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Abstract 

This paper deals with the asset allocation problem in the presence of regime switching in asset returns. Considering a 
financial market subject to changes in regime, it is assumed that the expected value and covariance matrix of the 
returns of the assets can change according to a Markov chain taking values in a finite set. Generally, to apply a 
portfolio selection model in a switching regime approach it is necessary to estimate the market parameters and 
determine the number of regimes. In this paper it is proposed a non-parametric procedure to determine the number of 
regimes and define in which regime the market belongs to along the time, based on analyzing the historical stock return 
patterns using cluster analysis tools. The proposed methodology is applied to a portfolio optimization problem with 
enhanced index tracking and switching regime. The results show a satisfactory performance of the model with regime 
switches when compared to the case without regime switches. 
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Introduction© 

The portfolio optimization problem is widely studied 
in the finance literature, under different market models 
assumptions, utility functions, restrictions and time-
horizons. The classical and well known mean-variance 
single-period model, originally proposed by 
Markowitz (1959), aims at maximizing the expected 
return of a portfolio under the restriction of a maximal 
given level of variance (risk) or, equivalently, 
minimizing the portfolio variance under the 
restriction of a minimum given expected return. In 
Li and Ng (2000) a solution to the multi-period 
mean-variance problem is presented (see other 
studies about this theme in Leippold et al. (2004) 
and Zhou and Li (2000), for instance). 

Another portfolio optimization problem related to 
the classical mean-variance problem consists of 
establishing an optimal allocation so that the 
portfolio’s return replicates the return of a reference 
index (benchmark). This problem is the so-called 
index tracking problem and, in this case, the utility 
tracking error function of the investor is based on 
the difference between the portfolio’s return and the 
benchmark’s return. Problems of this nature are 
addressed in Roll (1992), Rudolf et al. (1999), 
Jorion (2003), Stoyanov et al. (2008), Bajeux-
Besnainou et al. (2011) and Chen and Kwon (2012). 
Within the same spirit, the problem known as 
enhanced index tracking aims at obtaining returns 
above the reference index (excess return), while 
minimizing the deviation of the tracking error, that 
is, the deviation of the difference between the 
portfolio’s return and the benchmark’s return. This 
kind of problem is studied in Wu et al. (2007), 
Canakgoz and Beasley (2008), Li et al. (2011) and 
Guastaroba and Speranza (2012). 
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In particular the portfolio selection problem in the 
presence of regime switching in asset returns is an 
important topic in finance. Usually, a market whose 
parameters are subject to switching regime is 
characterized by a Markov switching regime 
framework (see for instance Zhou and Yin, 2003; 
Yin and Zhou, 2004; Guidolin and Timmermann, 
2007; and Bae et al., 2014). In this paper a financial 
market model under a multivariate Markov regime 
switching, where the expected value and covariance 
matrix of the returns can change according to a 
Markov chain taking values in a finite set is 
considered. 

In order to work in a Markov switching regime 
approach it is necessary to estimate the market 
parameters, determine the number of regimes and 
define in which regime the market belongs to along 
the time. In this case an appropriate method is to use 
a Markov switching model, but it can become 
technically complex and computationally intensive 
depending of the number of regimes and variables. 
Based on the historical stock return patterns using 
cluster analysis tools it is proposed a simple 
procedure to determine the number of regimes and 
classify the market regimes at each instant of time. 
The proposed methodology was applied to a 
portfolio optimization problem with enhanced index 
tracking and switching regime (as presented in 
Costa and Paulo, 2007). The results show a 
satisfactory performance of the model with regime 
switches when compared to the case without regime 
switches. 

The remainder of this paper is organized as follows. 
Section 1 presents the market model with switching 
regime. In Section 2 is presented the procedure to 
identify and determine the number of regimes and 
estimates the parameters of the market model, based 
on cluster analysis tools. Section 3 presents an 
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empirical application of the proposed methodology 
to a portfolio optimization problem with enhanced 
index tracking and switching regime. The final 
section presents some final remarks. 

1. Market model with switching regime 

The proposed work consideres a financial market with 
n assets which prices are represented by the random 
vector S(t), where the components of S(t) are described 
by Sl(t), with l = 1, …, n, such that S(t) =  
= (Sl(t)…Sn(t))’. The price of an asset at the instant  
t + 1, Sl(t + 1), is defined by the relation Sl(t + 1) =  
(1 + Rl(t))Sl(t), in which the vector of returns R(t) = 
(Rl(t)…Rn(t))’ is decomposed as: 

1 2
( ) ( )( ) ( ),/
t tR t w t= + Σθ θη       (1) 

where the variable θ(t) characterizes the market 
regime at the instant t and defines how the asset 
returns are expected to vary from time t to time t + 1 
(examples of this approach applied in asset 
allocation problem can be found in Billio and 
Pelizzon (2000), Taamouti (2012) and Saunders et 
al. (2013)). 

It is assumed that the variable θ(t) follows a state 
Markov process taking values in a finite set {1, …, N} 
with transition probability matrix P given by: 
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where the value pi,j represents the probability of the 
market, when in regime i, moves to regime j at the 
next instant of time. Finally, in (1) Σi represents the 
covariance matrix of the returns, ηi the vector of 
expected returns when the market operation mode is 
θ(t) = i, with i = 1, …, N, and w(t) a vector of 
random variables with a null mean and covariance 
matrix equal to the identity matrix and independent 
of the variable θ(t), written as: 
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Note that to apply the market model considered here 
we need to determine the number of regimes, 
estimate the parameters ηi, Σi and pi,j, for each 
regime i = 1,…, N, and define in which regime i the 
market belongs to for each instant t. An appropriate 
parametric procedure to estimate these parameters is 
to use a multivariate Markov switching framework 
(Hamilton, 1989; Hamilton, 1990), from which it is 

possible to study unobserved common states 
(regimes) for several different asset returns (Guidolin 
and Timmermann, 2007; Taamouti, 2012; 
Guidolinand Hyde, 2007). Usually, an MMS model is 
constructed with a predefined number of regimes, so 
that the choice of the number of regimes is important 
to provide a sufficient detection rate and not generating 
a model of high complexity (Zhu et al., 2012; Spezia, 
2010; Awirothananon and Cheung, 2009; Psaradakis 
and Spagnolo, 2003). Finally, from a multivariate 
Markov switching model (MMS) we can define at 
each instant t in which regime i the system belongs to, 
making a probabilistic inference about the unobserved 
regime θ(t) given observations on R(t). 

However, depending on the number of variables and 
regimes considered, the application of an MMS 
model can become technically complex, 
cumbersome and computationally intensive. Then, 
using cluster analysis tools in the next section it is 
proposed a simple non-parametric procedure to 
determine the number of regimes and define in 
which regime the market belongs to for each instant 
of time, as well as estimate the market parameters. 

2. Cluster analysis framework 

This section presents a methodology to identify and 
determine the number of regimes and estimate the 
model’s parameters ηi, Σi and pi,j. Based on Chow et 
al. (1999) a multivariate distance measure to 
identify common regimes from past observations of 
a series of daily returns is applied. Applications of 
this measure to study turbulence in financial 
markets can be found in Kritzman et al. (2001), 
Bauer and Molenaar (2004), Kritzman et al. (2001) 
and Kritzman et al. (2011). 

Considering a market with n financial assets, set d(t) 
the multivariate distance at each instant t, with 
t = 1,…, T, given by: 

1( ) =[ ( ) ] [ ( ) ]',d t r t r r t r−− Σ −      (4) 

where r(t) is the vector of returns, r  is the vector of 
average returns and Σ is the covariance matrix, 
written as: 
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in which the estimates of r  and Σ can be obtained 
by using the past observations of the series of daily 
vector of returns {r(t); t = 1, …, T}. 
The number of regimes N is identified by analyzing 
the historical patterns of the multivariate distance 
series {d(t); t = 1,…, T}. The series {d(t); t = 1,…, T}. 
is segregated in k groups (clusters), written as follows: 
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where mk is the number of elements of the series 
{d(t); t = 1,…, T} that were assigned to the group 
Gk (or cluster k), with m1 + … + mk = T. In this 
case Gi ∩ Gj = 0 whenever i ≠ j and 

1 { ( ); 1,…, }k
i iG d t t T= = =∪ . It is considered that each 

cluster corresponds to a market regime i , so that the 
number of regimes is equal to the number of groups 
established, i.e. N = k. Then, from (5) the historical 
series of the vector of asset returns {r(t); t = 1,…, T} 
can be divided into N groups, from which the vector 
of expected returns ηi and covariance matrices Σi 
may be estimated. Due to that, the number of 
elements in each group Gi should be large enough to 
allow a reasonable precision for the estimation of 
the expected returns ηi and covariance matrices Σi. 
Bearing this in mind a possible criterion for the 
choice of the number of regimes N would be to fix a 
minimal number of elements for the groups and 
consider only the cluster solutions that satisfy this 
restriction. 

After that equation (5) has been established, the 
elements of the expected returns vector ηi and 
covariance matrix Σi, associated to a group Gi, with i 
= 1,…, N, may be estimated by: 
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in which the indicator function Ii(t) is such that 
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Within the same spirit, the probabilities of transition 
among states, pi,j, can be calculated as the number of 
times that there is a switch from regime i to regime j 
divided by the number of times the system was in 
regime i, written as: 
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with t = 2,…, T. Then, applying (6), (7) and (8) it is 
possible to estimate the vectors of expected returns 
ηi, the covariance matrices Σi and the transition 
matrix P, related to each regime i = 1,..., N. 

There are two common methods to clustering a set 
of observation (or items), hierarchical and non-
hierarchical method (for more details see Johnson 
and Wichern, 2007, Chapter 12). Basically, in the 
hierarchical method the number of clusters is not 
specified in advance as occur in non-hierarchical 
method. However, in the non-hierarchical method 
the observations may be regrouped during the 
clustering process, which does not occur in the 
hierarchical method. To improve the final solution 
(set of clusters), we can use the hierarchical method 
as exploratory technique to identify a number of 
clusters and, in the sequel, use this as input to the 
non-hierarchical method (in this case the methods 
are complementary). 

As the hierarchical method provides several cluster 
solutions, the appropriate number of clusters can be 
determined by cutting off the dendrogram at an 
arbitrary point (sometimes a subjective choice). An 
identification of the optimal number of clusters can 
be done by using some stopping rule index as 
Calinski/Harabasz pseudo-F and Duda/Hart (see 
Everitt et al., 2011 for more details). Other methods 
can be seen in Sugar and James (2003), Sun et al. 
(2004) and Tibshirani et al. (2001), for instance. 
Finally, the application of the cluster analysis involves 
the choice of a convenient similarity measure between 
the variables. In this paper it is used the classical 
squared Euclidean distance, but in Bastos and Caiado 
(2012) it is introduced a new distance measure for 
clustering financial time series based on variance 
ratio test statistics. 

The methodology presented above allows us to 
determine the number of regimes and estimate the 
market parameters established in (1). Moreover, 
from (5) it is possible to establish in which regime i 
the market belonged to at each past instant t, 
considering the past observations of the series of 
multivariate distance {d(t); t = 1,…, T}. However, to 
apply the model (1) for new observations (i.e. 
observations that were not considered in the sample 
{r(t); t = 1,…, T}, and which will be denoted by r0(t) it 
is necessary to establish a criterion for classifying to 
which regime a new observed vector of returns r0(t) 
belongs to. 

Following the ideas in Chow et al. (1999), a simple 
way would be to assume that the vector of returns 
r0(t) is described by a normal distribution with 
vector of averages r  and covariance matrix Σ. Then 
the distance d0(t) (defined as in (4) with r0(t) instead 
of r(t)) would follow a chi-squared distribution with 
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n degrees of freedom, 2
nχ . From a level of 

significance α a threshold distance, d , could be 
defined so that one of the two market regimes (i = 1 
or i = 2) could be established in case the observed 
distance d0(t) is higher than d , i.e. d0(t) > d . This 
procedure is somewhat arbitrary to define the 
threshold d  and would be only suitable for two 
regimes. In the sequel it is proposed a procedure to 
classify regimes based on the set of clusters (or 
groups) defined in (5). Based on linear classification 
rule (see Rencher, 2002, Chapter 9), consider the sth

 
threshold sd , s = 1,…, N – 1, of the multivariate 
distance series {d(t); t = 1,…, T} as follows: 

1
1 ( ),
2s s sd z z += +       (9) 

in which zt is the center of the group Gt, with i = 
1,…, N, defined as: 
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where mi and i
imd  are as defined in (5). From this set 

of threshold distances { ; 1,…, 1}sd s N= −  the market 
regimes are classified as follows: 
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The procedure proposed in this section can be 
summarized as follows: 

1. From a series of daily vector of returns {r(t); t = 
1,…, T} determine the series of multivariate 
distance {d(t); t = 1,…, T} as defined in (4). 

2. Using cluster analysis segregate the series of 
multivariate distance {d(t); t = 1,…, T into k 
groups (or clusters), as proposed in this section. 
Set the number of regimes as N = k, mi, Gi and 

i
imd  as in (5). 

3. From the set of groups {Gi; i = 1,…, N} 
established in Step 2, estimate for each group the 
vectors of average returns ηi and the covariance 
matrices Σi applying (6) and (7), respectively. 
Apply (8) to estimate the transition matrix P. 

4. Finally, to classify a new observation ro(t) which 
regime is unknown apply the criteria (11). 

It should be pointed out that the methodology 
proposed here to identify and determine the number 
of regimes and classify a new observation which 
regime is unknown, characterized by (5)-(11), allows 
to work with more than two regimes and does not 
require the normality hypothesis on the vector of 
returns r(t) as considered in Chow et al. (1999). 

3. An empirical application 

This section presents an application of the proposed 
methodology to a portfolio optimization problem 
with enhanced index tracking and switching regime 
(as presented in Costa and Paulo, 2007). The model 
assumes that the market regimes switch according to 
a finite state Markov chain, in which the returns of 
the assets are described as in (1). 

3.1. Enhanced index tracking problem. Consider 
that the investor may allocate his/her financial 
resources in only (n − 1) assets, being asset 1 the 
reference index (benchmark). Let Ul(t) be the wealth 
value allocated in each asset l, with l = 2, …, n, and 
XU(t) (assume for simplicity that XU(t) = X(t) from 
now on) the value of the portfolio related to the 
investments strategy U, with initial value X(0) = X0 
and time horizon T. By taking 

2( ) ( ( ) U ( ) ) ,U t U t t ′=  3U( ) ( ( ) ( ) )nt U t U t ′= , 

,1 ,2( ) ( ( ) ( ) R ( ))i i i iR t R t R t t ′=  and  

,3 ,R ( ) ( ( ) ( ) )i i i nt R t R t ′= , we have that 

2( ) ( ) U( )X t U t t e′= +  and 

( ),2 2 ( )( 1) (1 ( )) ( ) ( R ( )) U( ),t tX t R t U t e t t′+ = + + +θ θ  
where e  is a (n − 2) dimensional vector with all the 
components equal to 1. Then, it is possible to show 
that the value of the portfolio is written as 

( ),2 ( )( 1) (1 ( )) ( ) P ( ) U( )t tX t R t X t t t′+ = + +θ θ  with P ( )i t =  

,2R ( ) ( )i it R t e= − . 

Let Y(t) represents the value of the reference 
portfolio associated with a benchmark index. It is 
supposed that its value follows the recursive equation 

( ),1( 1) (1 ( )) ( )tY t R t Y t+ = + θ  with Y(0) = X(0). Notice 
that the reference portfolio’s return is given by 
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subject to 

( ),2 ( )( 1) (1 ( )) ( ) P ( ) U( ),t tX t R t X t t t′+ = + +θ θ            (13) 

( ),1( 1) (1 ( )) ( ),tY t R t Y t+ = + θ                                      (14) 

where δi(t) and ξi(t) are positive real numbers. The 
quadratic term represents the variability of the 
portfolio’s value and the linear term represents the 
expected gain related to the reference portfolio. The 
balancing between the linear and quadratic terms is 
established through the weights δi(t) and ξi(t). Thus, 
a manager could decide on one of the three investment 
strategies: achieve an average return higher than the 
reference index (active management), replicate the 
return of a reference index (index tracking) or track 
the reference index with a positive return in relation 
to the reference index (enhanced index tracking), 
depending on the values assigned to the parameters 
δi(t) and ξi(t). 

The solution for the problem (12)-(14), presented in 
Costa and Paulo (2007), is of a mode-dependent 
kind, that is, it depends on the regime of the market 
along the time. Then its application requires to define 
for each instant t in which of the states i the market 
belongs to, as well as to estimate the transition 
probability matrix (2), the covariance matrix and the 
expected returns described in (3). To achieve this goal 
we can apply the procedure proposed in this paper, as 
described in the next section. 

3.2. Numerical example. It is considered a portfolio 
comprised of six stocks negotiated in the Brazilian 
stock exchange (BOVESPA), named VALE3, PETR3, 
BBDC3, GGBR3, ELET3 and USIM3, in which the 
wealth value can be allocated over the time. Then the 
financial market model consists of 7 assets, l1, l2, l3, l4, 
l5, l6 and l7, being the asset l1 chosen as the benchmark 
(Ibovespa index/IBOV). For the purpose of this 
study the historical stocks prices are considered for 
the period of 08/01/2008-01/31/2009 (a sample 
daily return with size T = 116). The application of 
the proposed methodology is presented in the 
following steps. 

Firstly, the series of multivariate distance {d(t);  
t = 1,…, 116} as defined in (4) was calculated. Using 
STATA software, the hierarchical algorithm (with 
between-groups linkage cluster method and squared 
Euclidean distance measure) was applied to cluster 
the series {d(t); t = 1,…, 116} and computed the 
Duda/Hart indices to choose the optimal number of 
cluster (as shown in Table 1). 

Table 1. Cluster solutions for the Duda/Hart index, 
Je(2)/Je(1) 

Number of clusters Je(2)/Je(1) Pseudo-t2 
1 0.2686 310.41 
2 0.2783 67.43 
3 0.2655 237.95 
4 0.3168 25.88 
5 0.1157 91.74 

The conventional rule for choosing the number of 
optimal clusters is to find the point with the largest 
Je(2)/Je(1) value that corresponds to a low Pseudo-t2 
value, which has a higher value above and below it. 
Then, from Table 1, the optimal number of cluster 
should be four (k = 4), which sizes would be m1 = 39, 
m2 = 4, m3 = 56 and m4 = 17. However, note that the 
cluster with size m2 = 4 is not appropriate to 
estimate the covariance matrices Σi as established in 
(3). Thus, using the same criterion of choice from 
Table 1, two groups (k = 2) as input to the k − means 
method was selected. Finally, the historical series of 
the asset returns was segregated into two groups (G1 
and G2) with size m1 = 21 and m2 = 95, respectively. 
By taking the number of regimes N = 2, two market 
regimes were considered, one of higher volatility 
(regime i = 1) and another of lower volatility 
(regime i = 2), as defined in Table 2. 

Table 2. Definition of market regimes 
Regime Description 

i = 1 Market under high average volatility 
i = 2 Market under low average volatility 

From (6) and (7) the vectors of average returns ηi 
and the covariance matrices Σi, for each regime i = 1 
and i = 2, are given by: 

1 ( 0 01233 0 02079 0 01057 0 00977 0 01292 0 01414 0 02423 ) ,. . . . . . . ′=η  

2 ( 0 00605 0 00744 0 00485 0 00544 0 01063 0 00286 0 01268 ) ,. . . . . . . ′= − − − − − − −η  

1

0 00479 0 00481 0 00502 0 00459 0 00544 0 00331 0 00528
0 00481 0 00598 0 00563 0 00470 0 00553 0 00270 0 00561
0 00502 0 00563 0 00645 0 00504 0 00596 0 00282 0 00578

Σ 0 00459 0 00470 0 00504 0 00585 0 00551 0 00301 0 00477
0

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .= ,
00544 0 00553 0 00596 0 00551 0 00715 0 00430 0 00618

0 00331 0 00270 0 00282 0 00301 0 00430 0 00410 0 00367
0 00528 0 00561 0 00578 0 00477 0 00618 0 00367 0 00733

. . . . . . .

. . . . . . .

. . . . . . .

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  
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2

0 00120 0 00155 0 00140 0 00096 0 00140 0 00069 0 00128
0 00155 0 00232 0 00194 0 00116 0 00185 0 00069 0 00163
0 00140 0 00194 0 00201 0 00103 0 00169 0 00060 0 00139

Σ 0 00096 0 00116 0 00103 0 00122 0 00106 0 00067 0 00109
0

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .=
00140 0 00185 0 00169 0 00106 0 00211 0 00080 0 00155

0 00069 0 00069 0 00060 0 00067 0 00080 0 00100 0 00085
0 00128 0 00163 0 00139 0 00109 0 00155 0 00085 0 00211

.
. . . . . . .
. . . . . . .
. . . . . . .

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

 

Applying (8) the estimated transition matrix (2) is 
given by: 

0.29 0.71
0.16 0.84

P
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

Being the size of each group m1 = 21 and m2 = 95, 
from (10) the center of each cluster (or group) is given 
by z1 = 15 and z2 = 5.19. Applying (9) we have one 
threshold distance 10.19d = . Then, from (11) the 
market regime for a new observation, i.e. a new vector 
of returns r(t), can be classified as follows: 

1,  if  ( ) 10 19
( )

2,  if  ( ) 10 19
d t .

t
d t .

>⎧
= ⎨ ≤⎩

θ . 

With the purpose of showing the behavior of the 
enhanced index tracking problem with switching 
regime, the previously proposed methodology was 
applied to the model without regime switches (i.e. 
η1 = η2 = η and Σ1 = Σ2 = Σ), in which the vector of 
average returns η  and the covariance matrices Σ 
were estimated using the sample daily return with 
size T = 116 and are given by 

( 0 00272 0 00233 0 00206 0 00268 0 00637 0 00022 0 00600 ). . . . . . . ′= − − − − − −η , 

0 00190 0 00221 0 00210 0 00166 0 00219 0 00121 0 00210
0 00221 0 00310 0 00267 0 00186 0 00261 0 00112 0 00251
0 00210 0.00267 0 00285 0 00180 0 00252 0 00104 0 00227
0 00166 0 00186 0 00180 0 00209 0 00191 0 00113 0 00184
0

. . . . . . .

. . . . . . .

. . . . . .

. . . . . . .

.
Σ =

00219 0 00261 0 00252 0 00191 0 00310 0 00149 0 00252
0 00121 0 00112 0 00104 0 00113 0 00149 0 00160 0 00146
0 00210 0 00251 0 00227 0 00184 0 00252 0 00146 0 00325

. . . . . .
. . . . . . .
. . . . . . .

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Note that the optimization problem aims at finding 
an optimal allocation at each instant t that 
minimizes the objective function defined in (12), 
subject to (13) and (14). From (12), the type of 
investment strategy can be defined by the balance 
between the linear and quadratic terms that is 
established through the weights δi(t) and ξi(t), 
respectively. For the purpose of this work, an 
enhanced index tracking strategy (named here 
enhanced management) with δi(t) = 0.3 and ξi(t) = 
0.1 was compared to an active management strategy 
with δi(t) = 0.1 and ξi(t) = 0.8. Setting X(1) = 100 
and Y(1) = 100 as initial values to the portfolio of 
investments (13) and to the reference portfolio (14), 
the solution presented in Costa and Paulo (2007) for 
the problem (12)-(14) was implemented using the 
Matlab software. Figure 1 and 2 (see the Appendix) 
show the results for the value of the portfolio 
investment X(t) and the value of the reference portfolio 
Y(t), for enhanced management and active manage-
ment strategies (with and without switching regime). 

From Figure 1 and Figure 2 we can see that on 
average the model with regime switches performs 
better than the model without regime switches. The 
performance of an investment can be measured 
using some kind of indicator as Sharpe ratio and 
Jensen’s alpha (see Sharpe, 1994; Jensen, 1968; and 
Liptona and Kishb, 2010, for example). To measure 
the performance of the investment portfolio for each 
model (with and without regime switches) three 
indicators were used: mean squared error measure, 
Sortino ratio (Sortino and van der Meer, 1991) end 
upside potential ratio (Sortino et al., 1999). The 
mean squared error measure (MSE) was calculated 
as follows: 

2

1

1 ( ( ) ( ))
T

t

MSE X t Y t
T =

= −∑ , 

where X(t) is the value of the portfolio and Y(t) is 
the value of the reference portfolio. The Sortino 
ratio (SR) was calculated by: 
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=

−

=

−
=

Ι −

∑

∑
, 

where I−(x) is such that I−(x) = x if x < 0 and I−(x) = 0 
if x ≥ 0 (in this case the minimum acceptable return 
(MAR) is replaced by the reference portfolio Y (t)). 
Finally, the upside potential ratio (UPR) was 
calculated as follows: 

1

2

1

1 ( ( ) ( ))

1 ( ( ( ) ( )))

T

t
T

t

I X t Y t
TUPR

X t Y t
T

+

=

−

=

−
=

−

∑

∑ Ι

, 

where I+(x) is such that I+(x) = x if x > 0 and I+(x) = 0 
if x ≤ 0. Notice that the indicators SR and UPR 
measure the average of excess return and the 
average of return above the benchmark, respectively, 
divided by the downside risk (or downside volatility). 
Table 3 shows the results for the application of the 
three indicators presented above. 
Table 3. Performance measures considering the two 

strategies: enhanced management and active 
management 

 Enhanced management Active management 
Type of model SR UPR MSE SR UPR MSE 
With regime switches 0.57 29.27 1.68 15.48 34.77 4.99 
Without regime switches 1.26 15.79 2.67 2.92 31.05 2.86 

From Table 3 note that SR for the model with 
regime is less (greater) than SR for the model 
without regime, considering the enhanced (active) 
 

management strategy. On the other hand, we can 
also see that UPR for the model with regime is 
greater than UPR for the model without regime in 
both strategies. Moreover, from the MSE indicator 
we can see that the value of the portfolio is more 
(less) adherent to the benchmark when the model 
with regime is used (compared to the model without 
regime), considering the enhanced (active) 
management strategy. Therefore, we can conclude 
that the model with regime switches, developed 
using the methodology proposed in this article, 
performed better than the model without regime. 

Conclusion 

This paper presents a non-parametric procedure 
based on cluster analysis tools for determining the 
number of regimes, estimate the parameters, and 
define in which regime the market belongs to, for 
financial markets under regime switching. In this 
case the expected value and covariance matrix of the 
asset returns can change according to a Markov 
chain taking values in a finite set. This new 
approach is a simple alternative to the classical 
multivariate Markov switching framework (MMS) 
used to estimate the market parameters and define the 
regimes along the time. The application of an MMS 
model can become cumbersome and computationally 
intensive when there is a large number of market 
regimes and variables. The proposed methodology was 
applied to a portfolio optimization problem with 
enhanced index tracking and switching regime. The 
results showed a satisfactory performance of the 
model with regime switches when compared to the 
case without regime switches. 
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Appendix 

 
Fig. 1. Values of the portfolio investment X(t) considering the enhanced management strategy without regime switches  

and with regime switches 

 

Fig. 2. Values of the portfolio investment X(t) considering the active management strategy without regime switches  
and with regime switches 

 


