expiration date, also considering the exercise 
price, X, received (put option) or paid (call option): 
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To determine the value of the underlying project if 
the option is not exercised it is necessary to 
distinguish between the expiration date of the 
option, and the remaining moments at which early 
exercise is allowed. Thus, if t = TO, the underlying 
asset value if the option is not exercised and expires 
without exercise, is the discounted cash-flow as 
generated by the “unaltered” project between the 
option maturity and the investment maturity, 
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Moreover, if the option is not exercised at a moment 
t prior to expiration (in other words, t < TO) and is 
maintained until the following period, the value of 
the underlying asset is calculated by considering the 
possible optimal exercise at a subsequent date. In 
other words, the value of the underlying asset would 
be calculated from the discounted cash flows 
resulting from the “unaltered” investment between t 
and optimal exercise of the option at a later date, t*, 
plus the discounted cash-flow as generated by the 
“altered” project between the moment of optimal 
exercise, t*, and its maturity, 
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This procedure is repeated at each moment at which 
exercise is possible. It should also be remembered 
that the effort required in terms of computerization 
depends lineally on the number of opportunities 
considered for early exercise, thus overcoming some 
of the operational drawbacks inherent in the 
previous proposal.1 

Once the regression coefficients that make up the 
optimal exercise boundary are estimated, we 
approximate the value of the American option by 
traditional simulation as if it were a European 
option. There is also the possibility of using the 
same sample of state variable simulated values to 
estimate both the optimal exercise strategy as well 
as the option value, thus reducing the computational 
effort required. A priori, any efficient algorithm 
should provide similar evaluations when the 
exercise is applied to the same set of simulations or 

                                                      
1 Those paths for which the intrinsic value were positive would be in the 
money, assuming expiration of the option at that moment. 

to any other new set2. Nevertheless, to avoid 
evaluation biases, Broadie and Glasserman (1997a) 
recommend simulating a second set of paths. 

2. A numerical example of the American option 
to grow contingent on discontinuous processes 

The advisability of previous simulation proposals in 
valuing real options can be evaluated most easily 
with a simple numerical example. We consider a 
finite-life investment in the installation of 
production capacity to meet demand, S, of a specific 
product which is assumed to evolve stochastically 
according to equation [5]. The initial demand value 
is established as equal to 10 million physical units, 
market share of the project is 50%, and cash-flow is 
determined by a known and constant margin equal 
to one monetary unit. The project life is 5 years and 
the total initial investment is equal to 25 million 
monetary units. In addition, we assume complete 
capital markets and a risk-free rate of 6%. 

                                                      
2 Longstaff and Schwartz (2001) show that, in financial option valuation, 
differences between both ways of applying the algorithm are minimal. 
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To compare valuation results for different process 
specifications, ranging from a pure diffusion motion 
to a mixed process including random size jumps, we 
consider a wide of parameters values. With regard to 
geometric Brownian motion, we assay with alternative 
volatilities of 10%, 20% and 30%, coupled with an 
annual drift of 15%. For the discontinuous part of the 
mixed process, we consider a range of volatilities 
between 25% and 500% with an average number of 
annual jumps ranging between 0.20 and 11.  

It can be seen in Table 1 that the NPV of this project 
is negative for all process specifications, and 
decreases as discrete volatility increases. This result 
is due to the substantial increase in total volatility of 
the process when highly volatile discontinuities are 
included – even when only one such jump occurs 

during the whole period of analysis. Thus, for a 
discrete volatility of 500%, the total volatility of the 
process reaches values of 602.82% or 602.16% 
depending on whether the typical deviation of the 
continuous motion is 30 or 10%, respectively2. 

In addition, we consider that the initial investment 
provides the right to expand the original size of the 
project through a new expenditure. This right may be 
exercised at three specific dates at the end of the 
second, third and fourth years. Therefore, the 
possibility of extending the initial project size is 
similar to quasi-American call option with expiration 
at the end of the fourth year of operations. The 
exercise of this option involves an increase in project 
sales equal to 50% of the existing level, and an 
exercise price equal to 20% of the initial outlay. 

Table 1. Value of the net present value 

Continuous volatility 
Discrete volatility 

0% 25% 50% 75% 100% 200% 300% 400% 500% 
σ = 10% -2 117 062 -2 341 963 -2 318 721 -2 249 759 -2 728 270 -3 965 568 -4 561 367 -10 388 764 -10 335 590 
σ = 20% -2 120 406 -2 337 170 -2 299 687 -2 439 157 -2 576 769 -3 352 074 -5 788 946 -10 624 907 -11 356 142 
σ = 30% -1 999 903 -2 359 443 -2 296 945 -2 006 384 -2 292 343 -3 371 138 -6 198 091 -11 789 391 -11 883 307 

Note: Initial project demand is 10 million of physical units, market share is 50%, unitary margin is one monetary unit, and life span 
is 5 years. We assume complete capital markets and a risk-free rate of 6%. 

The number of paths simulated to obtain the value 
of this option, H, is 400,000, resulting from 200,000 
direct approximations plus another 200,000 
estimations using the variance reduction technique 
of the “antithetical variables”3. Additionally, the M 
and K parameters are equal to 400 in the “critical 
value” proposal. 

The valuation results yielded by both simulation 
proposals and different process parameters – from 
pure diffusion motion to mixed process – are shown 
in Table 24. Furthermore, two different values are 
estimated by the regression procedure. The first set 
of options values, Regression I, derives from 
employing the same simulation paths to obtain the 
optimal exercise strategy and the option value. 
Whereas the second set of values, Regression II, is 
calculated by simulating two different groups of paths 
both for determining the optimal exercise and for 

estimating future cash flows. In all these cases, we 
have assumed that average number of annual jumps is 
0.20 (λ = 0.2), in other words, that only one jump 
occurs during the five-year life span of the project.  

The similarity of valuations reached by both proposals 
is particularly clear in cases with lower jump 
volatility5. Thus, for jump volatility values below 
100%, the relative distance between both proposals 
does not generally exceed 1%. However, as discrete 
volatility increases, option value estimates depends on 
the selected simulation proposal. Moreover, regression 
estimates differ depending on the number of 
simulation sets for jump volatilities of 400% or 500%, 
and the option value provided by the critical values 
procedure is normally located in an intermediate 
position. We should also bear in mind the substantial 
increase in total volatility of the process when highly 
volatile discontinuities are included.  

Table 2. Value of the option to grow12345 

Continuous volatility 
Discrete volatility 

0% 25% 50% 75% 100% 200% 300% 400% 500% 

σ = 10% 
Critical values 4 541 824 4 480 622 4 594 030 4 698 266 4 753 891 4 872 654 4 308 987 2 149 137 2 258 166 
Regression 1 4 562 905 4 463 662 4 565 867 4 748 962 4 762 368 4 691 797 4 516 021 2 200 317 2 294 227 
Regression 2 4 563 104 4 444 285 4 545 118 4 790 180 4 751 705 5 158 746 4 098 685 2 588 903 2 166 808 

                                                      
1 As mentioned in the model description, we assume that jump risk belongs to the category of specific risk or non-systematic. 
2 The estimation of the total volatility of the uncertain variable for the mixed process considered has been performed based on the expression 
obtained in Navas (2004), which corrects the one originally obtained in Merton (1976). 
3 The technique of antithetical variables consists of generating two symmetrical observations at zero for each of the random simulations of the 
normal accumulated distribution, with which both values of the derivative are obtained. 
4 Note that a level of discrete jump volatility of 0% implies a pure diffusion process. 
5 The results of the Student T test enable us to refuse the presence of significant differences among the different valuations when the jump volatility is equal to 
or below 100% at 95% confidence level. 



Investment Management and Financial Innovations, Volume 10, Issue 3, 2013 

26 

Table 2 (cont.). Value of the option to grow 

Continuous volatility 
Discrete volatility 

0% 25% 50% 75% 100% 200% 300% 400% 500% 

σ = 20% 
Critical values 4 589 035 4 524 324 4 607 096 4 661 720 4 899 131 5 022 732 4 201 530 2 693 936 2 127 076 
Regression 1 4 575 170 4 539 631 4 550 657 4 714 420 4 907 684 4 850 880 4 369 977 2 481 018 2 146 372 
Regression 2 4 558 581 4 520 780 4 559 007 4 697 119 4 852 479 5 183 542 5 122 898 2 704 963 1 977 476 

σ = 30% 
Critical values 4 720 324 4 591 795 4 792 212 4 900 641 4 991 093 5 205 075 3 933 065 2 402 946 2 157 500 
Regression 1 4 739 826 4 595 652 4 741 438 4 977 156 4 963 822 5 179 860 3 999 496 2 551 498 2 186 396 
Regression 2 4 702 300 4 588 513 4 703 947 4 943 696 5 086 998 4 508 421 4 376 591 2 148 260 2 401 196 

Notes: Initial project demand is 10 million of physical units, market share is 50%, unitary margin is one monetary unit, and life 
span is 5 years. We assume complete capital markets and a risk-free rate of 6%. The option to grow is a quasi-American type call 
option, which can be exercised at the end of the second, third and fourth years. Its exercise implies an outlay of the 20% of initial 
investment, and it increases the project sales by 50% of the existing level. Option values are estimated by both Critical values 
proposal and Regression proposal. Regression 1 uses the same simulated paths to estimate the optimal exercise strategy and the 
option value, whereas Regression 2 employs different sets of simulations. We consider a mixed Brownian-Poisson process. 
Geometric-Brownian drift is 15%, with alternative volatilities of 10%, 20% and 30%. For the jump motion, we consider a range 
of volatilities between 25% and 500% with an average number of annual jumps of 0.20. The number of simulated paths, H, is 
400,000 (200,000 from direct approximations plus 200,000 antithetical estimations. M and K in the “critical value” proposal are 
equal to 400. 

Greater dispersion reflected in the regression based 
results contrasts with greater flexibility inherent to 
this procedure, where computational effort 
increases lineally with the number of exercise 
opportunities. These results highlight the need to 
achieve a trade-off between the accuracy of 
estimates and the requirements – in terms of modelling 
and use of computer resources – needed for 
implementing each proposal. 

As regards the relation between the value of the 
option and the jump volatility, the valuation results 
reflect that its sign depends on the level of the latter. 
Thus, in those scenarios with lower jump dispersion 
the value of the option increases1, as a result of a 
higher total volatility. This result is due to the fact 
that we assume the average size of the jumps to be 
null and not affecting the average drift of the state 
variable. However, as jump volatility increases, this 
relation is inverted and is more prominent in higher 
levels of discrete volatility. This result remains as 
long as the average size of the jumps, k, is null and 
does not affect the drift term for the process 
followed by demand. This assumption implies that 
the mean of the logarithm of the jump depends 
inversely on the value designated to the volatility of 
the jump (μπ = –σπ

2/2) and, therefore, an increase in 
the latter for values over 100% reduces this average 
and with it the value of the underlying.  

We also find certain unusual features in the relation 
between continuous volatility and the value of the 
option. Specifically, we observed a negative 
influence of volatility on option values for some 
high jump volatility scenarios, which is apparently 
contrary to the ceteris paribus relation established 

                                                      
1 Only when jump volatility is 25% is any slight reduction observed in 
the value of the option that is recouped as volatility increases. 

by the OPT. Nevertheless, this outcome is coherent 
with stochastic evolution of the state variable and 
the discretisation method employed. In addition to 
the value reduction suffered when jump dispersion 
is over the 100% level, the hypothesis that the state 
variable evolves in the continuous field following a 
lognormal diffusion process leads to its relative 
variation being distributed normally with a 
tendency reduced 0.5 times the variance of the 
process. As a result, the volatility parameter not 
only affects the volatility of future values, but also 
the average simulated values. It follows that the 
increase in volatility not only widens the range of 
possible future values of the underlying asset, but 
also reduces its average simulated value and, 
hence, the possibilities of optimal exercise of the 
option to expand. 

In addition, we have analyzed how the value of the 
option is affected by the existence of an upper 
absorbing boundary of 50,000,000 physical units for 
the state variable, which may be a reasonable 
feature in this type of options. This boundary can be 
derived from economic factors outside the scope of 
the enterprise, but also from technical reasons such 
as the maximum production capacity of plants and 
equipment. The results are shown in Table 3. 

A quick look confirms the expected reduction in the 
value of the growth option when an upper limit 
restricts upward variations of the state variable. In 
addition, as was to be expected, the differences are 
more significant the greater the possibility of the 
limit being reached, i.e. for the higher levels of 
continuous volatility considered. Greater volatility 
means larger dispersion of the lower values, 
whereas the higher values remain bounded by this 
maximum capacity and, as a result, any increase in 
volatility will reduce the expanded value. 
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Table 3. Value of the option to grow (state variable bounded by an upper limit) 

Continuous volatility 
Discrete volatility 

0% 25% 50% 75% 100% 200% 300% 400% 500% 

σ = 10% 
Critical values 4 553 757 4 528 903 4 564 327 4 564 403 4 559 350 3 361 724 2 492 501 2 156 461 1 918 284 
Regression 1 4 565 153 4 500 405 4 563 103 4 588 026 4 542 885 3 372 517 2 565 782 2 159 300 1 984 446 
Regression 2 4 571 992 4 513 612 4 511 240 4 522 015 4 407 836 3 355 618 2 512 140 2 159 739 1 939 450 

σ = 20% 
Critical values 4 538 402 4 493 742 4 500 246 4 440 375 4 484 839 3 338 236 2 423 226 2 068 322 1 917 960 
Regression 1 4 583 037 4 522 017 4 461 144 4 410 490 4 458 645 3 410 736 2 492 306 2 096 498 1 902 715 
Regression 2 4 547 279 4 498 620 4 378 561 4 407 881 4 394 089 3 330 945 2 498 419 2 103 522 1 975 644 

σ = 30% 
Critical values 4 687 126 4 568 101 4 592 566 4 420 479 4 247 401 3 233 265 2 391 753 1 999 073 1 955 058 
Regression 1 4 656 870 4 586 813 4 531 310 4 479 680 4 258 302 3 329 831 2 436 804 2 099 870 1 990 820 
Regression 2 4 653 151 4 597 764 4 648 257 4 492 770 4 285 706 3 366 924 2 535 404 2 140 281 2 022 933 

Notes: Initial project demand is 10 million of physical units with an upper absorbing boundary of 50 million, market share is 50%, 
unitary margin is one monetary unit, and life span is 5 years. We assume complete capital markets and a risk-free rate of 6%. The 
option to grow is a quasi-American type call option, which can be exercised at the end of the second, third and fourth years. Its 
exercise implies an outlay of the 20% of initial investment, and it increases the project sales by 50% of the existing level. Option 
values are estimated by both Critical values proposal and Regression proposal. Regression 1 uses the same simulated paths to 
estimate the optimal exercise strategy and the option value, whereas the Regression 2 employs different sets of simulations. We 
consider a mixed Brownian-Poisson process. Geometric-Brownian drift is 15%, with alternative volatilities of 10%, 20% and 30%. For the 
jump motion, we consider a range of volatilities between 25% and 500% with an average number of annual jumps of 0.20. The number of 
simulated paths, H, is 400,000 (200,000 from direct approximations plus 200,000 antithetical estimations. M and K in the “critical 
value” proposal are equal to 400. 

The upper barrier likewise reduces the dispersion in 
the valuations obtained with each proposal, enabling 
the accuracy of the estimations. This lack of any 
significant difference as well as the lower requirements 
involved in the implementation of the regression based 
procedure lead us to opt for the latter, whereas the 
critical values method provides a useful benchmark for 
the valuations obtained. 

Finally, we analyzed the influence of multiple smaller 
size discontinuities on the value of the growth option. 
We specifically consider the case of up to five jumps, 
by way of an average, during the life span of the 
underlying investment (λ = 1), with 50% dispersion. 
 

Valuation results are shown in Table 4. Once again, 
the estimates to emerge from the proposals analyzed 
offer little dispersion and only when there is no 
upper barrier in the state variable and the jump 
frequency takes higher values, is the relative variation 
among the various valuations above 3%. It should also 
be noted that, as was the case with jump dispersion, 
the increase in their frequency implies an increase in 
the total volatility of the process, although for the 
values of continuous variation considered, σ = 30%, as 
well as discrete, σπ = 50%, this only ranges between 
38% and 60%, depending on whether λ takes values of 
0.2 and 1, respectively.  

Table 4. Value of the option to grow depending on the number of discrete jumps 

σ = 30%, σπ = 50% 
Number of discrete jumps per time unit 

0 0.2 0.4 0.6 0.8 1 

Without upper limit 
Critical values 4 720 324 4 792 212 4 886 447 4 959 297 5 052 782 5 551 509 
Regression 1 4 739 826 4 741 438 4 970 723 5 041 511 5 018 144 5 660 201 
Regression 2 4 702 300 4 703 947 4 917 413 4 850 528 5 189 245 5 504 847 

With upper limit 
Critical values 4 687 126 4 592 566 4 579 373 4 526 308 4 458 098 4 501 015 
Regression 1 4 656 870 4 531 310 4 649 051 4 555 648 4 520 735 4 586 699 
Regression 2 4 653 151 4 648 257 4 761 222 4 497 494 4 488 916 4 623 271 

Notes: Initial project demand is 10 million of physical units, market share is 50%, unitary margin is one monetary unit, and life span 
is 5 years. We assume complete capital markets and a risk-free rate of 6%. The option to grow is a quasi-American type call option, 
which can be exercised at the end of the second, third and fourth years. Its exercise implies an outlay of the 20% of initial investment, and it 
increases the project sales by 50% of the existing level. Option values are estimated by both Critical values proposal and Regression 
proposal. Regression 1 uses the same simulated paths to estimate the optimal exercise strategy and the option value, whereas the Regression 
2 employs different sets of simulations. We consider a mixed Brownian-Poisson process. Geometric-Brownian drift is 15%, with alternative 
volatilities of 10%, 20% and 30%. For the jump motion, we consider a range of volatilities between 25% and 500%, with an average 
number of annual jumps ranging of 0.20 to 1. The number of simulated paths, H, is 400,000 (200,000 from direct approximations plus 
200,000 antithetical estimations. M and K in the “critical value” proposal are equal to 400. 

Once more, the desire to strike a trade-off between the 
accuracy of the estimations and the computational 
requirements would seem to justify the use of the 
regression based procedure. The results also reveal that 

the value of the option increases with the number of 
discrete variations, thus increasing the underestimation 
error when its influence is not reflected. However, 
when including an upper boundary in the evolution 
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of the demand, the option tends to lessen the effect 
mentioned. In this case, omitting jumps leads to an 
overestimation of the chance to extend the project, 
possibly giving rise to the option being exercised 
before the optimal date and even to accepting non-
profitable projects.  

Conclusion  

Throughout this paper, we have addressed the issue 
of valuing American-type real options contingent on 
a continuous stochastic process subject to random 
jumps. This combination of American-type and 
random jumps prevents any closed-form solution for 
the fundamental pricing equation. Usual numerical 
techniques, such as binomial trees or finite differences, 
also fail to provide satisfactory results. 

Strange though it may seem, an option pricing 
technique which had for many years been restricted 
to the analysis of European-type derivatives has 
recently been re-appraised and proposed to value 
real complex options such as those described. The 
reason behind this apparent delay is the nature of the 
traditional simulation models which prevents 
identification of the optimal exercise policy. Monte 
Carlo simulation is a forward induction procedure, 
which generates future values of the variable from 
its previous value and therefore is not suitable for 
valuing assets generating cash flows contingent on 
future events, such as is the case of American-type 
options. Recent research has proposed overcoming 
this restriction through the joint use of simulation 
and some backward induction technique that enables 
its application to valuing American-type options.  

In order to evaluate two alternative simulation 
proposals, and after adapting them for the real option 
problem, we value a numerical example which 
consists of a finite-life project that incorporates a 
growth option contingent on a state variable 
following a geometric Brownian motion subject to 
average null size random jumps.  

Our numerical results reflect the need to consider a 
trade-off between the accuracy of the estimations 
 

and the effort required in terms of abstraction, 
modelling and computerization, particularly in the case 
of high volatility of the discontinuities. In these cases, 
the valuations that emerge from the regression based 
procedure show greater dispersion, although imple-
mentation in this case is less costly as it depends 
lineally on the number of opportunities for exercise. 
By contrast, the proposal based on critical values is 
generally found in an intermediate position in 
comparison with the previous ones, yet requires the 
simulation of new paths for the state variable at each 
point at which exercise is allowed. 

In addition, we have considered an upper boundary 
in the state variable evolution and multiple smaller 
size discontinuities. Our results have revealed no 
significant differences in valuations offered by both 
proposals, and consequently, the regressions based 
procedure has proved more convenient as it involves 
a lower cost in terms of resources. 

As regards the evolution of the state variable, we 
observed that the possible occurrence of a single 
random jump during the project life span leads to an 
increase in the growth option value, for the lower 
levels of discrete volatility considered. In such 
cases, omitting discrete discontinuities can lead to 
an underestimation of the option value, with the 
subsequent deferral in exercise, and even the 
execution of profitable projects being discarded.  
Nevertheless, for higher jump volatilities the effect of 
a single random jump on the option value is inverted 
and may even fall below the value obtained from 
conventional evaluation models that do not 
contemplate discontinuities. Moreover, the combined 
effect of the jump and an upper boundary in the 
evolution of the state variable also adds differences in 
the valuation results. In contrast to what occurs in the 
absence of this kind of restriction, there is a reduction 
in the option value as the number of random jumps 
increases. As a result, the over-valuing to which the 
omission of these discontinuities leads may cause 
exercise prior to the optimal date and even the 
acceptance of non-profitable projects. 
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