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investigation 
Abstract 

In this study, it is investigated the impact of suddenly structural breaks on estimated GARCH-type models with normal 
and heavy-tailed distributions for daily oil futures market returns. More specifically, the multiple structural breaks in 
return variance over the whole sample period are detected by the Inclán-Tiao’s algorithm. The estimated results of the 
ICSS AR-GARCH models show that the volatility persistence decreases dramatically after controlling for such discrete 
breakpoints. The changing oil futures risk can be best captured by the ICSS AR-EGARCH-GED model. Specifically, 
the comparison of the in-sample model evaluation champions the AR-EGARCH-t model over competing models 
within each identified sub-period. 
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Introduction© 

A variety of oil-linked derivatives, such as oil 
futures contracts, have been designed for hedging 
the oscillating risk in the oil market. This kind of 
speculative investment often follows a path of 
relative steady, disconnected by periods of greater 
market disturbance. This provides a problem for 
those trying to model the volatility dynamics. 
Previous studies investigate the modeling of 
changing volatility in various financial time series, 
especially stock market returns, foreign exchange 
rates, and so forth. Nevertheless, relatively little 
attention has been given to model oil futures returns 
in the context of volatility models. Due to the 
presence of non-normality in asset returns, which 
means that the asymmetric GARCH (e.g. EGARCH 
or TGARCH) models with heavy-tailed 
distributions may provide a better fitness to the data, 
as opposed to the symmetric GARCH models. 
Regarding the distributional properties of oil futures 
returns, we model the conditional variance using 
GARCH-type models with normal distribution,  
t-distribution, and the generalized error distribution 
(GED). Furthermore, currently more and more 
empirical evidences have revealed that the existence 
of structural breaks in financial time series can have 
serious implications on pricing-related derivatives. 
Without incorporating structural breaks into the 
analytical model may cause an overestimate of the 
volatility persistence in variance (Diebold, 1986; 
Lastrapes, 1989; Lamoureux and Lastrapes, 1990; 
Ewing and Malik, 2005). To detect the structural 
breaks in return variance, the iterated cumulative 
sums of squares (ICSS) algorithm proposed by 
Inclán and Tiao (1994) is considered to identify the 
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presence of such breakpoints. This technique 
focuses on finding a statistically significant change 
in variance due to a breakpoint in the process that 
generates the volatility of the time series. After 
determining the aforementioned structural breaks by 
the ICSS algorithm, the resulting shifts can be 
incorporated into conditional variance of the 
analytical model in form of dummy variables for 
volatility analysis (Wilson et al., 1996; Aggarwal et 
al., 1999; Bracker and Smith, 1999; Malik, 2003; 
Malik and Hassan, 2004; Mansur et al., 2007; 
McMillan and Wohar, 2011; Huang, 2014). 

With the increasing number of surprising events, the 
subprime crisis of 2008, for instance, has created 
large fluctuations in the oil market. Therefore, it is 
crucial to detect the volatility shifts adequately and 
model the future dynamics corresponding to the 
changing oil price according to actual market 
developments. After controlling for multiple structural 
breaks, we further add the resulting dummies to the 
GARCH models with three types of distributional 
specifications on the standardized residuals. In 
addition, we compare the in-sample model 
evaluation of the GARCH-type models in the full 
period and each sub-period identified using the Inclán 
and Tiao (1994) test. Empirical results are significant 
for the risk management of market participants. 

Given the relatively few literature for modeling 
volatility changes in the oil futures market returns. 
In this study, we study the modeling of time-varying 
volatilities in oil futures returns under GARCH-type 
models by incorporating both structural breaks and 
heavy-tailed distributions generated by the oil 
futures market, which extends the classical 
ARCH/GARCH models for the oil futures price 
modeling. Accurately modeling volatility changes in 
oil futures market returns have significant implications 
for risk management and for determining dynamic 
hedging strategies, which is particularly important 
during unstable oil markets. 
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The remainder of this study is organized as follows. 
The next section illustrates the dynamic models. 
Section 2 presents the empirical results. The final 
section shows the conclusions of this study. 

1. Methodology 

1.1. The ICSS algorithm and identification of Dk. 
The iterated cumulative sums of squares (ICSS) 
algorithm, developed by Inclán and Tiao (1994), is 
used to detect discrete changes in variance of a time 
series. Let 2

1 t
k
tk rC =∑=  be the cumulative sum of 

squares of a series of uncorrelated random variables, 
rt, with mean 0 and variances 2

tσ , k = 1, …, T. 
Define the mean centered cumulative sum of 
squares as follows: 
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For a series with homogeneous variance over the 
sample period, the Dk statistics oscillate around 
zero. On the contrary, when there is a sudden 
change in variance, the Dk value will exhibit a 
positive or negative drift away from zero. Inclán and 
Tiao (1994) calculate the critical values under the 
null hypothesis of constant variance from the 
asymptotic distribution of Dk. When the maximum 
of ⎟Dk⎟ exceeds the critical value, the null 
hypothesis of no changes in variance is rejected. 
Denote the value of k at which kk Dmax  is attained 
as k*. If the maximum of 

kDT 2/  is larger than 
the critical value of ±1.358 at the 5% level, then k* 
is considered as an estimate of the breakpoint. The 
factor 2/T  is required to standardize the 
distribution. If a series has multiple breakpoints, the 
usefulness of the Dk function becomes doubtful 
because of the masking effect. Inclán and Tiao 
(1994) propose an iterative algorithm based on 
repeated applications of Dk on different segments of 
the series, dividing consecutively after a breakpoint 
is identified. 

1.2. The GARCH models and distributional 
assumptions. The GARCH-type models are widely 
used in various branches of econometrics, especially 
in financial time series analysis. The simplest 
GARCH(1,1) model can be set as follows: 

ttt XY εθ += ' ,                                                       (2) 
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where the mean equation given in (2) is written as a 
function of exogenous variables with an error term. 
The restrictions w > 0, α, and β ≥ 0 in conditional 

variance equation (3) are imposed to insure a 
positive variance. An additional restriction is that 
both ARCH and GARCH models assume symmetry 
in the distribution of asset returns. It is well-known 
that many financial time series have non-normal 
distribution. Engle and Ng (1993) examine how 
negative shocks increase conditional volatility in 
stock market returns. These stock market returns 
are, like oil futures market returns, negatively 
skewed with heavy-tailed distributions. This 
suggests that asymmetric GARCH models might 
also be of value in capturing oil futures price 
movements. The so-called EGARCH (exponential 
GARCH) model was proposed by Nelson (1991). 
The specification for the conditional variance of the 
EGARCH(1,1) model is set to be: 
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where εt follows a generalized error distribution in 
equation (4). Note that the left-hand side is the log 
of the conditional variance. This implies that the 
leverage effect is exponential, rather than quadratic, 
and that forecasts of the conditional variance are 
guaranteed to be non-negative. The presence of 
leverage effects can be tested by the hypothesis that 
γ < 0. The impact is asymmetric if γ ≠ 0. Alternative 
specification that is designed to capture the 
increasing volatility from asymmetric shocks is the 
TGARCH model. The TGARCH (threshold 
GARCH) or GJR-GARCH model were introduced 
independently by Zakoïan (1994) and Glosten, 
Jaganathan, and Runkle (1993). The specification 
for the conditional variance of the TGARCH(1,1) 
model is given by: 
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where It-1 = 1 if εt-1 < 0 and 0 otherwise. In this 
model, good news, εt-1 > 0, and bad news. εt-1 < 0, 
have differential effects on the conditional variance; 
good news has an impact of α, while bad news has 
an impact of α + γ. If γ > 0, bad news increases 
volatility, and we say that there is a leverage effect. 
If γ ≠ 0, the news impact is asymmetric. 

In order to capture the tail distributional characteristics 
of financial time series, it is essential to make 
distributional assumptions about the error term εt. 
There are three assumptions commonly employed 
when working with GARCH models: normal 
distribution, t-distribution, and the GED. Given a 
distributional setting, the GARCH models are typically 
estimated by the method of maximum likelihood. For 
example, for the GARCH(1,1) model with 
conditionally normal errors, the log-likelihood 
function of sample is given by the following: 



Investment Management and Financial Innovations, Volume 12, Issue 2, 2015 

18 

2

1

2 2

1

1ln ( ) ln(2 ) ln
2 2

1 ( ) ,
2

T

t
t

T
'

t t t
t

TL

Y X /

=

=

ψ = − − σ −

− − σ

∑

∑

π

θ
                         (6) 

where 2
tσ  is the conditional variance of the error term 

εt. Under t-distribution, the log-likelihood function of 
this type of sample is of the following form: 
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where the degree of freedom k > 2 controls the tail 
behavior. The t-distribution approaches the normal 
as k → ∞. Under GED, the log-likelihood function 
of this type of sample can be written as follows: 
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where the tail parameter v > 0. The GED is a normal 
distribution if v = 2, and fat tail if v < 2. 

1.3. Empirical model setting. In this section, we 
use dummy variables representing volatility changes 
identified by the ICSS algorithm into the GARCH-
type processes. The specification for the ICSS 
AR(p)-GARCH(1,1) model is therefore set to be the 
following: 
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After controlling for detected breakpoints, the 
specification for the EGARCH(1,1) and 
TGARCH(1,1) processes are respectively given by: 
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where D1, ..., Dn in conditional variance equations 
(10)-(12), are the set of dummy variables taking a 
value of one from each breakpoint of variance 
onwards and zero otherwise. All models are 
estimated by the method of maximum likelihood 
under three types of distributional assumptions that 
the errors with normal, t, and GEDs. 

2. Empirical results 

2.1. Data description. The daily data for the Light-
Sweet oil futures contracts are from Datastream and 
cover the period from 1 August 1997 to 31 July 
2007 (2608 observations). First differences in 
natural logarithms of the price levels are employed 
in all models. The top panel of Figure 1 shows the 
daily oil futures data in level form, while the bottom 
panel of Figure 1 shows the return series and a high 
degree of variability in returns. From the bottom 
panel of Figure 1, the series exhibits a large number 
of volatility, while showing a tendency towards a 
constant mean. Of course, it is necessary that the 
data be mean reverting. Otherwise, the variance 
tends to infinity as the number of observations 
approaches infinity, presenting the t-values 
undependable and inducing spurious results. 
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Fig. 1a. Time series (top panel) and logarithmic returns (bottom panel) of daily oil futures prices 
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Notes: The daily price data are based on oil futures contracts traded on the New York Mercantile Exchange (NYMEX). The 
contracts expire four times per year (March, June, September, and December). Three month contracts are used to construct a 
continuous series. In order to avoid any expiration effects, the new contract start a week before the expiration of the former contract. 
The shaded areas in the bottom panel of Figure1 indicate periods of changing volatility detected using the ICSS algorithm. 

Fig. 1b. Time series (top panel) and logarithmic returns (bottom panel) of daily oil futures prices 

The dataset used in the descriptive analysis consists 
of the daily oil futures prices, and summary 
statistics of the return series are presented in Table 
1. The skewness and kurtosis suggest a leptokurtic 
distribution with negatively skewed returns in the 
oil futures market. The Jarque-Bera statistics 
represent that the return series are not normally 
distributed. Therefore, both the skewness and the 
tail behavior of the data should be better captured by 
the asymmetric GARCH models with heavy-tailed 
distributions, which are designed to model 
asymmetry and fat tail in this study. 

Table 1. Summary statistics of the return series 
 Light-Sweet oil futures returns 
Mean 5.20E-04 
Variance 5.36E-04 
Skewness -0.283*** 
Kurtosis 6.722*** 
Jarque-Bera 1540.458*** 
Observations 2608 

Notes: The futures data are from Datastream and cover the 
period from 1 August 1997 to 31 July 2007. Jarque-Bera is the 
test for normality. ***, **, and * represent statistical 
significance at the 0.01, 0.05, and 0.10 levels, respectively. 

Table 2 reports the Augmented Dickey-Fuller and 
Phillps-Perron unit root test statistics for the logs of 
prices and daily oil futures return series. As reported 
in Table 2, ADF(C,T,0) is the Augmented Dickey-
Fuller unit root test with constant, trend and lags of 
0. ADF(1) and ADF(0) are the Augmented Dickey-
Fuller unit root test with 1 and 0 lags, respectively. 
PP(C,T,14) is the Phillps-Perron test with constant, 
trend and lags of 14. PP(17) is the Phillps-Perron 
test with 17 lags. Results from Table 2 show that the 
ADF and PP unit root test statistics for the logs of 
prices are not able to reject the null hypothesis that 
the existence of a unit root at the 0.05 significance 

level. Furthermore, the ADF and PP unit root test 
statistics for the first-differenced daily return series 
are all well below the critical values at the 0.01 
significance level, indicating a strong rejection of 
the presence of a unit root. Therefore, the daily oil 
futures returns are first difference stationary and 
proceed with the proposed tests. 

Table 2. Unit root tests for the logs of daily oil 
futures prices and return series 

 ADF(C,T,0) ADF(C,T,0) PP(C,T,14) 

Logs of oil futures prices 
-3.205* -3.205* -3.009 
ADF(1) ADF(0) PP(17) 

Oil futures returns -37.584*** -50.902*** -51.155*** 

Notes: The lags selections based on AIC and SIC are in the 
second column and the third column, respectively. The lags 
selection based on Newey-West Bandwidth using Bartlett 
Kernel in the last column. The 0.01, 0.05, and 0.01 critical 
values for ADF(C,T,0) and PP(C,T,14) are -3.961, -3.411, and  
-3.127, respectively. The 0.01, 0.05, and 0.01 critical values for 
ADF(1), ADF(0) and PP(17) are -2.565, -1.940, and -1.616, 
respectively. The null hypothesis for the ADF and PP tests is 
the presence of a unit root. ***, **, and * represent significance 
at the 0.01, 0.05, and 0.01 levels, respectively. 

2.2. Report of detected breakpoints. The bottom 
panel of Figure 1 shows that the presence of time-
varying volatility clustering phenomena and many 
spikes in the data, with more negative than positive 
outliers. This is consistent with the significant 
negatively skewed and excess kurtosis reported in 
Table 1. Furthermore, the non-normality of the 
return series takes the use of the ICSS algorithm to 
detect structural breaks in variance. There are eleven 
structural breaks in return series detected by the 
ICSS algorithm. We divide the full period into 
twelve sub-periods for the return series to provide 
evidence of unstable GARCH process and hence 
changing volatilities. Table 3 reports such 
breakpoint dates, along with selected news that are 
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associated with volatility shifts in the return series. 
Obviously, there is a great deal of variance within 
each sub-period and the suddenly discrete volatility 
jumps at the breakpoints. The empirical evidence 
indicates that the return variances are not constant 
over the tested period. This is a confirmation that 
more exactness of the ICSS algorithm is imperative 
for modeling asset returns. Due to the residual 
GARCH effects may in a volatility analysis, the 
ICSS algorithm may not capture all of the variance 
effects. Hence, a more intact analysis would think 
about both kinds of impacts. Correspondingly, we 
examine the GARCH effects, as well as the 
existence of suddenly discrete volatility shifts. 

Table 3. Structural breaks detected by the ICSS 
algorithm 

Dates Days Wall Street news on oil futures 
01/22/1998 125 Oil futures drop on bearish inventory data. 
03/25/1998 44 Oil rockets 13% on OPEC cutback--03/24. 
05/18/1998 38 Oil futures drop as glut continuous built. 
06/23/1998 26 Oil futures pass $15 a barrel--06/24. 
12/09/1998 121 Oil prices swing on report--12/08. 
03/11/1999 66 Oil gains ahead of a March 23 OPEC meeting. 
02/29/2000 253 Oil reaches high; other sectors languish-02/28. 
02/02/2001 243 Oil futures soars to an eight-week high. 
09/13/2001 159 Terrorist attack--09/11. 
02/26/2002 118 Dow industrials surge 263 points--03/01. 
01/06/2005 747 Oil futures jump more than $2--01/07. 
07/31/2007 668  
Total 2608  

Notes: Dates are the ending days for the sub-period. The last 
column comes from the Wall Street Journal on ProQuest 
Newspapers. 

2.3. Modeling the oil futures returns. We identify 
the best-fitting specification of conditional mean 

equation by Box-Jenkins procedures. The partial 
autocorrelation function suggests that the AR(2) 
process would be appropriate for the return series. 
Table 4 reports that the Q(15) and Q(20) statistics 
are not significant, indicating there is no serial 
correlation in returns. The Q2(15) and Q2(20) 
statistics are significant, indicating statistically 
significant serial correlation in squared returns, 
which motivates us to model the conditional 
heteroskedasticity. 

Table 4. Serial correlation tests for AR(2) process  
of daily oil futures returns 

Serial correlation and ARCH tests for the AR(2) process 
Q(15) 10.120 
Q(20) 16.367 
Q2(15) 94.412*** 
Q2(20) 102.390*** 

Notes: Q(n) and Q2(n) are the Ljung-Box test statistics for the 
15th and 20th order serial correlation in the ordinary and squared 
ordinary returns, respectively. ***, **, and * represent statistical 
significance at the 0.01, 0.05, and 0.10 levels, respectively. 

As noted above, we model the oil futures return 
using the AR(2)-GARCH(1,1) process. One way of 
further examining the distribution of the residuals is 
to plot the quantiles. Figure 2 indicates that the QQ-
plots of standardized residuals for the AR(2)-
GARCH(1,1) model with normal distribution. If the 
residuals are normally distributed, the points in the 
QQ-plots should lie alongside a straight line. As 
shown in Figure 2, the QQ-plots show that it is 
primarily large negative shocks that are driving the 
departure from normality. Because of the possibility 
that the appearance of non-normality in residuals, 
we further examine the distributional characteristics 
by GARCH-based models under heavy-tailed 
distributions in the next subsection. 
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Fig. 2. QQ-plots of standardized residuals for the AR(2)-GARCH(1,1) model with normal distribution 
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2.4. Comparison of the estimated results. Time 
variation in the second moments for the full sample 
is modeled using the AR-GARCH models under three 
types of distributional assumptions, the estimated 
results of which are reported in Table 5. As shown in 
Table 5, the GARCH coefficient, β, in each model 
ranges from 0.902 to 0.979. These estimates are 
consistent with those found in models of stock returns. 
In addition, all the results exhibit significantly high 
levels of volatility persistence (close to an I-GARCH 
process) for the return series. The shock parameter, γ, 
in the AR-EGARCH/TGARCH models with three 
types of distributional assumptions are estimated to be 
negative and positive, respectively. Again, it is 
consistent with the existence of significant leverage 
effect in stock return models, indicating that shocks are 
greater than expected raise variance. The degrees of 
freedom parameters, κ, and v, in the AR-GARCH 

models with heavy-tailed distributions are estimated to 
be 4 < k < ∞ and 0 < v < 2, respectively. The estimates 
suggest that the heavy-tailed distributions of the 
standardized errors depart significantly from 
normality. The estimated results show that the 
significant non-normality in return series. According to 
the comparison of log-likelihood values in each 
model, the AR-EGARCH-GED model without 
volatility shifts fits best for the series. Finally, the test 
statistics, Q, and Q2, are not significant at the 15th and 
20th lags, so there is little evidence of serial correlation 
and remaining ARCH effects in standardized and 
squared standardized residuals, respectively. The 
empirical results in Table 5 suggest that the AR-
EGARCH-GED specification is more appropriate than 
competing models for the modeling of oil futures 
returns and that the volatility analysis should 
incorporate time-varying second moments. 

Table 5. Estimated results of the AR-GARCH models with normal, t, and GED 
 AR(2)-GARCH(1,1) AR(2)-EGARCH(1,1) AR(2)-TGARCH(1,1) 

φ 
-0.045** (-2.119) -0.045** (-2.198) -0.044** (-2.110) 
-0.025 (-1.350) -0.025 (-1.353) -0.024 (-1.296) 
-0.007 (-0.435) -0.008 (-0.467) -0.007 (-0.409) 

ω 
2.10E-05*** (2.886) -0.265*** (-3.053) 1.85E-05*** (2.929) 
8.69E-06** (2.547) -0.201*** (-3.093) 1.02E-05*** (2.852) 
1.04E-05** (2.490) -0.231*** (-3.082) 1.17E-05*** (2.751) 

α 
0.059*** (3.034) 0.083*** (3.484) 0.027 (1.406) 
0.023*** (3.871) 0.060*** (3.867) 0.007 (0.896) 
0.030*** (4.155) 0.070*** (3.943) 0.011 (1.150) 

β 
0.902*** (32.990) 0.973*** (95.834) 0.915*** (37.657) 
0.960*** (90.064) 0.979*** (125.609) 0.958*** (87.886) 
0.949*** (72.386) 0.976***(108.802) 0.949*** (72.279) 

γ 
 -0.053*** (-3.087) 0.046** (2.264) 
 -0.036*** (-3.567) 0.029** (2.492) 
 -0.042*** (-3.893) 0.034** (2.520) 

κ 5.875*** (8.882) 6.088*** (8.626) 6.089*** (8.723) 
v 1.241*** (29.750) 1.252*** (30.066) 1.251*** (29.933) 

log L 
6189.877 6195.382 6195.338 
6260.627 6263.416 6263.672 
6264.532 6267.831 6267.665 

Q(15) 
6.227 7.061 6.613 
7.056 7.452 7.383 
8.487 9.131 8.888 

Q(20) 
9.875 11.247 10.329 
11.201 11.796 11.502 
12.514 13.488 12.923 

Q2(15) 
13.686 16.411 14.007 

 22.835* 20.487 19.120 
18.947 18.251 16.796 

Q2(20) 
16.823 19.729 17.441 
25.863 23.537 22.179 
22.352 21.471 20.175 

Notes: Within each cell the estimate with normal distribution is the top parameter, t-distribution is the middle parameter, and GED is 
the bottom parameter. z-statistics are in parentheses. κ and v are degrees of freedom parameters for the t-distribution and GED, 
respectively. log L represents the log-likelihood values. Q(n) and Q2(n) are the Ljung-Box test for the 15th and 20th order serial 
correlation in standardized and squared standardized residuals, respectively. ***, **, and * represent statistical significance at the 0.01, 0.05, 
and 0.10 levels, respectively. 
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Recall the previous findings that there are eleven 
structural breaks detected by the ICSS algorithm in 
Section 2.2. Here, we employ dummy variables 
representing such breakpoints into the GARCH-type 
processes. As shown in Table 6, the ARCH 
coefficient, α, estimated from all models under three 
types of distributional assumptions are not statistically 
significant. The values of coefficient β become smaller 
after controlling for structural breaks. Both the test 
results suggest that the ARCH effects vanish and the 
degree of persistence is significantly reduced after 
controlling for such detected breakpoints. This means 
that, the volatility persistence overestimated by the 
GARCH-type models can be explained by structural 
 

breaks. Furthermore, all of the discrete breakpoints 
bring about sizable shifts in the intercept term, w , 
and that these shifts often lead to substantial 
changes in variance across regimes, that is, non-
stationary of the variance. To consider whether the 
addition of volatility shift dummy variables leads to 
a statistically superior model specification relative 
to competing models, we compare the log-
likelihood values of each model, discovering the 
superiority of the extended ICSS AR-GARCH 
models. Specifically, the ICSS AR-EGARCH-GED 
model fits best for the return series. Thus, a volatility 
analysis should be modeled to accommodate both 
GARCH effects and volatility changes. 

Table 6. Estimated results of the ICSS AR-GARCH models with normal, t, and GED 

 ICSS AR(2)-GARCH(1,1) ICSS AR(2)-EGARCH(1,1) ICSS AR(2)-TGARCH(1,1) 

φ 
-0.037* (-1.954) -0.033* (-1.723) -0.036* (-1.877) 
-0.025 (-1.337) -0.021 (-1.143) -0.025 (-1.302) 
-0.012 (-0.680) -0.009 (-0.535) -0.011 (-0.634) 

ω 
8.28E-05** (2.236) -3.644** (-2.572) 9.46E-05** (2.270) 
9.80E-05* (1.885) -3.428*** (-3.533) 8.28E-05** (2.508) 
8.85E-05* (1.819) -3.586*** (-3.241) 8.54E-05** (2.282) 

α 
0.030 (1.545) 0.041 (0.805) -0.005 (-0.210) 
0.018 (1.183) 0.011 (0.297) -0.009 (-0.560) 
0.023 (1.288) 0.025 (0.602) -0.008 (-0.403) 

β 
0.599*** (3.660) 0.566*** (3.346) 0.570*** (3.413) 
0.541** (2.362) 0.591*** (5.153) 0.616*** (4.357) 
0.567** (2.560) 0.574*** (4.399) 0.595*** (3.632) 

γ 
 -0.096*** (-2.784) 0.067** (1.989) 
 -0.108*** (-3.981) 0.066** (2.349) 
 -0.104*** (-3.554) 0.066** (2.083) 

κ 7.479*** (6.770) 7.497*** (6.681) 7.600*** (6.724) 

v 1.343*** (26.530) 1.348*** (26.018) 1.348*** (26.502) 

log L 

6248.475 6254.583 6251.741 
6285.022 6291.154 6288.044 
6293.279 6298.516 6295.834 

Q(15) 

6.376 7.1939 6.9590 
6.911 7.7388 7.1678 
7.493 8.3153 7.8499 

Q(20) 

10.908 11.621 11.397 
11.492 12.117 11.529 
12.061 12.707 12.247 

Q2(15) 

25.381** 26.123** 25.107** 
26.883**  23.423* 20.530 
25.251**  23.375*  21.557* 

Q2(20) 

25.951 26.918 25.768 
27.682* 24.411 21.365 
26.008 24.326 22.374 

Notes: Within each cell the estimate with normal distribution is the top parameter, t-distribution is the middle parameter, and GED is the 
bottom parameter. z-statistics are in parentheses. κ and v are degrees of freedom parameters for the t-distribution and GED, respectively. 
log L represents the log-likelihood values. Q(n) and Q2(n) are the Ljung-Box test for the 15th and 20th order serial correlation in 
standardized and squared standardized residuals, respectively. ***, **, and * represent statistical significance at the 0.01, 0.05, and 0.10 
levels, respectively. 
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2.5. In-sample model evaluation. Summary 
statistics and in-sample RMSEs within the full period 
and each sub-period of daily oil futures returns are 
shown in Table 7. As shown in Table 3, the twelve 
sub-periods within the full period are determined by 
eleven structural breaks in return series using the ICSS 
algorithm. Obviously, the daily returns of the full 
period are negatively skewed with heavy-tailed. It is 
clear that the significant non-normality in the full 
period data. In itself, one might expect that the AR-
EGARCH/TGARCH models with heavy-tailed 
distributions might yield superior modeling results. 
Indeed, the AR-GARCH-normal model has the 
highest RMSE. The AR-GARCH/EGARCH/ 
TGARCH-GED models perform the best as well as 
exactly the same lowest RMSE (0.019169) for the 

series. This suggests that with considerable 
observations there is trivial to distinguish between 
these models. Thus, this study attempts to confirm that 
this conclusion holds for periods of changing 
volatility. Furthermore, within each sub-period of 
normally distributed data of Table 7, the AR-
EGARCH/TGARCH models with heavy-tailed 
distributions perform poorly. However, there are six 
sub-periods (2nd, 6th, 7th, 8th, 10th, and 11th) in which the 
return series appear to be non-normally distributed. 
The AR-EGARCH-t model ranks first over competing 
models in the 2nd, 6th, 7th, and 11th sub-periods. Once 
more data become available, it is necessary to engage a 
more extensive analysis, not only with respect to the 
in-sample analysis but also in terms of the out-of-
sample forecast. 

Table 7. Summary statistics and in-sample RMSEs within the full period and each sub-period 
 Full period 1st sub-period 2nd sub-period  3rd sub-period 4th sub-period 5th sub-period 6th sub-period 

Numbers 2608 125 44 38 26 121 66 
Variance 5.36E-04 2.29E-04 1.17E-03 4.28E-04 2.73E-03 5.08E-04 9.17E-04 
Skewness -0.283*** -0.018 1.875*** 0.188 0.669 -0.130  -0.703** 
Kurtosis 6.722*** 3.619 8.664*** 2.568 3.549 3.621  5.405*** 

AR(2)-GARCH(1,1) RMSE 

0.019196 
(9) 

0.008236 
(7) 

0.066530 
(2) 

0.029657 
(6) 

0.075979 
(1) 

0.021328 
(8) 

0.032517 
(7) 

0.019178 
(5) 

0.008194 
(5) 

0.066564 
(3) 

0.029336 
(4) 

0.077873 
(4) 

0.021282 
(6) 

0.032036 
(3) 

0.019169 
(1) 

0.008161 
(2) 

0.067544 
(8) 

0.029686 
(7) 

0.077596 
(3) 

0.021194 
(4) 

0.032886 
(9) 

AR(2)-EGARCH(1,1) RMSE 

0.019195 
(8) 

0.008205 
(6) 

0.067378 
(6) 

0.028506 
(1) 

0.077307 
(2) 

0.021247 
(5) 

0.032127 
(4) 

0.019178 
(5) 

0.008164 
(4) 

0.066420 
(1) 

0.028543 
(2) 

0.081560 
(5) 

0.021364 
(9) 

0.031297 
(1) 

0.019169 
(1) 

0.008161 
(2) 

0.067378 
(6) 

0.028561 
(3) 

0.085641 
(7) 

0.021301 
(7) 

0.032879 
(8) 

AR(2)-TGARCH(1,1) RMSE 

0.019194 
(7) 

0.008266 
(8) 

0.066868 
(4) 

0.029759 
(8) 

0.083805 
(6) 

0.021182 
(1) 

0.031854 
(2) 

0.019177 
(4) 

0.008363 
(9) 

0.067369 
(5) 

0.029769 
(9) 

0.085742 
(8) 

0.021190 
(2) 

0.032298 
(5) 

0.019169 
(1) 

0.008086 
(1) 

0.067715 
(9) 

0.029590 
(5) 

0.087963 
(9) 

0.021192 
(3) 

0.032384 
(6) 

 7th sub-period 8th sub-period 9th sub-period 10th sub-period 11th sub-period 12th sub-period  
Numbers 253 243 159 118 747 668  
Variance 4.26E-04 7.72E-04 3.63E-04 1.24E-03 5.08E-04 3.48E-04  
Skewness -0.480*** -0.687*** -0.202 -0.838*** -0.520*** 0.126  
Kurtosis 3.544*  5.188*** 3.263 6.988*** 4.741***  3.310*  

AR(2)-GARCH(1,1) RMSE 

0.015624 
(3) 

0.029390 
(1) 

0.017737 
(2) 

0.029169 
(6) 

0.025825 
(9) 

0.014605 
(4)  

0.015715 
(6) 

0.029683 
(5) 

0.017791 
(6) 

0.028934 
(4) 

0.025803 
(6) 

0.014606 
(6)  

0.015628 
(4) 

0.029866 
(9) 

0.017785 
(4) 

0.029198 
(7) 

0.025804 
(7) 

0.014605 
(4)  

AR(2)-EGARCH(1,1) RMSE 

0.015811 
(8) 

0.029440 
(2) 

0.017914 
(7) 

0.028967 
(5) 

0.025779 
(3) 

0.014635 
(8)  

0.015557 
(1) 

0.029621 
(4) 

0.017940 
(8) 

0.028857 
(2) 

0.025758 
(1) 

0.014635 
(8)  

0.015707 
(5) 

0.029802 
(7) 

0.017992 
(9) 

0.029199 
(9) 

0.025763 
(2) 

0.014633 
(7)  
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Table 7 (cont.). Summary statistics and in-sample RMSEs within the full period and each sub-period 
 7th sub-period 8th sub-period 9th sub-period 10th sub-period 11th sub-period 12th sub-period  

AR(2)-TGARCH(1,1) RMSE 

0.015811 
(8) 

0.029598 
(3) 

0.017732 
(1) 

0.028853 
(1) 

0.025807 
(8) 

0.014595 
(1)  

0.015600 
(2) 

0.029695 
(6) 

0.017760 
(3) 

0.028897 
(3) 

0.025779 
(3) 

0.014597 
(2)  

0.015717 
(7) 

0.029857 
(8) 

0.017785 
(4) 

0.029198 
(7) 

0.025789 
(5) 

0.014598 
(3)  

Notes: The root mean square error (RMSE) estimates of each model with normal distribution is the top row, t-distribution is the 
middle row, and GED is the bottom row. Ranks are in parentheses. ***, **, and * represent statistical significance at the 0.01, 0.05, 
and 0.10 levels, respectively. 

Table 8 reports the aggregated ranks within each 
sub-period identified via the ICSS algorithm. Both 
the AR-EGARCH-t and the AR-TGARCH-normal 
models rank lowest in four of the twelve sub-
periods. The last column of Table 8 indicates a score 
(sum of the numbers multiplied by their corresponding 
rank in each row). The AR-EGARCH-t model exhibits 

the lowest (46) score and appears to be the most 
effective for modeling oil futures returns. More 
specifically, the AR-EGARCH-GED model performs 
relatively poorly in each of the twelve sub-periods in 
terms of the model evaluation relative to the superior 
ICSS AR-EGARCH-GED model for oil futures 
volatility modeling. 

Table 8. In-sample RMSE ranks within each sub-period 
             Ranks 

Models 1 2 3 4 5 6 7 8 9 Score 

AR(2)- 
GARCH(1,1) 

2 2 1 1 0 2 2 1 1 56 (3) 
0 0 2 3 2 5 0 0 0 58 (6) 
0 1 1 4 0 0 3 1 2 68 (8) 

AR(2)- 
EGARCH(1,1) 

1 2 1 1 2 2 1 2 0 57 (4) 
4 2 0 2 1 0 0 2 1 46 (1) 
0 2 1 0 1 1 4 1 2 72 (9) 

AR(2)- 
TGARCH(1,1) 

4 1 1 1 0 1 0 4 0 51 (2) 
0 3 3 0 2 1 0 1 2 57 (4) 
1 0 2 1 2 1 2 1 2 67 (7) 

Notes: The numbers of RMSE ranks of each model with normal distribution is the top row, t-distribution is the middle row, and 
GED is the bottom row. Score is the sum of the numbers multiplied by their corresponding rank in each row. 

Conclusions 

In this study, we dive into an investigation of the 
presence of volatility changes and the heavy-tailed 
behavior when modeling oil futures market returns. 
The multiple structural breaks in variance are 
detected using the Inclán and Tiao (1994) test. The 
estimated results suggest that the changing oil 
futures risk can be best captured by the ICSS AR- 
 

EGARCH-GED model. The in-sample comparison 
of the model evaluation shows that the AR-
EGARCH-t model outperforms over competing 
models within each sub-period identified using the 
ICSS algorithm. Our empirical results are provided 
to illustrate the importance of incorporating both 
structural breaks and heavy-tailed distributions in oil 
futures price modeling. 
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