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A dynamic hedging model based on conditional higher moments 
Abstract  

By utilizing a Taylor series expansion of a utility function, this study investigates how the introduction of higher 
moments affects the investor’s objective utility function. Using the bivariate GARCH-SK model and Independent 
Component Analysis (ICA), the authors build a dynamic model to describe the conditional higher moment risk of 
returns. Then, the empirical application of this new model is performed on the CSI 300 (China Securities Index 300) 
index futures and spot markets. The empirical results show that after the introduction of transaction costs, the optimal 
adjustment frequency of optimal hedge ratios will rise within a narrow range, as the investor’s risk aversion 
coefficients increase. Additionally, although minimum-variance (MV) hedging strategy can effectively minimize 
hedged portfolio risks of variance and leptokurtosis, the dynamic utility maximized hedging strategy, which considers 
the conditional higher moments, can better balance revenues and risks, and generate the higher investors’ utility.  
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Introduction  

The determination of optimal hedge ratios is always 
the core of futures hedging theories. Following the 
seminal study of Johnson (1960), a large body of 
literature in futures hedging has centered on the MV 
strategy, which has the merits of computational and 
understanding simplicity. Nevertheless, the MV 
hedging strategy implicitly assumes that investors 
have infinitely great risk aversion coefficients, 
which is obviously unrealistic. Later, some scholars 
suggested the optimal hedge ratio should be 
determined under the expected utility maximization 
paradigm. With the utility function solely 
approximated by the mean and variance of asset 
returns, the random variables of asset returns are 
assumed to be normally distributed, which has been 
widely found to be a restrictive assumption in 
practice. A large amount of empirical evidence 
suggests that many financial asset returns display 
the significant features of peaks, fat tail, biased, etc, 
so that they are not normal (see Engle, 1982; 
Bolllerslev, 1986; Hansen, 1994; Theodossiou, 
1998; Harvey and Siddique, 1999; Wang and 
Fawson, 2001). Recent evidence from Chen et al. 
(2008) proposed a formal test on the joint normality of 
futures and their underlying spot returns. They 
documented that the null of normality was rejected for 
all twenty-five contacts considered in their article. 
Therefore, it is reasonable to incorporate higher 
moments like the skewness and leptokurtosis to 
describe the abnormal distributions of asset returns. 

In recent years, the research of the impacts of higher 
moments on the optimal hedge ratio has come to the 
attention of many scholars. Gilbert et al. (2006) 
derived and applied a partial equilibrium hedge 
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model to allowing for skewness (but not kurtosis) in 
the hedger’s utility function. Their research showed 
that skewness could be a important factor to the 
undiversified agents, and the overall extent of 
speculation could either rise or fall, depending upon 
whether there was a price bias in the forward 
market. Another relevant contribution in this area 
was from Harris and Shen (2006), who considered 
cross-hedging with currencies rather than with 
futures. They proved that although MV hedging was 
likely to reduce the out-of-sample variance of hedge 
portfolios, the skewness and excess kurtosis of 
hedging returns were likely to fall and rise 
respectively. This result indicates that the benefit of 
hedging may be overstated, because the higher 
moments move exactly in the opposite direction to 
the utility maximum. Similarly, Brooks and Kat 
(2003) stated that hedge funds, which showed 
impressive performance on mean-variance grounds, 
often got less desirable higher-moment values than 
the traditional asset classes. Brooks et al. (2007) 
suggested that incorporating skewness into hedging 
decisions would generate lower but higher-variable 
optimal hedge ratio than the MV method did. 

Due to the limited development of estimation 
methods for GARCH-SK model, the dynamic 
hedging model with higher moments of skewness 
and kurtosis has only achieved slow progress in recent 
years. Fairly recently, Zhang et al. (2009) firstly 
applied the GARCH-SK model to estimating dynamic 
hedge ratios based on conditional higher moments. 
They reported that compared with static strategy, their 
new dynamic hedging strategy could reduce the 
higher-moment risk and increase investor’s utility. 
However, their empirical research is limited due to 
choosing only Hong Kong’s Hang Seng Index as 
sample, and not considering the impacts of transaction 
costs and investor’s risk aversions on the hedging 
strategy either. The study of Jing (2012) is one of 
the very few exceptions. She reported that adding a 
preference for positively skewed returns to traditional 
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mean-variance models might not lead to more 
speculative hedging. Additionally, she proved that 
considering the aversion to excess kurtosis would 
cause investors to hedge more, and the overall 
empirical results did not support the view that the 
dynamic hedging model with higher moments was 
superior to traditional minimum variance strategies. 

Although the previous studies have successfully 
introduced higher-moment risks into the 
determination of optimal hedge ratios, there still 
exist three drawbacks as shown below: firstly, the 
existing research literature of dynamic hedging 
model with higher moments seldom takes full 
consideration of the effects of transaction costs on 
the optimal hedge ratio. As is known to all, the 
dynamic adjustments of hedge ratios will generate 
huge transaction costs. Thus, neglecting transaction 
costs will inevitably lead to a huge mistake in the 
hedging strategy. Secondly, under the expected utility 
maximization paradigm, it is quite common to 
research the connections between investor’s risk 
aversion coefficients and optimal hedge ratios. But this 
kind of research has not been reported in the previous 
studies of hedging models with higher moments. 
Thirdly, so far most literature chose the developed 
financial futures market as the sample. Because the 
degree of skewness and kurtosis is generally less in 
developed security markets than in developing security 
markets, the existing empirical results of the 
effectiveness of dynamic hedging models with higher 
moments is far from clear. In light of this, we choose 
the emerging CSI 300 index futures and its underlying 
spot index as samples, which are famous for being 
skewed and fat-tailed, and probe the effectiveness of 
the dynamic hedging model with higher moments in 
these new markets. Additionally, how the transaction 
costs and investors’ risk aversions affect optimal hedge 
ratios is also the focus of this research. 

The article is organized as follows. The next Section 
describes the impacts of the introduction of higher 
moments on the investor’s objective utility function. 
Section 2 outlines the hedging model with higher 
moments. Section 3 will briefly discuss the 
measurement of higher moments. Section 4 introduces 
how higher moments are estimated by ICA. Section 5 
describes the data, which is followed by our empirical 
findings. Final Section summarizes and concludes our 
findings.  

1. Effects of skewness and kurtosis on investor’s 
utility function 

Let Rs and Rf denote the logarithmic changes of the 
spot and futures prices. Then, the returns on the 
hedged portfolio with the hedge ratio of h can be 
expressed as Rp = Rs  hRf. To introduce the 
moments higher than second into the expected 

utility function, a straightforward technique is to 
take a Taylor series expansion of the utility function 
evaluated. Ignoring terms associated with moments 
higher than the fourth moment, the utility function 
can be rewritten by the Taylor series formula as:  
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where U(n) is the nth derivative of the utility function 
with respect to Et-1(Rp,t), which denotes the expected 
return on the hedge portfolio at time t  1. Plugging 
the 2

p , 3
ps , and 4

pk , which represent the variance, 
third and fourth central moments of the random 
variable Rp,t respectively, into Equation (1), the 
expected utility function of hedge portfolio can be 
transformed to: 
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2. Hedging model with higher moments 

Therefore, to estimate the utility maximizing 
optimal hedge ratio with higher moments can be 
transferred into an optimization problem as below: 
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where 
, ,,

T

t s t f tR R R denotes the vector of the 

spot and futures returns, 1, T
tW h is the vector of 

spot and futures positions, and 1t t tu E R  
represents the expectation of Rt. The time-varying 
matrices of co-variance Ht, co-skewness St, and co-
kurtosis Kt of Rt can be expressed respectively as:  
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where  denotes the Kronecker-product. According 
to Equation (4), the investor’s objective utility 
function is a univariate function of independent 
variable h. Therefore, the optimal hedge ratio h* is 
given by the first derivative of the utility function with 
respect to the hedge ratio equal to zero. In order to 
verify h* is the unique maximizer of an objective 
utility function with higher moments, the first step is to 
consider the approximation of a utility function with a 
second order Taylor series expansion: 
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The first and second derivatives of the utility 
function with respect to h are collected as:  
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Let the first derivative of the utility function in 
Equation (6) equals to zero, and we can obtain the 
optimal hedge ratio as:  
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To judge the second derivative positive or negative, it 
is necessary to specify the exact form of a utility 
function. Following Gilbert et al. (2006), a constant 
absolute risk aversion (CARA) utility function, also 
known as the exponential utility function, is adopted.  

exp ,p pU R                                         (8) 

where  is the coefficient of risk aversion, and the 
higher , the more risk-averse the decision maker 
is. Because the second derivative of utility is 
 

2
2, 2 exp 0tU , and variance of futures 

returns is hff > 0, the second derivative of investor’s 
objective utility 2 2 2

, ,,p t p tdU h  is always less 
than zero. Thus, the utility function can be graphed 
in the shape of a concave down parabola and reach 
the maximum value at the point of 

1 2
f ff sf ffh U U h h h . Because the third and 

fourth terms in the Taylor series expansion, as 
shown in Equation (2), have much smaller impacts 
on investor’s utility compared with the first and 
second terms, we can reasonably infer that the shape 
of utility function is mostly decided by the first and 
second terms in the Taylor series expansion. 
Therefore, the expected utility function consisting of 
higher moments is still a concave down parabola. 
That means by setting h* to be the starting point and 
using gradient descent algorithm, we can seek out 
the utility maximizing hedge ratio. Furthermore, 
according to Equation (3), the estimations of Ht, St, 
and Kt are the preconditions for deriving the optimal 
hedge ratio. Therefore, the next section will give a 
brief introduction on how to estimate the above 
higher-moment matrices by the bivariate GARCH-
SK model.  

3. Measurement of higher-moment risks 

Leon et al. (2005) proposed a univariate GARCH-
SK type model to specify the time-variation in 
volatility, skewness, and kurtosis. In order to figure 
out the optimal hedge ratio based on conditional 
higher moments, the bivariate GARCH-SK model 
must be adopted to measure the impacts of 
conditional co-variance, co-skewness, and co-
kurtosis on the optimal futures hedge ratio. 

In order to figure out the optimal hedge ratio based 
on conditional higher moments, the bivariate 
GARCH-SK model must be adopted to measure the 
impacts of conditional co-variance, co-skewness, 
and co-kurtosis on the optimal futures hedge ratio, 
which can be defined as follows: 
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It-1 denotes all the information available in t  1, 

1 ,t t NtY  is a N × 1 vector with a mean 
vector of Mt. { t} is a random vector process with 
dimension N × 1. D(0, Ht, St, Kt) denotes an arbitrary 
distribution with conditional skewness and kurtosis. Ht 
is a conditional co-variance metric with dimension  
N × N, St is a N × N2

  co-skewness matrix of variables, 
Kt is a N × N3 co-kurtosis matrix of variables. t is a 
random vector standardized by the t and 1 2

tH , so 
there exist Et-1( t) = 0 and vart-1( t) = 1. I is a unit 
matrix. tS  and tK  are the co-skewness and co-
kurtosis matrices of t. B0 0, and 0 are the 
vectors with the dimensions of 1HN , 1SN , 
and 1KN  respectively. B1,i and B2,j  are the square 
matrices with the same dimension of 

1 2HN N N . 1,i and 2,j are the square 
matrices with the dimension of 

1 2 6SN N N N . 1,i and 2,j are the 
square matrices with the dimension of  

1 2 3 24KN N N N N . vech(·) denotes 
arithmetic operator, which can convert the lower 
triangular portion of N × N matrix into a 

1 2 1N N  column vector. 

In fact, the bivariate GARCH-SK model will 
encounter the much more serious problem of “curse 
of dimensionality” compared with the bivariate 
 

GARCH model. For overcoming the above 
difficulty, this paper will describe how to estimate 
first to fourth moments in the bivariate GARCH-SK 
model by a much easier way through ICA. 

4. Simplified estimation of higher moments  
in the bivariate GARCH-SK 

If financial time series can be regarded as a series of 
signals emitted by the financial system, some 
original source signals are assumed to have been 
mixed in some prescribed manner to form the 
observed asset returns series. Thus, ICA provides a 
mechanism to decompose the given signals of spot 
and futures returns series into statistically 
independent components.  

Since only Ht, St, and Kt of the futures and spots 
returns need to be figured out, we can directly 
estimate the higher moments using ICA rather than 
evaluate the coefficients of the bivariate GARCH-

SK model. Given 1 2,t t tIC IC IC  are the two 
independent components of returns vector Yt, IC1t 
and IC2t are statistically independent, and there 
exists an invertible matrix, which can make: 

.t tIC Y                                                              (10) 

Evaluating the conditional variance, skewness, and 
kurtosis of the both sides of Equation (10), we can get: 
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As seen in Equation (11), this formula has built up 
the great connection between variables of Ht, St, Kt 
and variables of var(ICt/It-1), skew(ICt/It-1), and 
kurt(ICt/It-1). Since the each component in ICA is 
independent, var(ICt/It-1), skew(ICt/It-1), and 
kurt(ICt/It-1) are all diagonal matrices, which means 
that the diagonal entries are the conditional 
variance, skewness, and kurtosis, and the entries 
outside the main diagonal are all zeros. 
Therefore, as long as 1 2,t t tIC IC IC  are reached 
by Equation (10), using the univariate GARCH-SK 
model, we can calculate the conditional variance, 
skewness, and kurtosis of each ICt and put them on 
the main diagonal to get diagonal matrices of 
var(ICt/It-1), skew(ICt/It-1) and kurt(ICt/It-1). Then, Ht, 
St and Kt can all be calculated from the ICA transfer 
matrix  and Equation (12) as shown below: 
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5. Empirical results 

5.1. Data and preliminary analysis. The price data 
employed in this article pertains to the China 
Shanghai Shenzhen 300 stock index futures, which 
is often abbreviated to CSI 300 index futures. The 
CSI 300 index futures contract started trading in the 
China Financial Futures Exchange (CFFEX) on 
April 16, 2010. Our data set consists of daily 
observations of the spot index and the futures prices 
from April 16, 2010 through January 2, 2014 (900 
observations). Furthermore we are using the 
closing price of the nearest contract month (which 
usually represents the most liquid contract) for the 
returns on the futures. To avoid thin markets and 
expiration effects, we roll over to the next nearest 
contract at least one week prior to the expiration 
of the current contract. For convenience of 
analysis, the daily changes of both index futures and 
spot are calculated by log(Pt) – log(Pt-1). Table 1 
gives some standard Summary statistics along with 
the Jarque-Bera test normality and unit root test for 
the two assets. 
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Table 1. Descriptive statistics for log returns of CSI 300 index futures and underling spot 
Series Mean Variance Skewness Kurtosis J-B Unit Root Test 

ft
 

-0.00042 0.00021 -0.0564 5.7269 279.014*** -40.333*** 

st
 

-0.00041 0.00020 -0.1828 4.8417 132.056*** -40.683*** 

Notes: *** Denotes that the null is rejected at the 1% significance level. J-B is the Jarque-Bera (1980) test for normality, and is chi-
squares asymptotic with two degrees of freedom. The unit root test is the augmented Dickey-Fuller test. 

As is shown in Table 1, the returns series of CSI 300 
index futures and its spot have mean values less 
than zero, and display the classic non-normal 
features of peaks, fat tail, biased, etc. The Jacque-
Bera statistic further testifies that the above two 
returns series do not obey normal distribution. 
Thus, the impacts of higher moments on the hedge 
ratio should be considered, whenever returns 
distribution with higher moments is employed. 
The augmented Dick-Fuller unit root test confirms 
that the return series of the futures and spot are 
both stationary. 

5.2. Estimation of higher moments. Firstly, using 
fixed-point algorithm (see Hyvarinen, 1997), the return 
series of the futures and spot are discomposed into two 
independent components. The whole mathematic 
calculation process is realized by the software 
MATLAB, and the transfer matrix is expressed as: 

212.3906 229.2530
ˆ .

101.7197 32.6115
                               (13) 

By the transfer matrix ˆ  and Equation (10), the two 
independent components (IC1, IC2) can be easily 
estimated as Figure 1 graphs. 

 
Fig. 1. Estimated independent components of the CSI 300 index futures and spot 

Then, following Leon (2005), the GARCH-SK 
models for each independent component are 
formally defined as below: 
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Where i,t is the conditional variance of ri,t, i 
represents the ith component, si,t is the conditional 
skewness of i,t, and ki,t is the conditional kurtosis of 

i,t. For the GARCH-SK model, the constrains on 
the parameters are required to ensure that the 
conditional variance and kurtosis are both positive 
and stationary. In particular, the constrains include 
 

a0  0, 0 < a1 < 1, 0 < a2 < 1, -1 < b1 < 1, -1 < b2 < 1, 
a1 + a2 < 1, -1 < b1 + b2 < 1, c0  0, 0 < c1 < 1, 0 < c2 
< 1, and c1 + c2 < 1. 
Furthermore, the estimation of a GARCH-SK model 
need specify the distribution of D(·). Here, using the 
Gram-Charlier series expansion of normal density 
function, the density function for the standardized 
residuals i,t conditioned on the information 
available in t  1 can be expressed as:  
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(·) denotes probability density function of the 
standard normal distribution, and (·) is the 
fourth order of the Gram-Charlier polynomial. 
Then, the coefficients of the GARCH-SK model 
for the two independent components are computed 

by the method of maximum likelihood. Table 2 
presented below gives the estimation results. 
From Table 2, the conditional higher central 
moments of the either independent component can 
be easily obtained by Equation (14). 

Table 2. Estimation of the GARCH-SK model 
 Parameter IC1

 
t IC2

 
t 

Variance  
Equation 

0 0.0745 135.9742 0.8895 42.4533
1
 

0.1761 `78.4827 0.1454 11.6601
2
 

0.1735 173.7716 0.3602 14.8961

Skewness 
Equation 

b0
 -7.8281 -30.2602 -1.2741 -25.9439 

b1
 

0.7966 440.5170 -0.9917 -0.0024 
b2

 
-08066 -31.8981 0.0387 26.2949

Kurtosis 
Equation 

c0
 0.3160 10.1498 0.7383 2.9624 

c1
 

0.9665 301.1315 0.8074 12.5973
c2

 
0.0025 8.4385 0.0124 3.0538 

Notes: Table 2 reports the estimation results of the GARCH-SK model for the continuous returns of CSI 300 futures and spot. The 
column t contains the t-statistics. The sample period is from April 16, 2010 to January 2, 2014, with total of 900 observations. The 
estimation is performed by the method of the maximum likelihood using Matlab software.  

The conditional daily series of variance, skewness, and kurtosis for the two independent components are 
graphed respectively by Figures 2 to 4. 

 

Fig. 2. Daily variance of independent components 

 

Fig. 3. Daily skewness of independent components 
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Fig. 4. Daily kurtosis of independent components 

As shown in Figures 2 to 4, the conditional daily 
series of variance, skewness, and kurtosis for the 
two independent components display obvious 
characters of time-varying and clustering. Then, 
using Equation (12), Ht, St, and Kt of the spot and 
futures can be calculated respectively.  

5.3. Dynamic hedge ratio and hedging effectiveness. 
To derive the optimal hedge ratio, it is necessary to 
specify the utility function in Equation (2). Here, we 
still adopt CARA utility as before, hence the objective 
function can be transformed to:  
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As shown in Equation (3), the optimization problem 
is to find a hedge ratio h*, which can maximize the 
investor’s utility function. Based on the estimated 
results of Ht, St, and Kt in the section 5.2, the 2

,p t, 

3
,p ts , and 4

,p tk  for a certain hedge ratio can be directly 

yielded by , , ,, 1, T
p t s t f t tu u u h  and Equation (4).  

Prior to estimating the optimal hedge ratio, we use 
0.01 as increments, and define 101 different hedge 
ratios on the interval [0.5, 1.5]. According to 
Equation (3), given Ht, St, and Kt of the futures and 
spot, any hedge ratio h  can specify a set of central 
moments of a hedged portfolio, including up,t, 2

,p t , 
3

,p ts , and 4
,p tk . Thus, 101 hedge ratios can generate 

101 sets of up,t, 
2

,p t , 3
,p ts , and 4

,p tk . Then, we take 
the average of the absolute values of up,t and 3

,p ts  
firstly within each set and secondly across 101 sets, 
and can derive the unique average values of up,t and 

3
,p ts . The unique average values of 2

,p t  and 4
,p tk  

can be estimated almost in the same way except for 
taking the average of up,t and 3

,p ts  directly within 
each set. Table 3 gives the statistics of average 
values for different central moments.  

Table 3. Statistics of average values for different central moments 

Average of absolute value of up,t Average of 2
,p t  Average of absolute value of 3

,p ts  Average of 4
,p tk  

0.0043 3.483e-05 1.4735e-07 4.282e-09 
 

In addition, at any time t, observing how the up,t, 
2

,p t , 3
,p ts , and 4

,p tk  change with h, we can easily 
find that up,t and 3

,p ts  are monotonically increasing 
or decreasing with h, while 2

,p t  and 4
,p tk  display 

 

nonlinear relation with h in the shape of a concave 
up parabola. That means if investors pursue 
excessively high revenues and positive skewness at 
expense of huge risk, the optimal hedge ratio h* will 
explode to positive or negative infinity. Thus, only 
if the increasing risk can generate enough negative 
utility to prevent investors from pursuing excess 
revenues as h changes will h* exist. However, as 
shown in Table 3, the mean absolute value of up,t is 
 

124 (0.0043/3.483e-05) times larger than mean 
value of 2

,p t . That means if Equation (15) was 
directly adopted as utility function, h would 
eventually explode to positive or negative infinity, 
because utility would be entirely dominated by up,t. 
Thus, the hedge portfolio revenues need to be 
adjusted by multiplying a value like 1/124 = 0.008, 
which can realize the absolute mean value of up,t  equal to the mean value of 2

,p t . After this 
adjustment, it is sure that the expected revenues and 
risks in the utility function can maintain mutual 
balance, and h* can also converge within a 
reasonable range. 
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Using the Genetic Algorithm package in the 
software Matlab, we can get a set of optimal hedge 
ratios from Equation (17). However, in practice, the 
dynamic adjustments of hedge ratios cannot avoid 
transaction costs. Hedge ratios will not change 
unless the expected utility increment of a hedge 
portfolio after adjustments can exceed the 
transaction costs. In the CSI 300 index futures 
market, the present transaction costs include the 
China Financial Futures Exchange fees of 0.250/000 
and brokerage firm commissions of 0.750/000-10/000. 
Here, we adopt the lowest total transaction costs of 

10/000. Thus, the total cost of purchase and sell is of 
around 20/000, which means the hedged portfolio will 
be adjusted only the following conditions are met: 

,

, 1 1
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             (18) 

Furthermore, in order to investigate how risk 
aversion coefficients can affect the adjusting 
frequency of optimal hedge ratios, here we choose a 
wider range of risk aversion coefficients, (0.5, 1, 
3, 10, 20, 100). Then, the optimal adjusting 
frequencies of the optimal hedge ratios during the 
900 trading days are presented in Table 4. 

Table 4. Optimal adjusting frequencies of hedge ratios 
  = 0.5  = 1  = 3  = 10  = 20  = 100 

Adjusting times 429 439 456 482 503 601 
Adjusting frequencies 47.2% 48.83% 50.72% 53.62% 55.95% 66.85% 

Notes: Adjusting frequencies= Adjusting times/899. 

The statistics in Table 4 support the view that the 
optimal adjusting frequencies will steadily go up, 
as the risk aversion degrees increase and 
transaction costs are considered, but the 
fluctuation range of the adjusting frequencies is 
narrow. For the most common risk aversion 

coefficient of  = 3, the investors need to adjust 
the hedged portfolio every two days to obtain the 
maximum utilities. When transaction costs are 
considered, the series of optimal hedge ratios 
under different risk aversion coefficients are 
described in Figure 5. 

 
Fig. 5. Series of optimal hedge ratios under various risk aversion coefficients 

As shown in Figure 5, the fluctuation of h* will 
decrease as risk aversion coefficients increase. This 
rule can be explained well by Equation (17). 
Specifically, according to Equation (17), there are 
four factors, including up,t, 

2
,p t , 3

,p ts , and 4
,p tk , that 

have great impacts on h*, and  is capable of 
controlling the effective of these factors on h*. 

Previous analysis has proved that up,t and 3
,p ts  will 

push the value of h* to the extreme, while, 2
,p t  and 

4
,p tk  will promote h* to converge. In the first scenario 

of  < 1, the higher-order infinitesimal 
2,3, 4n n  can greatly diminish the influence 

of 2
,p t , 3

,p ts , and 4
,p tk  on h . At this moment, h  
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is mainly determined by up,t. Therefore, the optimal 
hedge ratios will fluctuate more widely. In the 
second scenario   1, 2,3,4n n  can amplify 
the impacts of 2

,p t , 3
,p ts , and 4

,p tk  on h* from low to 
high. Under this condition, h* will be mainly 
affected by 2

,p t, which has the largest power of 
convergence promotions. Therefore, the fluctuation 
of h* will be small at this moment. Overall, the risk 
aversion degrees of investors have great impacts on 
the range of h* changes. The higher  is, the smaller 
the adjustment range of the dynamic hedge ratio 
based on the conditional higher moments will be. 

To evaluate the performance of the dynamic 
hedging model with higher moments, we make 
comparisons of this model with the statistic hedge 
 

model based on minimum variance and other 
dynamic hedge models. The detailed procedure is 
designed as follows: the first step is to estimate the 
static optimal hedge ratio h* by the OLS model, 
which is h* = 0.9387; secondly, we use the VECM-
GARCH model with constant conditional 
correlation (CCC) to estimate the dynamic hedge 
ratios; then, substituting different kinds of hedge 
ratios into Equation (3), we can figure out time-
varying up,t, 

2
,p t , 3

,p ts , and 4
,p tk  under each kind of the 

hedge ratios; finally, Equation (17) and (18) can be 
used to estimate the time-varying utilities of statistic 
hedge ratios and dynamic optimal hedge ratios 
respectively. Table 5 summarizes the average utility 
levels and statistics of hedge returns under various 
hedge methods. Here, risk aversion coefficient  is 3. 

Table 5. Estimation of hedging effectiveness 
Hedging methods Utilities Revenue Variance Skweness Kurtosis 

Statistic -1.00007759 -1.92272e-05 1.8015e-05 0.1403 6.2762 
VECM-GARCH -1.00008015 -1.0420e-06 1.7745e-05  0.0512 6.5327 
VECM-GARCHSK -1.00007592* 6.6884e-04 1.9084e-05  0.4642 7.3755 

Notes: Utility under static hedging strategy is estimated by Equation (16). Utility under dynamic hedging strategy using VECM-
GARCH and VECM-GARCH-SK model is estimated by Equation (17) . The statistics of revenue, variance, skewness and kurtosis 
are all average values of time-varying ,p tu , 2

,p t , 
3

,p ts
 
and 4

,p tk  with risk aversion coefficient  = 3.  

As shown in Table 5, the utility maximizing 
dynamic hedging strategy based on conditional 
higher moments may properly keep balance between 
the revenues and risks of hedge portfolio. Although 
this hedge strategy generates the largest venture, its 
performance evaluated by the statistic of revenue is 
much more prominent. Thus, the utility maximizing 
dynamic hedging strategy based on conditional 
higher moments brings the highest utility among the 
three strategies. Although the MV hedge strategies, 
like the OLS model and dynamic the VECM-GARCH 
model, can realize the smaller venture as statistics of 
variance and kurtosis show, they also have to endure a 
greater reduction of revenue for the decline of venture. 
Therefore, if hedging effectiveness is evaluated by the 
utility, which consists of both the venture and revenue, 
the MV hedge strategy using the VECM-GARCH 
model performs worst, and the statistic OLS model is 
next to the worst. The above founding confirms further 
the previous analysis of the weakness of risk-
minimizing hedge strategies. 

Conclusion 

This study investigates how hedging behavior may 
change when hedgers consider higher moments of 
their hedged returns distribution, specifically for 
skewnesss and kurtosis. This article specifies the 
 

risk structure of futures and spot returns by a 
bivariate GARCH-SK model. Then, in view of 
problem of “curse of dimensionality” for the 
GARCH-SK model, we put forward the evaluation 
method of using ICA to estimate various central 
moments of hedged portfolio. Based on this, this 
article also develops a dynamic hedging model 
which considers transaction costs and time-variation 
in higher moments. Finally, we choose CSI 300 
index futures and spot as samples and conduct 
empirical studies on the validity of the above model 
in the Chinese security market. Analysis shows that 
the unconditional distribution of CSI 300 index 
futures and underlying spot displays significant 
features of being skewed and fat-tailed, which are 
not normal. Thus, when describing the distribution 
of spot and futures returns, it is essential to consider 
the importance of conditional variations in moments 
other than mean and variance; once transaction cost 
is considered, the optimal adjusting frequencies will 
steadily go up with an increase in the degree of risk 
aversion coefficients, but fluctuate in a small size. 
At last, the dynamic utility maximizing hedging 
strategy can increase the performance of the hedges 
in terms of utility maximization, since it does the 
best to keep balance between the risks and revenue 
among all the three proposed hedge strategies. 
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