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Abstract 

As of now, there exist a vast variety of approaches quantifying the recovery of defaulted debt or, alternatively, the loss 
given default (LGD). This article endeavors to give a comprehensive account of the existing models of the recovery 
rate. Furthermore, it gives a detailed listing of the different types of debt that evoke different recovery processes and, 
hence, necessitate different definitions of recovery rate. It becomes obvious that there is a multitude of approaches 
rendering it almost infeasible to compare the different results directly. 
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Introduction© 

The terms LGD and recovery rate have become 
widely used as of lately. In light of the recent crisis, 
sufficient amount of energy has to be committed to 
the assessment of these quantities. According to 
Standard & Poor’s, between 2007 and 2011, a total of 
496 rated institutions mostly from the US have 
defaulted representing over one trillion in debt 
outstanding and dwarfing anything seen so far. 
Moreover, due to the current crisis, even entire 
countries found themselves on the brink of bankruptcy 
which still provides for daily headlines. But the 
impact has not only been felt across the corporate 
and sovereign world but also on the consumer side. 

The fear of any repetition of the current crisis in the 
future may be founded in light of the seemingly 
increasing occurrence of financial crises as brought to 
attention by Stiglitz (1998) already one decade ago. 
Support to this hypothesis is provided by the fact that 
in the USA alone, public sector as well as corporate 
and consumer debt have reached dizzying levels. 
According to the Board of Governors of Federal 
Reserve System (2011), the public sector debt amounts 
to over 14 trillion dollars while US corporates and 
privates have both accumulated similarly shocking 
amounts. This trend is by no means unique to the 
USA, however. Thomas (2009) presents equivalent 
tendencies for Europe, especially in the private sector. 

The loss related quantities such as the probability of 
a default, the amount of potential loss, as well as the 
amount recovered in case of a default are stated by 
the Basel II accords. Even though not mandatory for 
all lenders, the terminology and definitions are used 
widely in the context of credit risk1. However, the 
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definitions in particular with respect to recovery are 
not unique. Here, we will present a variety of 
studies that refer to different interpretations of the 
definition of the recovery rate such as, for example, 
in the context of market recovery versus ultimate 
recovery2. We endeavor to provide an extension of 
the well known references such as Schuermann 
(2004) or Altman et al. (2005). 

The paper is organized as follows. We divide the 
article into two sections. In section 1, the more 
extensive of the two, the individual subsections present 
the different methods to estimate the recovery rate. In 
detail, we subdivide the models into regressions, 
distributional approaches, alternative approaches such 
as neural networks and support vector machines, and 
stochastic recovery models. Section 2 lists the analyses 
related to debt type subdivided into the subsections on 
bonds and corporate debt as well as consumer debt 
such as bank loans and non-bank credit. Finally, 
pointing out possible directions for further research, 
the last section concludes the paper.  

1. Methods 

In this section, we present literature using different 
parametric as well as non-parametric models and 
methods with applications in modeling LGD or, 
equivalently, recovery rate for various types of debt. A 
summary of the methods in this section can be found 
in Table 1. 

1.1. Regression. We begin with the literature on 
data mining methods that we subsumed under the 
term regression. The simplest model in this context 
is ordinary least squares (OLS) regression y = xTβ 
for modeling LGD as, for example, in Bellotti and 
Crook (2008). Bellotti and Crook (2012) also 
regress LGD on macro variables. An interesting 
early work is provided by Livingstone and Lunt 
(1992) who consider a multiple regression on social, 
economic and psychological factors related to debt. 
The most common generalized linear models 
(GLM) are given by logistic regression 
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such as in Chen and Chen (2010) and probit 

),(=)( ββ TT xxG Φ  
where Φ  denotes the standard normal cumulative 
distribution function. Chava et al. (2011) use 
fundamental variables in the context of OLS, logit, 
and probit, alternatively. Dermine and Neto De 
Carvalho (2006) as well as Grunert and Weber (2009) 
perform OLS regression also including macro 
variables and transforming through a logistic link. 
Bellotti and Crook (2008) also transform G(xTβ) into 
a beta distributed LGD through quantile matching. 
Jacobs and Karagozoglu (2011) basically follow this 
approach but instead use a mixture of beta 
distributions as link function. Qi and Zhao (2011) 
model LGD based on logistic and inverse-Gaussian 
regression followed by a beta transformation. In the 
context of GLM, Bastos (2010a) uses the log-log 
link function 

)(exp(exp=)( ββ TT xxG −− , 

instead. Belotti and Crook (2008) also apply Tobit 
regression by censoring the LGD according to 
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with the linear model xTβ superimposed by some 
normally distributed noise u.  

1.2. Distributional methods. The methods collecti-
vely presented in this subsection provide either 
parametric distributions or related non-parametric 
approaches to model the distribution of LGD and the 
recovery rate1. Gupton and Stein (2002) state that 
recovery rates should be modeled by a beta 
distribution with density function, 
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for y∈[0,1] and α, β > 0, where Г(·) denotes the 
gamma function2. 

Chen (1999) introduces a beta kernel estimator 
much of the same spirit as the well-known Gaussian 
kernel. Given n observations Yi within ∈[0,1], its 
design is given by 
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for some y∈[0,1] and parameter b responsible for 
smoothing. The kernel function K(c,d)(·) is given by 
the beta density function f(·; c, d). As modification 
of this estimator, Gourieroux and Monfort (2006) 
introduced new beta kernels which they referred to 
as macro and micro density estimators. The first one 
rescales the original estimator (1) by the estimated 
total mass, i.e., 
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Calabrese and Zenga (2010) introduce an alternative 
beta kernel estimator  
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to overcome the well-known boundary problem of 
the original beta kernel estimator. As pointed out by 
Calabrese (2010), however, to truly copy the 
behavior of recovery rates, one has to model based 
on a discrete-continuous hybrid distribution where 
the continuous part (0,1) is given by a beta mixture 
and point mass is assigned to the values 0 and 1, 
respectively.  

1.3. Alternative methods. As the last category of 
modeling techniques, we present a collection of 
different approaches that have not found wide-
spread use in contrast to the ones listed in the two 
subsections before. Qi and Zhao (2011) succesfully 
introduce neural networks as a non-linear approach to 
model LGD. This is also done by Bastos (2010b). 
Common to any design are an input layer, one or more 
hidden layers of neurons, and an output layer. In the 
simplest version of only one hidden layer, input data 
consisting of observations xj of j = 1,2,…,d variables 
enters neuron i of the hidden layer to be transformed 
there into a weighted functional output 
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with weights wi,j and neuron-specific constant bi. 
Output from all nh hidden neurons is then turned 
into network output 
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with neuron weights vi. The neural network allows 
for a flexible yet sometimes unintuitive design.  

Hao et al. (2009) model recovery rates for 
homogenous classes obtained through stepwise 
application of support vector machines (SVM). The 
SVM are used to separate debtors into two 
categories (y = −1 or y = 1) based on some hyper 
plane threshold with perpendicular vector w 
maximizing the minimal distance of each of the two 
groups from the threshold. With the optimal hyper 
plane, the training data keep a minimum distance of 
b from the hyper plane to guarantee generality of the 
model. The optimization problem using all n 
observations (yi, xi), xj ∈  R

d is thus given 
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where < ·,· > denotes the inner product. The 
separating rule is then given by f(x) = sign(< w, x > +b) 
or, equivalently, )>,<(=)(
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A problem occurs if the data are not linearly 
separable as required by (2) and (3). To this end, the 
original data vector xj ∈  R

d is mapped into a higher 
dimensional (k > d) feature space with a non-linear 
function )(,: xxRR kd φφ → . To circumvent the 
calculations of the inner products and associated dot 
products in the higher dimension, the so called 
kernel-trick is applied, requiring computation of 

>)(),(=<),( jiji xxxxk φφ  for the dot products. 
Thus, the transformation into the dimension can be 
actually avoided. Common kernel functions are, for 
example, polynomial p

ii xxxxk >,=<),(  or radial 
basis )/||||(exp=),( 2 cxxxxk ii −− . Loterman et 
al. (2011) apply for the modeling of LGD non-linear 
techniques such as Classification and Regression 
Trees (CART), which successively splits the data 
into groups of nearly homogenous recovery rates 
based on some impurity measure i. More 
specifically, at each node t, the optimal split s leads 
to the maximum decrease in impurity. That is, the 
objective is 

 ( , ) = ( ) ( ) ( ),max L L R R
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where pL and pR denote the percentage of 
observations of node t  that are assigned to its child 
notes tL and tR, respectively. They also apply 
Multivariate Adaptive Regression Splines (MARS), 
Least Squares Support Vector Machines (LSSVM), 
and Artificial Neural Networks (ANN) since their 
performance, respectively, is proven to exceed that 
of linear models. CART is as described by (4). 
MARS approaches non-linearity by representing the 
dependent variable as a linear composition 
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j∑  of k basis functions. Basis 
functions are added and discarded in a two-step 
procedure. LSSVM is a version of SVM to conduct 
a linear regression of the form εφ +bxy t)(=  with 
the original data x mapped into a higher feature 
space by φ  to obtain a higher degree of linearity. 
Matuszyk et al. (2010) introduce LGD modeling 
based on a decision tree using a weights-of-evidence 
(WOE) approach for coarse-classification of 
continuous exogenous variables to determine the 
most significant characteristics for the prediction of 
high and low LGD. This is repeated in Thomas at el. 
(2011) augmented by a beta or normal function 
transformation. Filho et al. (2010) express the effect 
of the respective collection processes in predicting 
LGD. In this context, they use text mining methods 
to detect steps in the collecting process that are most 
helpful for obtaining a higher recovery rate. 

1.4. Stochastic recovery. This section distinguishes 
itself from the subsection 1.2 in that the stochastic 
recovery rate presented here is embedded into more 
complex credit risk models rather than being 
individually modeled and fitted in an inferential sense. 

We begin our discussion with some research on 
stochastic recovery based on Wiener processes. In 
the spirit of Merton (1974), Peura and Jokivuolle 
(2005) define default as when asset value A  falls 
below default level D. Given that event, the 
expected loss equals the amount by which the firm 
falls short of meeting its obligation B at maturity of 
the debt, i.e.,  
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B

−  

That is, as long as there is more collateral than 
mature debt, the loss is zero. Thus, the recovery is 
implicitly included in the collateral term. In 
Düllmann and Trapp (2005), the recovery of firm i  
is modeled as the logit  
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with linear driver  
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composed of the common factor X and idiosyncratic 
random variables Zi that are i.i.d. standard normal. 
The results of the analysis are based on the S&P 
Credit Pro data base bonds and loans between 
January 1982 and December 1999 with market 
recovery at default as well as ultimate recovery. 

Chabaane et al. (2005) model the correlation 
between some default event and the corresponding 
recovery using multivariate normal latent variables 

njj ,1,= , …Ψ , where n denotes the number of firms, 
the correlation is given by ),(cov= ji ΨΨρ , and the 
normally distributed common factor is .Ψ Recoveries 
are modeled as random variables )(exp= jjR σξμ +  
where the linear driver evolves itself as  
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correlated with the common factors through 
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In the following paragraphs, we will present the 
more recent and more sophisticated models that 
were developed in the context of credit derivative 
pricing. Andersen and Sidenius (2004) who provide 
the model of some of the literature thereafter use the 
Gaussian copula for default. The corresponding loss 
is given by  
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for some given maximum loss max
il  with constant μi, 

systematic factor terms bi · Z, and idiosyncratic 
factors εi and ξi independent of any other factors. 
The Z, εi, and ξi are assumed Gaussian with the 
 

mapping function ci given by the cumulative normal 
distribution function, i.e., ci = Ф, for all i. The 
unconditional as well as conditional distribution 
with first two moments of the stochastic recovery Ri 
is capable of producing the same shapes of the 
density function as the beta distribution. The 
extensions to a Student’s-t copula are straight-
forward. Numerical results show that the random 
recovery model is not capable of handling the 
observed correlation skews, but of reproducing 
heavy-tailed losses prevailing in reality1. Krekel 
(2008) also use the standard Gaussian copula 
model for the random default variable Xi of 
obligor i. The recovery Ri if default occurs no 
later than payment date Tk has a discrete 
distribution of J states  
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The authors suggest a simple unconditional 
probability distribution such as  
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1 A correlation skew is obtained from calibrating the correlation parameter to each portfolio loss tranche. The typical interpolation curve depicts a 
convex upward sloping graph. 
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Amraoui and Hitier (2008) state that the standard 
recovery is set equal to 40%=R . Hence, the loss 
is bounded from above. Thus, to match market prices, 
a mark-down from R  to some lower, stochastic R~  is 
introduced. It is made possible through the following 
relationship of R~  to the recovery rate Ri of issuer i 
through the common factor X 

( ) ( , )
(1  ( )) = 1 ,

( , )
i

i
i

g p X
R X R

g p X
ρ
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where pi and ip~  denote the unconditional 
probabilities of default of issue i in the scenarios R  
and R~ , respectively, while the function g(·, X) is the 
conditional probability of default conditional on the 
common factor X. For consistency reasons, one has 
to guarantee that [ | < ] =i iE R T RτQ  with risk 
neutral measure Q, for any maturity T. That is, 
conditional on default, the average recovery rate has 
to equal the stripping recovery. 
Prampolini and Dinnis (2009) provide a discussion 
of the method introduced by Amraoui and Hitier 
(2008) in a single tranche CDO (STCDO) pricing 
context, i.e., the pricing of insurance against default of 
a certain percentage range of the credit portfolio. The 
base tranche is defined as the loss interval [0, d], where 
d is the so-called detachment of the tranche, i.e., its 
upper bound. The loss at time t incurred by the 
protector of the base tranche [0, d] is defined as  

( ) = min{ ( ), },d PL t L t d  
where LP denotes the portfolio loss at time. The 
remaining tranche percentage is given by Nd = 1 – 
– Ld(t) – Rd(t). Here, iR  denotes the deterministic 
recovery and iR~  is the lower bound of the stochastic 
recovery to be determined by the modeler1. The 
authors claim iR~  to be the proper choice since 
positive values will bound the loss from attaining 
100% ever, almost surely. 

Bennani and Maetz (2009) introduce the spot 
recovery rate given default at time t denoted as 
r(t)│τ = t. In the factor model, the conditional spot 
recovery is given by r(t, X) = E[r(τ)│τ = t, X ]. The 
recovery to maturity if default happens before time t 
is denoted as R(t) = r(τ)│τ ≤ t while in the factor 
model the conditional recovery to maturity is given 
by R(t, X) = E[r(τ)│τ ≤ t, X]. Furthermore, the 
conditional default probability for issuer i is pi(t,X) 
= P(τi ≤ t│X). 

Consequently, the recovery until maturity of obligor 
i conditional on X is given by  

                                                      
1 In Amraoui and Hitier (2008), it is set equal to 40%. 
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Defining the loss at time t as lt = (1 − rτ)1τ≤t, we 
obtain the expected loss condition (EL)  
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In a factor model, the recovery depends only on 
default time τ and common factor X, such that  
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where Ф denotes the standard normal cumulative 
distribution function. Then, the conditional normally 
distributed spot recovery rate is  

( , ) = ( ( ))i ir t X X tρα βΦ ×  

with αρ determining the dependence structure ρ 
from the Gaussian copula. With this notation, 
constant recovery can be modeled through αρ = 0. 
Then, two spot recovery models are used. The first 
assumes the same functional form of the spot 
recoveries for all t ≥ 0. The second one is equivalent 
to the first one with a different recovery at time t = 0, 
however, i.e., ri(0+, x) = RMkt. 
A bottom-up dynamic correlation modeling 
framework is intrduced by Li (2010) with consistent 
stochastic recovery. The recovery rate conditional on 
default between t1 and t2, i.e., τ ∈ (t1,t2), is given by 
r(t1,t2)∈[0,1] with mean μ  (t1,t2) = E[r(t1,t2)]∈[0,1]. 
The spot recovery rate conditional on exact default 
between t and t + dt, i.e., τ∈(t,t + dt), is r(t,t).  
The model permits a bounded variance 
σ2(t1,t2)∈[0,μ (t1,t2) (1 − μ (t1,t2))]. For consistent 
CDO pricing, it is shown that only μ (p, p) and σi (p, p) 
need to be specified. The relationship between the 
spot mean recovery μ  (t, t) and the term mean 
recovery μ  (0, t) can be expressed by  
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Now, the unconditional term recovery rate at time t 
for issuer i is obtained through integration over all 
possible market factor values x as  
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Schneider et al. (2010) pursue the identification of 
implied LGD from credit default swaps (CDS) 
 

spreads. Theory requires that at inception, the 
value of the fix premia st(T) that the protection 
seller is expecting to receive throughout the live of 
the derivative, i.e. Tn∈{t,t + 1, …, T}, given the 
information at time t1 
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has to equal the expected discounted payments at 
default of the protection buyer at time t.
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uDGL ~
 denotes the expected LGD in u. From this 

equality given the observed premia, the unknown 
expected LGD is singled out which is assumed 
constant over time. In their model, the default 
intensities subdivided into short- and long-term 
components are driven by a latent Wiener process 
in combination with a Poisson jump process (Cox 
process). The cross section of the LDG is then 
regressed on the industry sectors and credit rating. 

Das and Hanouna (2009) model the recovery rate as 
implied from CDS spreads. For the derivation of the 
 

latter, they use the equality of premium and 
protection leg as shown in Schneider et al. (2010). 
In their model, the recovery rate in period j is 
denoted as φj in the event of default between Tj-1 
at Tj. The recovery rates are conceived as 
dynamic, stochastic, and endogenous. Moreover, 
Das and Hanouna (2009) model the entire term 
structures of the recovery rate. The stock price S is 
the only state variable. With default intensity 
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],[
1=],[ξ , the probability of default is given 

as γ[i,j] = 1 – exp(−ξ[i,j]h). The constant h is the 
coupon frequency. Then, in period j, the recovery 
rate is given by the probit model φ[i,j] =  
= g(a0 + a1λ) [i,j], where the link function g is the 
normal cumulative distribution function. Conse-
quently, the entire model uses only three parameters 
a0, a1, and b. 

Table 1. Summary by model1 
Author or authors Models Year 

Bastos Fractional response regression, regression tree 2010a 
Bastos Fractional Regression, neural network 2010b 
Bellotti and crook Models incorporating macroeconomic variables 2011 
Bellotti and crook OLS regression, Decision Tree and Tobit regression 2008 
Calabrese and Zenga Beta kernel,mixed random variable 2010 
Calabrese Beta regression, mixed random variable, distributional 2010 
Caselli et al. Regression, multivariate analysis 2008 
Chen and Chen Logistic regression 2010 
Chen Beta kernel estimators (it is not on LGD) 1999 
Dermine and Neto De Carvalho OLS regression, logistic regression 2006 
Filho et al. Optimization, text mining 2010 
Gourieroux and Monfort Beta kernel 2006 
Grunert and Weber Distribution of RR, regression 2009 
Gupton and Stein Distributional 2002 
Hao et al. Support vector machine, discriminant analysis 2009 
Jacobs Jr. and Karagozoglu Beta-link generalized linear model 2011 
Loterman et al. OLS, Ridge regression, beta regression, logistic regression, CART, MARS, LSSVM, and ANN 2011 
Qi and Yang Regression 2009 
Qi and Zhao Regression tree, neural network, fractional response regression, inverse Gaussian regression 2011 
Renault and Scaillet Kernel estimation, nonparametric estimators, Monte Carlo 2004 
Thomas et al. Box-Cox, linear regression, beta distribution, log normal transformation 2009 
Thomas et al. Modelling LGD for unsecured personal loans: decision tree approach  
Yeh and Lien Data mining techniques in PD 2009 
Zhang and Thomas Linear regression, survival analysis, mixture distribution 2010 

 

                                                      
1 I(u) denotes the last premium payment date before default at u, ηu the intensity of default, and η+rr =~  the risk adjusted short rate. Expectation is 
computed with respect to the risk neutral measure Q. 
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2. Results by borrower type 

In the following, we will list research coarsely 
sorted by the two types of borrowers of most 
interest, i.e., corporate or retail borrowers. 

2.1. Bonds and corporate debt. Schuermann 
(2004) finds that seniority of debt has an enormous 
impact on the distribution of the recovery rate. 
Recovery on junior debt is predominantly low 
compared to senior debt. Also, the industry type has 
significant impact on recovery. Moreover, bonds 
behave differently from loans due to different control 
rights with the latter generally yielding higher recovery 
rates. Similar results are obtained by Felsovalyi and 
Hurt (1998) who analyze the recovery on loans issued 
to commercial industrial borrowers. Altman (2008) 
studied the recovery process on defaulted bonds and 
came to the same conclusion regarding seniority. Also, 
recovery is found to be lower than for loans. They 
additionally report high variation across industries.  
 

Jacobs and Karagozoglu (2011) find that macro-
economic factors play as import role as industry 
conditions, equity returns, and the price of tradable 
debt at default in addition to the debtor related 
characteristics. Dermine and Neto De Carvalho (2006) 
detect that almost all available customer related 
variables bear significant explanatory power. Böttger 
et al. (2008) conclude that corporate debt is mainly 
driven by the six factors: seniority, securitization, 
jurisdiction, industry, economic cycle, and expected 
liquidity of the secondary market for the debt type. 
Asarnow and Edwards (1995) compare corporate 
and industrial loans to structured loans concluding 
that structuring seems to have a very positive effect 
on recovery. Renault and Scaillet (2004), Bastos 
(2010b), Bastos (2010a), and Qi and Zhao (2011) 
analyze corporate loans with respect to modeling 
techniques. They find that non-parametric models 
outperform parametric models. The results of this 
subsection are summarized in Table 2.  

Table 2. Summary by debt type (corporate) 

Author or authors Data Sample size Sample period Mean of RR Median of 
RR Country Year 

Asarnow and 
Edwards Bank 89 1970-1993 0.873 - US 1995 

Asarnow and 
Edwards C&L loans 831 1970-1993 0.652 - US 1995 

Bastos SMEs 374 Jun. 1995-Dec. 2000 0.694 0.946 Portugal 2010a 
Caselli et al. SME 11,649 1990-2004 0.540 0.560 Italy 2008 
Caselli et al. SMEs 1,814 Jan.1990-Aug. 2004 0.54 0.63 Italy 2008 
Caselli et al. SMEs 1,925 Jan. 1990-Aug. 2004 0.50 0.39 Italy 2008 
Caselli et al. SMEs 2,169 Jan. 1990-Aug. 2004 0.53 0.56 Italy 2008 
Caselli et al. SMEs 2,423 Jan. 1990-Aug. 2004 0.54 0.47 Italy 2008 
Caselli et al. SMEs 3,318 Jan. 1990-Aug. 2004 0.58 0.64 Italy 2008 
Dermine and Neto de 
Carvalho SMEs 10,000 Jun.1995-Dec. 2000 0.71 0.95 Portugal 2006 

Felsovalyi and Hurt Citibank loans 1,149 1970-1996 0.68 - LA 1998 
Grunert and Weber SME 120 1992-2003 0.725 0.918 Germany 2009 
Jacobs Jr. and 
Karagozoglu US Corporate 3,902 1985-2008 0.6104 0.6841 US 2011 

Jones and Hensher 
(Altman) Bank loans 1,324 1988-2006 0.772 - US 2008 

Jones and Hensher 
(Altman) Bonds 2,071 1988-2006 0.30-0.62 - US 2008 

Qi and Zhao US Corporate 3,751 1985-2008 0.4423 0.4529 US 2011 
Renault and Scaillet Standard&Poor’s/PMD 623 1981-1999 0.4215 - US 2004 
Schuermann Bonds 282 1970-2003 0.4952 0.4475 US 2006 

 

2.2. Consumer debt. In the sequel, we differentiate 
between bank loans in the narrow sense and any 
other retail credit even if their characters might 
appear similar.  
2.2.1. Bank loans. Calabrese (2010) reports a high 
concentration of recovery at zero and one. Grunert and 
Weber (2009) state that the inclusion of macro 
variables does not improve model quality. In contrast, 
Caselli et al. (2008) find that macro-economic factors 
are important. However, the recovery rate hinges more 
on the loan-to-value ratio atdefault. Zhang and Thomas 
 

(2012) find exposure at default as the single most 
important determinant. Avery et al. (2004) argue that 
situational circumstances matter immensely with 
respect to recovery. Livingstone and Lunt (1992) 
conclude that socio-demographic factors play a 
relatively minor role in personal debt and debt 
repayment. Attitudinal factors are found to be 
important predictors of debt and debt repayments. Hao 
et al. (2009) obtain that loan-specific characteristics 
are significant for loan recovery discrimination. 
Matuszyk et al. (2010) detect as the five most 
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significant characteristics as predictors for LGD the 
loan amount, the application score, the number of 
months in arrears during the whole life and last 12 
months, as well as the time until default. Zhang (2009) 
examines the influence of loan covenants on recovery 
rates which are found to be highly signidicant 
predictors. With respect to modeling, Grunert and 
Weber (2009) state that the beta distribution is not 
useful for modeling recovery rates. Loterman et al. 
(2011) report that SVM and non-linear neural 
networks have better predictive ability than parametric 
or regression methods.  

2.2.2. Non-bank credit. Bellotti and Crook (2008) and 
Bellotti (2010) study credit card debt with respect 
 

to correlation of default and LGD denying its 
influence on portfolio Value-at-Risk. Chen and 
Chen (2010) find that social, demographic, and 
economic factors are relevant in the explanation of 
recoveryof residential mortgages. Bellotti and Crook 
(2012) find that bank interest rates and unemployment 
rates significantly predict recovery. Qi and Yang 
(2009) analyze LGD of insured mortgages and find 
that the current loan-to-value (CLTV) as well as the 
initial loan-to-value (LTV) are positively correlated. 
Thomas et al. (2012) analyze the success of varying 
debt collection processes.  

A summary of the findings of the following two 
subsections is provided in Table 3. 

Table 3. Summary by debt type (consumer) 
Author or authors Data Sample size Sample period Mean of RR Median of RR Country Year 

Bellotti Credit Card 50,000 2003-2004 - - Brazil 2010 
Bellotti and Crook Credit Card 55,500 1998-2004 - - UK 2008 
Bellotti and Crook Credit Card 55,000 1999-2005 - - UK 2011 
Calabrese Personal loan 149,378 1998-1999 0.384 0.340 Italy 2010 
Caselli et al. Personal loan 11,649 1990-2004 0.540 0.560 Italy 2008 
Chenand Chen Mortgage loan 1,880 1987-2007 - - Taiwan 2010 
Hao et al. Loss metric database 1115 - - - China 2009 
Livingstone and Lunt       1992 
Loterman et al. Credit card 7,889 - - - - 2011 
Loterman et al. Mortgage loan 119,211 - - - - 2011 
Loterman et al. Mortgage loan 3,351 - - - - 2011 
Loterman et al. Mortgage loan 4,097 - - - - 2011 
Loterman et al. Personal loan 47,853 - - - - 2011 
Qiand Yang Mortgage insurance 241,293 1990-2003 Max. 0.568 - US and other 2009 
Schuermann Bank loans 151 1970-2003 0.631 0.655  2006 
Thomas et al. Personal loan 50,000 1989-2004 - - UK 2010 
Zhang and Thomas Personal loan 27,278 1987-1999 0.420 - UK 2010 

 

Conclusion 

This article presented the current state of research 
on recovery rates. In section 1, the different models 
and methods were given. Analyses sorted by type of 
debt followed in section 2. Of the many different 
approaches, those considering exogenous variables 
for the prediction such as, for example, statistical 
ones appear to be more powerful than those in the 
 

context of pricing due to fewer degrees of freedom 
of the latter. However, it might be diffcult to 
integrate the different approaches without excessive 
inflation of model complexity. Also, study in this 
field has been insufficient with respect to generality 
of findings due to a lack of easily accessible 
recovery data as a result of the preponderance of 
bank data compared to other debt.  
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