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Managing liquidity buffer through core liquidity portfolio  
Abstract 

Generally, the common practice by banks in liquidity management is that they hold a liquidity portfolio as a unitary 
portfolio and not segmenting it into sub-portfolios taking into consideration bank specific needs. There is wide 
agreement that insufficient liquidity buffers are the root causes of the 2007 to 2009 liquidity crisis. The authors 
construct a core liquidity portfolio to specifically ensure liquidity buffer is met to avoid liquidity problem. A two stage 
stochastic programing model with recourse is constructed taking into account liquid asset return to maximize liquidity 
buffer. The authors propose a liquid asset return scenario generation model. The data used to calibrate the proposed 
model is from International Monetary Fund from January 2000 to April 2014. The researchers found that the behavior 
of the deterministic liquidity buffer relative to stochastic reveals some general properties of the underlying problem and 
help predict how a stochastic will perform. By taking into account liquid asset return randomness, the bank self-insure 
against adverse asset price movements. The authors strongly recommend that banks should design a core liquidity 
portfolio which is a sub-portfolio of the overall liquidity portfolio, which will specifically focus on meeting liquidity 
requirements using stochastic programing. However, bank liquidity buffer is restricted by interest rate on liquid assets 
and required reserves defined by the central bank. 
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Introduction  

Liquidity risk for a bank includes both the risk of 
being unable to fund its financing commitments and 
the risk of being unable to meet the demand for 
withdrawals. The shortage of liquidity is said to be 
an assassin of banks and liquidity surplus is 
considered a drag on competitiveness. Banks face 
two central issues regarding liquidity. The main 
purpose of banks is to manage liquidity creation and 
also to manage liquidity risk. By creating liquidity 
in the market, the banking industry serves an 
important role in the country’s economy. 

According to Ali (2012), liquidity risk emanates 
from the nature of banking business, from the macro 
factors that are exogenous to the bank, from financing 
and operational policies that are internal to the banking 
firm. The sources of liquidity risk include the 
maturity mismatch of assets and liabilities, inability 
of the bank to convert its assets into cash without 
loss and unanticipated recall of deposits. 

Until recently, liquidity was not the main focus of 
banking regulators. A number of liquidity-related 
management models have been developed; see 
Abraham (2011), Bolton et al. (2008), De Alcantara 
(2008), Ratwovski (2013). Abraham (2011) 
proposed a method that can be used to calculate 
liquidity buffer. In his model, Abraham (2011) 
defined the following variables; the wholesale, 
retail, off-balance sheet, intra-day and downgrade 
requirements. The liquidity demand model was 
considered by Bolton et al. (2008), and computed a 
liquidity demand arising from a possible maturity 
mismatch between asset revenues and consumption. 
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De Alcantara (2008) developed an integrated model 
for optimal asset allocation in commercial banks 
that incorporates uncertain liquidity constraints that 
are ignored in risk-adjusted return on capital and 
economic value added models. A model of bank 
liquidity risk driven by solvency was proposed by 
Ratwovski (2013). In his model, he defined the 
interaction between liquidity requirements, access to 
refinancing and liquidity risk. 

Previous and most recent liquidity management 
models developed look at liquidity as a unitary 
portfolio. The Asian Development Bank (2013) 
proposed that the bank should establish a sub-
portfolio that will specifically focus on preserving 
liquidity buffer. There is wide agreement that 
insufficient liquidity buffers are the root causes of 
the 2007 to 2009 liquidity crisis. Banks are failing to 
adequately maintain liquidity buffers to meet 
liquidity needs. Defining the appropriate assets and 
core liquidity management strategies are a 
challenge to most banks. Thus the main aim of the 
research is to design an appropriate core liquidity 
portfolio management technique to ensure that the 
liquidity buffer is met. We construct a two-stage 
stochastic programing model with recourse to 
manage the core liquidity portfolio. To meet and 
maintain the buffer requirement, we maximize the 
liquidity buffer. The paper is organized as follows; 
Section 1 develops a scenario generation method 
and then a two-stage stochastic programing model. 
Section 2 is devoted to methods used to collect 
data and its statistical characteristics. The 
stochastic solutions are presented in Section 3. 
Final section gives meaning to the presented 
empirical results in conjunction with data 
characteristics and conclusion. 
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1. Model formulations 

The management needs to decide on the size of the 
initial liquidity buffer to hold so as to caution itself 
against stochastic liquidity demand. At each beginning 
of instant time, the bank decides on how much to 
invest in high quality liquid assets to satisfy the liquid 
asset reserve requirement. In between instant times, the 
bank is exposed to exogenous liquidity demand and 
the liquidity buffer is depleted. The bank needs to 
make recourse decisions to maintain the liquidity 
buffer. We start by defining the decision variables and 
parameters that we used as follows: 

Definition of sets: 

Tt  Set of instant time; 
Ii  Set horizon bands; 

Ssn  Set of scenarios, for n  N; 

1
1
j  Set of event space for the unknown liquid 

asset return, where j  J; 
2

2
k  Set of event space for the unknown cost of 

liquid asset, where k  K; 
11 Pp

j
 Set of probabilities of event space for the 

unknown liquid asset return where j  J; 
22 Pp

k
 Set of probabilities of event space for the 

unknown cost of liquid asset, where k  K; 
Pp

ns  Set of scenario probabilities, for sn  S; 

Deterministic data: 

0F  Initial liquidity buffer; 
ABq0  Liquid assets held at stage 0 under uncertain 

liquid asset returns; 

bau Business-as-usual absolute risk aversion 
coefficient; 

cont Contractual maturity absolute risk aversion 
coefficient; 

A
ib

 Percentage increase in business-as-usual assets 

takes place upon expanding bank operations, for i  I; 
L
ib

 Percentage increase in business-as-usual 

liabilities takes place upon increase in assets, for i  I; 
 The weight of additional needed funds; 
 The coefficient of business-as-usual net fun- 

ding gap; 

Random data: 
A

itsn
b  Business-as-usual assets, for i  I, t  T and sn  S;  

L
itsn

b  Business-as-usual liabilities, for i  I, t  T and 

sn  S; 
Az

itsn
b  Business-as-usual asset advance, for i  I, t  T 

and sn  S; 

Ad
itsn

b  Business-as-usual asset trading, for i  I, t  T 
and sn  S; 

Aa
itsn

b  Business-as-usual other asset, for i  I, t  T 

and sn  S; 
Le
itsn

b  Business-as-usual stable deposits, for i  I,  

t  T and sn  S; 
Lv
itsn

b  Business-as-usual volatile deposits, for i  I,  

t  T and sn  S;  
Lh
itsn

b  Business-as-usual trading and hedging 

instruments, for i  I, t  T and sn  S; 
Ll
itsn

b  Business-as-usual other liabilities, for i  I,  

t  T and sn  S; 
A
itsn

c  Contractual maturity of assets, for i  I, t  T 
and sn  S; 

L
itsn

c  Contractual maturity of liabilities, for i  I, t  T 
and sn  S; 

Az
itsn

c  Contractual maturity of assets advance, for i  I, 

t  T and sn  S;  
Ad
itsn

c  Contractual maturity of assets trading, for i  I, 

t  T and sn  S; 
Aa
itsn

c  Contractual maturity of other assets, for i  I,  

t  T and sn  S; 
Le
itsn

c  Contractual maturity of stable deposits, for i  

I, t  T and sn  S; 
Lv
itsn

c  Contractual maturity of volatile deposits, for i  I, 

t  T and sn  S; 
Lh
itsn

c  Contractual maturity of trading and hedging 

instruments, for i  I, t  T and sn  S; 
Ll
itsn

c  Contractual maturity of other liabilities, for i  

I, t  T and sn  S; 
M
itsn

c  Net contractual maturity, for i  I, t  T and  

sn  S; 
nitsr  Liquid asset returns, for i  I, t  T and sn  S. 

Decision variables: 
G
itsn

b  The business-as-usual net funding gap, for i  
I, t  T and sn  S; 

D
itsn

f  Planned additional funds, for i  I, t  T and  
sn  S; 

AE
itsn

q  Liquid asset bought to maintain liquidity 
buffer, for i  I, t  T and sn  S; 

AB
itsn

q  Liquid assets held at stage t under uncertain 
liquid asset returns, for i  I, t  T and sn  S. 
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We define business-as-usual as the normal 
execution of standard functional operations within 
the bank. Contractual maturity of assets and 
liabilities are the inflows and outflows liquidity 
from on- and off-balance sheet items, mapped to 
defined time bands based on respective maturities, 
respectively.  

1.1. Scenario tree. We need to construct a scenario 
for random variable liquid asset returns. Now 
consider a case where the random vector s, has a 
discrete and finite distribution, with n scenario set 

NsssS ,...,, 21 . Denote ns
p

 as the probability of 
realization of the nth

 scenario sn. We assume that 
0

ns
p

 for all Ssn  and that 
Nn

sn
p 1 . A 

scenario is defined as a path from the root of the tree 
to one of the leaves. The nodes visited by each path 
correspond to the values assumed by random 
  

parameters in the model. Now we assume liquid assets 
return can be computed as shown in equation (1). 

1 ( ) 1
,

AB AB
a t CB CB CB t

t AB
t

r q C r C q
r

q       
(1) 

where rt is the liquid assets returns at time t. The ra 
and rCB are the interest rate on interest earning liquid 
assets and interest rate on cash reserves deposited with 
central bank, respectively. We assume that ra  rCB. 
The cash reserve deposited with central bank is CCB. 
Now, we can define a scenario generation model by 
equation (2) below: 

( 1) 1,AB ABn t t
i t s CI tq q

r                                   (2) 

where we assume t+1 is the random error with mean 
1 and CI is the standard normal value at confidence 
interval level CI. Now we can construct the scenario 
tree as shown in Figure 1. 
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Fig. 1. Liquidity buffer level scenario tree 

In the scenario tree at stage 0, the ABq0  represents 
the initial liquid assets to be decided under event 
space having three possibilities 1 1 1

1 1 2 3{ , , }, 
with probabilities 1 1 1

1 2 3
{ , , }p p p , respectively. The 

event space 1 represents uncertain liquid asset 
returns. At the beginning of stage 1, the liquid asset 
returns are revealed. A recourse decision to buy 
additional liquid assets AEq1  is made at the end of stage 
 

1 under event space 2 2 2
2 1 2 3{ , , } with 

probabilities 2 2 2
1 2 3

{ , , }p p p , respectively. At the 
beginning of stage 2, the money market announces the 
cost of liquid assets. We need to note that the event 
space 2 is the uncertain costs of liquid assets. The 
liquid asset return and cost of liquid asset bought event 
spaces probability must satisfy the following 
conditions; 

Jj
j

p 11  and 
Kk

k
p 12 , respectively.
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Once the cost of liquid assets event space 2
2
k  

in stage 2 has been observed, the liquidity buffer is 
computed by the model as the final decision bank 
liquidity buffer. 
Each root-leaf path from the scenario tree defines 
scenario sn, induced by a sequence of all random 
events. There is a one-to-one correspondence 
between the scenarios and the leaf-nodes in our tree. 
The unconditional probability of a node, in this case 
is given by 21

kjn
ppps , which starts from the root 

and terminates at that node. 
1.2. Stochastic programing. The advantage of SP 
models is that they provide a generic framework to 
model uncertainties and enables decisions that will 
perform well in the general case. In this model, we 
need to maximize liquidity buffer requirement. 
According to Committee of European Banking 
Supervisors (2009), we define liquidity buffer as a 
subset of counterbalancing capacity. The counter-
balancing capacity is partitioned into business-as-usual 
view, planned stress view and protracted stress view. 
So in this case, liquidity buffer is planned stress view. 
Therefore, the two-stage stochastic programing model 
with recourse is as follows: 

Max D
its

G
its nn

fbF0 ,  

1i , 1t , 1n                               (3) 

s.t ABqF 00                                            (4) 

G
its

L
itsbau

A
itsbau nnn

bbb )1( ,    

)1,0(bau , 1i , 1t , 1n                 (5) 

A
its

a
its

d
its

z
its nnnn

bbbb ,  

1i , 1t , 1n                                (6) 
L
its

l
its

h
its

v
its

e
its nnnnn

bbbbb , 

1i , 1t , 1n                               (7) 
M
its

L
itscont

A
itscont nnn

ccc )1( , 

)1,0(cont , 1i , 1t , 1n                                (8) 

A
its

a
its

d
its

z
its nnnn

cccc ,  

1i , 1t , 1n                               (9) 
L
its

l
its

h
its

v
its

e
its nnnnn

ccccc , 

1i , 1t , 1n                                         (10) 
D

its
M
its

L
itsb

A
itsb nnnL

inA
i

fcbb )1()1( , 

1i , 1t , 1n                                         (11) 

Qq AE
its

Ii
n

,  

1i , 1t , 1n                                         (12) 
G
its

D
its

AE
its

AB
itsits nnnnn

bfqqr )1( , 

1i , 1t , 1n                                             (13) 

00F , 0A
itsn

b , 0L
itsn

b , 0z
itsn

b ,  

0d
itsn

b , 0a
itsn

b , 0G
itsn

b , 0D
itsn

f                     (14) 

0e
itsn

b , 0v
itsn

b , 0h
itsn

b , 0l
itsn

b , 

0A
itsn

c , 0L
itsn

c , 0M
itsn

c , 0e
itsn

c , 

0v
itsn

c , 0h
itsn

c , 0l
itsn

c , 0z
itsn

c ,  

0d
itsn

c , 0a
itsn

c , 0AE
itsn

q , 0AB
itsn

q . 

The objective (3) is to maximize liquidity buffer and 
is computed based on the clean market to market 
value of the securities. We need to note that 

0000 yxrq AB  since the initial liquidity buffer 
includes eligible securities especially designated 
money market funds and central bank reserves and 
deposits, which are liquid assets. The first stage 
constraint is denoted by constraint (4), where the 
initial liquid assets held is the initial buffer. The 
constraint (5) is the business-as-usual net funding 
gap as the difference between the business-as-usual 
assets and liabilities. The constraints (6) and (7) are 
business-as-usual assets and liabilities, respectively. 

The net contractual maturity is denoted by 
constraint (8). The contractual maturity of assets and 
liabilities are denoted by constraints (9) and (10), 
respectively. The constraint (11) denotes the 
planned additional funds model which is defined as 
the difference between an anticipated increase in 
business-as-usual assets A

itsb n
A
i

b)1(  and the 
anticipated increase in business-as-usual liabilities 

L
itsb nL

i
b)1(  and deducting the net contractual 

maturity. We need to note that (0 1)A
ib

.  and 
(0 1)L

ib
. . The constraint in (12) is the total value 

of liquid assets the bank is able to buy to meet the 
liquidity shortfall. The rebalancing constraint is 
constraint (13) that shows the relationship between 
the additional funds needed and the business-as-
usual net funding gap. Finally, the constraint (14) 
denotes the non-negativity constraints. 

2. Methodology 

The choice of stochastic programes has been made 
for several reasons. In this research, SP can 
accommodate general distributions and dynamic 
aspects by means of a scenario tree. We do not 
explicitly assume a specific stochastic process for 
the liquid asset return but viewed as an independent 
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and identically distributed random variable; and we 
rely on empirical data distributions. The Lingo 14 
software was used to solve the constructed two-
stage stochastic programing model with recourse. 
2.1. Sources of data. The constructed two-stage 
stochastic model is assessed for its viability and 
performance using South African Reserve Bank. 
The data are actual liquid assets held, and cash 
 

reserves requirement readily available on South 
African Reserve Bank website. The considered data 
is from year January 2000 to year April 2014. 
2.2. Statistical characteristics of historical data. 
We start by computing the statistical characteristics 
of historical data. The Lingo 14 software was used 
to analyze the data. The characteristics of data used 
are as shown in the following Table 1 below. 

Table 1. Statistical characteristics of historical data 
Statistical measure Liquid assets held Cash reserves Liquid asset return 

Average 1.39788 x 105 3.5344 x 104 4.01228 x 10-2 
Standard deviation 9.7145 x 104 1.9785 x 104 2.842 x 10-3 
Kurtosis -1.0294046 -1.411302186 -1.269907032 
Skewness 6.87005958 x 10-1 1.41679602 x 10-1 -4.0141792 x 10-2 
Minimum 3.6634 x 104 6.311 x 103 -1.269907032 
Maximum 3.27016 x 105 7.0161 x 104 4.6264502 x 10-2 

 

The historical liquid assets and cash reserve 
requirement data exhibit skewed distributions; they 
also exhibit considerable variance in comparison to 
their mean. In addition, the random variable liquid 
asset returns exhibit kurtosis, implying heavier tails 
than the normal distribution. Thus, we need to 
generate scenarios for liquid asset returns that 
comply with historical observations, without relying 
on the normality assumption. We rely solely on the 
observed actual liquid asset held, cash reserve 
requirement and liquid asset returns in the market. 
We estimate the first four moments and we generate 
scenarios based on these statistical characteristics. 
The scenarios are generated so that the first four 

marginal moments of the random variables match 
their historical values. 

3. Empirical analysis 

In this section, we present and discuss the 
performance of our model. We start by analyzing 
the SP solution status by observing the global 
optimal status. In this case, solution status is 
globally optimal implying that the results are valid. 
Now we turn to Table 2 where results of different 
components are shown. Of prime importance, are 
the stochastic objective values, which are the 
expected objective values over all different cases 
and scenarios. 

Table 2. Stochastic programing when 15%cont  and %20cont  

Value Obj Inf EV EWS EVPI EM EVMU 
1 = 0.2 
2 = 0.2

 3.6061 x 108 0 3.6061 x 108 3.6061 x 108 5.9605 x 10-8 3.6061 x 108 1.192 x 10-7 

1 = 0.3 
2 = 0.2

 3.6061 x 108 0 3.6061 x 108 3.6061 x 108 5.9605 x 10-8 3.6061 x 108 5.9605 x 10-8 

1 = 0.5 
2 = 0.4

 3.6061 x 108 0 3.6061 x 108 3.6061 x 108 0 3.6061 x 108 5.9605 x 10-8 

1 = 0.5 
2 = 0.5

 3.6061 x 108 0 3.6061 x 108 3.6061 x 108 0 3.6061 x 108 5.9605 x 10-8 

1 = 0.5 
2 = 0.6

 3.6061 x 108 0 3.6061 x 108 3.6061 x 108 0 3.6061 x 108 5.9605 x 10-8 

1 = 0.6 
2 = 0.4

 3.6061 x 108 0 3.6061 x 108 3.6061 x 108 0 3.6061 x 108 5.9605 x 10-8 

1 = 0.6 
2 = 0.5

 3.6061 x 108 0 3.6061 x 108 3.6061 x 108 0 3.6061 x 108 5.9605 x 10-8 
 

We assume that as 1 changes regardless whether 2 is 
changing and when all other parameters are constant, 
the overall objective should at least change. However 
from Table 2, this is not the case the liquidity buffer 
is constant throughout. Similarly the expected values 
of liquidity buffer (hereinafter EV), expected value of 
wait-and-see value of liquidity buffer (hereinafter, 
EWS) and expected value of policy based on mean 
outcome (hereinafter, EM) liquidity buffer are 
constant regardless 1 and 2 changes. The basic facts 
 

and notations of stochastic programming are 
explained in Appendix.  

The advantage of using a SP solution is that the 
bank is well-hedged against worst-case scenarios. 
The infeasibilities value is zero in all cases implying 
that no constraints were violated in the deterministic 
equivalent model. The EV of liquidity buffer is the 
same as the reported optimal liquidity buffer for the 
model, further giving weight to the results. The 
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EWS liquidity buffer reports the expected value of 
the liquidity buffer if we could wait-and-see the 
outcomes of all liquid asset returns and uncertain 
costs of liquid assets borrowed to cover the liquidity 
gap before making decisions. However, in reality it 
is not possible to wait. Comparing the values of EWS 
and EV, we expect EWS  EV since we are 
maximizing liquidity buffer. 

The expected value of perfect information 
(hereinafter, EVPI) is the expected increase in 
liquidity buffer if we know the future outcome in 
advance. Thus EVPI is used to compare EWS and 
EV and measures the maximum amount the decision 
maker should be willing to pay in return for 
complete and accurate information regarding the 
future outcomes of the underlying asset returns. It 
can be computed as follows; EWSEVEVPI . 
From Table 2, when 1 = 20% and 2 = 20%, and 1 
= 20% and 2 = 30% the EVPI is non-zero. 
However for all other values of 1 and 2, the EVPI 
is zero. Therefore in all cases, the ratio of total 
EVPI to total optimal liquidity buffer value is very 
small close to zero implying that the decision 
maker is willing to pay nothing per given period. 
According to Kall and Wallace (2003), small EVPI 
shows that randomness plays a minor role in the 
model. The EM is slightly different from the 
expected true liquidity buffer as evidenced by 
expected value of modeling uncertainty (hereinafter 
EVMU). The EVMU also known as the value of 
stochastic solution (VSS), is the expected decrease 
 

in liquidity buffer if we replaced each stochastic 
parameter by a single estimate and act as if this 
value is certain. The EVMU = EV – EM is non-zero 
in all cases but very small indicating that we 
gained little by taking into account uncertainty in 
our model analysis.  

In other words, EVMU measures how good or bad a 
decision obtained by EV. In this case, EV  EM, 
implying that the model is good since there is a 
very small difference between EV and EM, and 
there is no potential for improvement. Therefore, 
we can observe that EV  EM  EWS, EVPI  0 
and EM  0 which are consistent with Barbaro and 
Bagajewicz (2004) and Birge (1997) conditions. 
Therefore, at this level, we can infer that the 
scenarios generated are reliable and valid. We need 
to note that in some circumstances, there are 
explicit tradeoffs based on processing all relevant 
information. We do have situations which are not 
consistent with Birge (2013) conditions that is when 

1 = 20% and 2 = 20%, and 1 = 20% and 2 = 
30%, the EVPI > 0 and EVMU > 0 although very 
small. But for all other  values the EVPI = 0 and 
EVMU  0, consistent with Birge (2013) conditions. 
The condition implies that we had a situation with 
multiple liquidity buffers and there exist an optimal 
liquidity buffer. Turning to Table 3, when 1 = 20% 
and 2 = 20%, the bank has to buy liquid assets in all 
bands except band 2 meet liquidity buffer. However, 
when 1 and 2 take any other value, the bank has to 
buy liquid assets in bands 1, 2 and 4. 

Table 3. Liquid asset bought – stage 0 solution 

Bands 1 = 0.2 
2 = 0.2

 1 = 0.3 
2 = 0.2

 1 = 0.5 
2 = 0.4

 1 = 0.6 
2 = 0.5

 

1 2.9565 x 107 3.5763 x 107 1.1495 x 108 9.9442 x 107 
2 0 1.2093 x 108 1.0726 x 107 1.0726 x 107 
3 2.4534 x 107 0 0 0 
4 1.9890 x 107 2.0128 x 108 2.3230 x 108 2.4781 x 108 
5 1.5420 x 107 0 0 0 
6 2.6779 x 107 0 0 0 
7 4.4377 x 107 0 0 0 
8 1.9741 x 108 0 0 0 

 

The change in risk aversion coefficient and other 
variables remain the same; will only change the 
stage 0 solution. Here, the value of recourse 
decision changes as risk coefficients change. 
However, the stochastic programing solution such 
as objective value, EV, WS, EVPI, EM, EVMU 
and random distribution will remain the same in all 
cases. The Table 4 shows the liquid assets bought 
under different values of absolute risk aversion 
 

coefficient. When ( %4bau  and %9cont ), and 
10%bau  and %10cont ), the bank should be 

prepared to purchase liquid assets in all bands. 
However, when %40bau  and %20cont  the bank 
should buy liquid assets in bands 2 and 5 only. 
However, we need to note that our assumption is that 
the absolute risk aversion coefficient does not change 
with time. 
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Table 4. Changes in absolute risk aversion coefficient – liquid asset bought  

Band bau  = 0.04 
cont  = 0.09 

bau  = 0.1 
cont  = 0.1 

bau  = 0.4 
cont  = 0.2 

1 7.6437 x 106 1.9601 x 107 0 
2 1.3825 x 108 7.0254 x 107 2.9155 x 107 
3 6.3011 x 106 1.6246 x 107 6.5974 x 107 
4 5.0557 x 106 1.3147 x 107 6.9941 x 107 
5 3.8677 x 106 1.0169 x 107 1.9291 x 108 
6 6.8998 x 106 1.7743 x 107 0 
7 1.1597 x 107 2.9477 x 107 0 
8 1.7835 x 108 1.8134 x 108 0 

Table 5. Liquid asset return distribution report 
Band Mean Standard Deviation 

1 4.01562 x 10-2 1.5040 x 10-5 
2 4.01457 x 10-2 1.81231 x 10-5 
3 4.0162 x 10-2 1.2942 x 10-5 
4 4.0140 x 10-2 1.51683 x 10-5 
5 4.0143 x 10-2 1.5890 x 10-5 
6 4.01463 x 10-2 1.5189 x 10-5 
7 4.01478 x 10-2 1.70903 x 10-5 
8 4.01515 x 10-2 1.56129 x 10-5 

 

With reference to Table 5, the random distribution 
of liquid asset return is constant regardless of the 
values of ( 1 and 2), and ( bau  and cont). Applying 
scenario generation method in equation (3), we 
obtain scenarios for the liquid asset return. The 
resulting scenarios are equi-probable in our tests, 
but generally they do not have to be. 

Conclusions 

The general practice of the banking industry is to 
hold a unitary liquidity portfolio and not necessarily 
segmented to focus on bank specific liquidity needs. 
A two-stage stochastic programing model with 
recourse to maximize liquidity buffer was constructed. 
A scenario generation model to generate liquid asset 
return scenarios is developed. The liquid asset return 
is stochastic and therefore, we represent it on a 
scenario tree. 

From Lingo solution output, we observed that the 
model is feasible. We further analyzed whether the 
scenarios are reliable and valid. After assessing the 
value of stochastic solution, we inferred that the 
scenarios generated and results computed are 
reliable and valid. In addition, the expected value of 
modeling uncertainty is non-zero in all cases. This 
imply that we really benefited by taking into 
account the liquid asset return randomness. We need 
to note that stochastic programing is decision 
making under risk. 

The models assist us in finding the relationship 
between the optimal liquidity buffer to stochastic 
models and deterministic models when a situation is 
random. In designing the portfolio, liquid asset returns 
are uncertain, and to avoid liquidity problems in the 
near future, we need to include randomness on asset 
return. Taking into consideration liquid asset return, 
the bank is preparing for the worst-case scenarios. 
Understanding the behavior of the deterministic 
liquidity buffer relative to stochastic reveals some 
general properties of the underlying problem and help 
to predict how a stochastic model will perform. 
Ignoring uncertainty when making decisions may have 
serious consequences to the bank. By taking into 
account randomness, the bank self-insure against 
adverse asset price movements. 
We conclude that the greater liquidity buffer implies 
more liquidity to the bank, and less liquidity buffer 
means less liquid. We strongly recommend that banks 
should design a core liquidity portfolio which is a sub-
portfolio of the overall liquidity portfolio, which will 
specifically focus on meeting liquidity requirements. 
The stochastic programing is the appropriate technique 
that can be used to properly manage the portfolio since 
it includes uncertainty. However, bank liquidity buffer 
is restricted by interest rate on liquid assets and 
required reserves defined by the central bank. Further 
research can be done on other techniques that can be 
used to construct the core liquidity portfolio, including 
scenario generation model.  
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Appendix 

We define the basic facts and notations according to Maggioni and Wallace (2012). 

],[max],[max 21 xhxfxz XxXx
,                                                            (A1) 

where, x is First-stage decision variable restricted to the set nX ,  is the expectation with respect to a random 
vector  defined on some probability space ( , F, p) and given probability distribution p on the algebra F, h2 is the 
recourse function, the value of another optimization problem, ],[ 2 xh  is the expected recourse function. 

The recourse function is: 

,,max, 2,2 xyfxh xYy
.                                                                                         (A2) 

The function reflects the costs associated with adopting to information revealed through a realization  of the random 
vector . The solution x* obtained by solving A1 is the here-and-now solution and 

,*EV z x                                                                                           (A3) 

is the optimal value of the associated objective function. 

Replace all random variables by their expected value and solve the deterministic program  the expected value 
problem (EV): 

,max xzEV Xx ,                                                                                          (A4) 

where . Let x  be an optimal solution to A4, called the expected value solution and let EEV be the 
expected cost when using the solution x : 

,xzEEV .                                                                                          (A5) 

The value of the stochastic solution (VSS) is then defined as 

,EVMU EV EM                                                                                           (A6) 

and measures the expected increase in value from solving the stochastic version of a model rather than the simpler 
deterministic one. 


