
Investment Management and Financial Innovations, Volume 12, Issue 4, 2015

192

Robert Verner (Slovakia), Ladislav Rosocha (Slovakia)

Yield spreads prediction using genetic neural network
Abstract

In this paper, the authors aim at prediction of demanded yield spreads on primary bond market using biologically
inspired algorithms. The researchers combine genetic algorithms and multilayered feedforward neural network trained
by Levenberg-Marquardt algorithm in order to present a genetic artificial neural network. Consequently it is estimated
demanded yield spread of bonds based on parameters of individual offerings. The results indicate that compared to
conventional types of artificial neural networks, genetic network reached the lowest mean squared error and highest
determination coefficient on the investigated sample of 23 844 initial bond offerings and outperfomed other networks,
primarily on out-of-sample data.

Keywords: artificial neural networks, bonds, genetic algorithms, initial public offerings.
JEL Classification: C45, C21, G12.

Introduction©

The idea of resolving complicated finance and
business problems using an artificial intelligence
approach has been an interesting task for academic
researchers and biologically inspired computing
methods have proven themselves to be an important
tool across a wide range of functional areas
affecting most businesses. These methods are
simple computational instruments for exploring the
data and developing models that help to identify
crucial patterns, characteristics or structures.
Standard econometric methods might have several
limitations regarding the complexity of public
offering problems. Conventional models require
various assumptions of the data and variables. But
public issues include many variables with unknown
or ill-defined relationships.

Artificial neural networks can be considered as
computational structures that mimic the biological
nervous system. Their ability to learn and generalize
enable them to produce reasonable outcomes for
inputs not seen during the training (learning). In
most cases the neural network is presented with
examples and its free parameters are modified to
minimize the error between the actual and desired
output. The learning is repeated for many examples
in the dataset until it reaches a steady state with no
further significant improvements. Since they are
very adaptive, neural networks can operate in
nonstationary environment. Using parallel structure
they are able to resolve nonlinear, stochastic and ill-
defined tasks.

Since artificial neural networks have been
successfully applied to solve nonlinear and

© Robert Verner, Ladislav Rosocha, 2015.
Ing. Robert Verner, Ph.D., MBA, Department of Economics, Faculty of
Business Economy with seat in Košice, University of Economics in
Bratislava, Slovakia.
Ladislav Rosocha, Ph.D. Student, MUDr., Department of Quantitative
Methods, Faculty of Business Economy with seat in Košice, University
of Economics in Bratislava, Slovakia.

challenging problems, they have been actively used
for applications such as bankruptcy prediction,
predicting costs, forecast revenue, credit scoring and
more (Lee and Chen, 2005; Hayashi et al., 2010;
Moosmayer et al., 2013; Tang and Chi, 2005; West,
2000). Other more specific discipline-based reviews
have appeared in auditing (Koskivaara, 2004),
manufacturing (Sick, 2002), management
(Boussabaine, 1996), and resource management
(Maier and Dandy, 2000). These neural network
systems are typically only a few basis points more
precise than their alternatives, but because of the
amounts of money involved, these methods are very
profitable. Jain and Nag (1995) developed a neural
network model for pricing initial public offerings.
The neural network model significantly improved
accuracy of prediction and reduced underpricing
costs. Robertson et al. (1998) proposed neural
networks models in order to estimate the first-day
return of an initial public offering. They divided the
data set into technology and non-technology
offerings and constructed a regression model and
two neural network models. Their results indicated
that neural network models performed better on
both technology and non-technology groups and
overwhelmed linear regression model at predicting
the first-day return of a public offering.
The most applied network learning method in
practice is the error backpropagation based on
gradient descent. However, it has several
shortcomings, major of which is the significant risk
of being stuck in a local valley of the cost function.
In case of cost function with many local minima, its
performance depends on the beginning point given
by the vector of initial synaptic weights. But
somewhere in the connection weight space there may
be alternative vector of initial weights that results into
considerably lower error (either better local minimum
or possibly global minimum). The aim of this work is
to present neural network learning and initial weights
selection algorithm which might overcome the related
local minimum and initial weights selection problems
without requiring any intervention from the researcher.

Investment Management and Financial Innovations, Volume 12, Issue 4, 2015

193

The presented hybrid learning algorithm should
consistently examine the space of initial synaptic
weights and possibly overcome the chance of getting
stuck in the local minimum of network error function
(Zgodavova, 2015).

1. Methodology

In order to avoid above mentioned premature
convergence, we propose implementation of genetic
algorithms into the learning process of neural
network and incorporate the element of
stochasticity which should enable the learning
algorithm to escape from the local minimum of
error function and converge to a better (potentially
global) solution. We might define the topology of

multilayer feedforward network as i – h1 – h2 –…–
hN – oi with i as the number of input neurons, h1 – h2
–…– hN representing hidden neurons in N hidden
layers and o as the output nodes, weights of the
network may be captured in a form of vector:

111, 1 12, 1 1 , 1, 1 ,(, ,..., ,..., ,...,),
N

T
i i h ii o N oo Nhw w w w w w=

where w11,i1 is the weight between first input neuron
and the first neuron in hidden layer h1, w12,i1 is the
weight between first input neuron and the second
neuron in h1, etc. Finally, NNhoow , represents the
connection between the last output neuron and last
neuron from final hidden layer hN and as shown on
Figure 1.

Source: Processed by authors.

Fig. 1. Connection weights

The logic behind application of genetic algorithms
in the initial weights selection is the following:

1. At the beginning of learning process, genetic
algorithm generates the first random population
of initial weight vectors u

sw − i.e. the generation
of neural networks (individuals) with pre-
defined architecture. s = 1 to S denotes the total
number of individuals in one generation, while u
= 1 to U is the total number of generations. At
this step s = 1 to S and u = 1.

2. Levenberg-Marquardt algorithm (Levenberg,
1944; Marquardt, 1963) evaluates the error
function of each neural network (fitness of each
individual in population) using the second-order
information about the error surface. The final
outcome of the network is its performance in
terms of mean squared error on the never seen
testing test (out-of-sample data).

3. Based on the achieved MSE (fitness), genetic
algorithm performs breeding (selection,
crossover, mutation, replacement) of current
population of initial weight vectors in order to
create new generation of initial weight vectors

1t
sw + (i.e. 2

sw in this case).
4. Continue with step 2, until the termination

criteria are met.

According to genetic algorithms methodology, at
the first step of the learning process presented
algorithm generates initial population of vectors w.
If we set the total number of individuals in the
generation as S = 100 and the total number of
generations as U = 1000, then at the first step we
would have generation of chromosomes (genetic
representations of individuals):

()1
1 11, 1 12 1 1 1, 1 ,, ,..., ,..., ,...,

N

T
i ,i h ,ii o N oo Nhw w w w w w=

()1
2 11, 1 12 1 1 , 1, 1 ,, ,..., ,..., ,...,

N

T
i ,i h ii o N oo Nhw w w w w w=

()1
3 11, 1 12, 1 1 , 1, 1 ,, ,..., ,..., ,...,

N

T
i i h ii o N oo Nhw w w w w w=

()1
4 11, 1 12, 1 1 , 1, 1 o,, ,..., ,..., ,...,

N

T
i i h ii o N o Nhw w w w w w=

.

.

.

()1
100 11, 1 12, 1 1 , 1, 1 ,, ,..., ,..., ,..., ,

N

T
i i h ii o N oo Nhw w w w w w=

while at the last step we would obtain final
generation of chromosomes:

()1000
1 11, 1 12, 1 1 , 1, 1 ,, ,..., ,..., ,...,

N

T
i i h ii o N oo Nhw w w w w w=

()1000
2 11, 1 12, 1 1h, 1, 1 ,, ,..., ,..., ,...,

N

T
i i ii o N oo Nhw w w w w w=

Investment Management and Financial Innovations, Volume 12, Issue 4, 2015

194

()1000
3 11, 1 12, 1 1 , 1, 1 ,, ,..., ,..., ,...,

N

T
i i h ii o N oo Nhw w w w w w=

()1000
4 11, 1 12, 1 1 , 1, 1 ,, ,..., ,..., ,...,

N

T
i i h ii o N oo Nhw w w w w w=

.

.

.

()1000
100 11, 1 12,i1 1 1, 1 ,, ,..., ,..., ,...,

N

T
i h,ii o N oo Nhw w w w w w= .

Genetic algorithm performs roulette wheel selection
of individual initial weights vectors and realizes
single line crossover, mutation and replacement so
that we can obtain next generation with superior
genetic information. The algorithm runs until the
predefined maximal number of generations is
reached.

Source: Processed by authors.

Fig. 2. Genetic neural network

Even though the selection of stopping criteria is
solely up to researcher, excessively strict termination
conditions inhibit the convergence ability of the
algorithm. Despite the computational costs, in order
to achieve the diversibility and profoundness of the

search, number of individuals in every generation
had been established as S = 200. It is worth to notice
that the process of tuning the functional parameters of
most stochastic algorithms is usually the matter of
trials and errors. However, if small change in input

Investment Management and Financial Innovations, Volume 12, Issue 4, 2015

195

parameter results into large modification of algorithm
performance and output, such method cannot be
considered as very robust and its general practicability
is questionable. Figure 2 depicts the flowchart of
proposed genetic neural network.

2. Data

Our data sample consisted of 23 844 EUR and USD
denominated straight bond offerings with fixed
coupon issued between January 2003 and April
2015 from the BondRadar information service.
Perpetual and floating rate obligations have been
excluded from the sample. Regarding the sample,
we focused on following independent variables
which characterized every debt offering:

♦ volume (in USD mil. equivalent);
♦ maturity (in years);
♦ rating by Moody’s;
♦ rating by Standard & Poor’s;
♦ rating by Fitch;
♦ subordinated status (yes/no);
♦ collateral (yes/no);
♦ prestige of issue leader (in total size of led issues);
♦ prestige of bookrunner 1 to 4 (in total size of led

issues).

Independent variable was the spread over middle
value of interest rate swaps (in case of EUR issues)
or over US Treasury yields (in case of USD issues)
with corresponding maturity in basis points. Yields
of US Treasuries are approximately equal to USD
interest rate swaps. Since the rating grades of credit
rating agencies are in form of symbols, we
evaluated the symbols on equidistant basis from 1
(default) to 21 (prime grade). Issue without credit
rating from particular rating agency was assigned
with 0. Tables 1 and 2 present summary statistics of
independent variables. We might see that the size of
an average deal was 953.23 mil. USD eq. and the
largest issue was enormous 15 bln. USD eq.
Average maturity of the examined bond sample was
slightly below 9 years and maximal maturity 100.32
years for one obligation maturing in 2114.

In order to check the normal distribution of
explanatory variables we applied Shapiro-Wilk
(Shapiro and Wilk, 1965) and Jarque-Bera (Jarque
and Bera, 1980) tests. Null hypothesis of both above
mentioned tests is the normal distribution of data.
Based on p-values (zero or very close to zero) we
can reject the null hypothesis of normal distribution
for all independent variables (Tkáč et al., 2012).

Table 1. Summary statistics of independent variables 1
 Volume Maturity Moodys SP Fitch Subord.

Mean 953.23 8.9875 14.019 13.674 8.4833 0.027973
Median 700 7.0384 15 16 0 0
Minimum 10 1.9973 0 0 0 0
Maximum 15000 100.32 21 21 21 1
Standard deviation 924.06 7.4932 6.1955 6.4311 8.99007 0.1649
Variation coefficient 0.9694 0.83373 0.44194 0.47033 1.0598 5.8949
Skewness 3.3684 3.2372 -0.80427 -0.88986 0.23455 5.7251
Ex. Kurtosis 20.325 17.13 -0.16694 -0.13651 -1.7524 30.777
Shapiro-Wilk 0.691913 0.65056 0.895309 0.181956 0.746506 0.151567
p-value 4.74E-108 2.21E-111 1.28E-81 9.19E-86 5.38E-103 2.73E-136
Jarque-Bera 455499 333170 2598.28 3165.35 3269.53 1.07E+06
p-value 0 0 0 0 0 0

Source: Processed by authors.

Table 2. Summary statistics of independent variables 2
 Covered Lead Book1 Book2 Book23 Book2

Mean 0.086437 1.11E+06 1.01E+06 7.53E+05 4.11E+05 1.86E+05
Median 0 1.14E+06 1.14E+06 7.05E+05 19327 0
Minimum 0 0 0 0 0 0
Maximum 1 1.88E+06 1.88E+06 1.88E+06 1.88E+06 1.88E+06
Standard deviation 0.28101 4.95E+05 6.35E+05 6.61E+05 5.78E+05 4.24E+05
Variation coefficient 3.2511 0.44602 0.6252 0.8769 1.4073 2.2713
Skewness 2.9434 -0.71138 -0.33345 0.30836 1.24 2.4483
Ex. Kurtosis 6.6638 -0.2142 -1.205 -1.3066 0.27329 5.2193
Shapiro-Wilk 0.314425 0.904278 0.903363 0.88161 0.734626 0.508991
p-value 4.50E-130 1.35E-79 8.25E-80 1.93E-84 3.59E-104 1.25E-120
Jarque-Bera 78546.8 2056.7 1884.54 2073.94 6184.59 50885.4
p-value 0 0 0 0 0 0

Source: Processed by authors.

Investment Management and Financial Innovations, Volume 12, Issue 4, 2015

196

Out of 23 844 deals only 667 (2.80%) were
subordinated and 2 061 (8.64%) were backed by
some collateral (covered). In case of credit rating
variables we cannot take average values as
fundamental, because the absence of rating is valued
by zero which decreases the total mean value. While
median credit rating grade from Moody’s was 15
(A3) and from Standard & Poor’s was 16 (A2),
median for Fitch was 0 (no rating).

3. Results

In order to examine the abilities of standard artificial
neural network structures, we created architecture
consisting of one input layer with 12 input neurons (for
independent variables) and two hidden layers with 20
hidden neurons in every layer. Output layer had single
neuron with desired yield spread as outcome.
Activation function had been set as hyperbolic tangent
for neurons in input and hidden layers and linear
function for output neuron. Since hyperbolic tangent
limits the values to >−< 1.1 this activation for output
neuron would not be able to correctly estimate actual
yield spreads. Another possibility was to scale the data
sample to >−< 1.1 and apply hyperbolic tangent
activation for all neurons. We have tried this approach
with no significant difference in obtained results,
therefore we used unscaled data and linear activation
function for output neuron.

We selected six conventional neural network
learning algorithms and evaluated their mean
squared error and determination coefficient on the
sample of presented bond offerings. The most
simple was the standard Gradient descent (GD),
followed by Gradient descent with momentum
(GDM), Scaled conjugate gradient (SCG) proposed
by Møller (1993), Levenberg-Marquardt (LM)
algorithm and Conjugate gradient with Powell/Beale
restarts (CGPB). Powell/Beale restart algorithm
improves the search direction using specific restart
strategy (Powell, 1977; Bale, 1972). Quasi-Newton
methods were represented by Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970). For all neural networks was the data sample
divided as follows: training set comprised of 70%
(16 690 observations), validation set consisted of
15% (3577 observations) and testing set contained
15% (3577 observations). This distribution should
have assured not only the proper learning process,
but also should have preserved the generalization
ability of networks and the prevented overfitting the
training data. Out-of-sample testing group is usually
set from 10% to 20% of the total observations, i.e.
15% was reasonable compromise.

Genetic network was created in Java programming
language, specifically for the purpose of investigating

initial bond offering yields. Its characteristics had
been determined to be consistent with standard
methods built in Matlab, i.e. architecture with one
input layer containing with 12 input neurons and
two hidden layers containing 20 hidden neurons in
every layer. Output layer had single neuron with
desired yield spread as outcome and hyperbolic
tangent activation function for neurons in input and
hidden layers, while linear activation function for
output neuron. After roulette wheel selection of
individual initial weights vectors algorithm
realized single line crossover, mutation and
replacement and produced the next generation
until one of the two termination criteria
(maximum generations U = 200 or stall
generations = 10) was met. One generation
comprised of 50 individual neural networks. The
data sample was divided in a same way as in case of
other explored neural networks, i.e. training set
contained 70%, validation set 15% and testing set
15% of observations.

The algorithm stopped after 200 generations which
took more than 28 hours. A total of 10 000 networks
were created and their fitness was evaluated using
Levenberg-Marquardt algorithm. Final fitness was
measured on testing set (out-of-sample data). The
outcome of the program was in form of actual and
fitted values as well as residuals of final best
individual (neural network). Moreover, the program
stored the best individual in every generation. Figure 3
presents the learning process of Genetic neural
network in terms of the fitness function of the best
individual in the generation obtained on testing set. It
might be stated that despite oscillations, means
squared error of Genetic network gradually decreased
and converged to MSE values around 9 700.

Figure 4 depicts the residuals of Genetic network,
while Figure 5 compares actual bond offering yields
to its fitted values.

Table 3 introduces the performance of all explored
techniques. We might see that the weakest
performance in terms of means squared error was
unambiguously achieved by Gradient descent and
Gradient descent with momentum. Other learning
algorithms reached comparable results, however,
Broyden-Fletcher-Goldfarb-Shanno algorithm had
approximately double MSE than remaining three
algorithms. Good outcomes by means of mean
squared error on all three data sets were obtained
by Levenberg-Marquardt algorithm. Focusing on
the mean squared error, the lowest value of MSE
was obtained by Genetic network (GNET) on
training set and comparing to other applied
techniques, GNET reached the smallest MSE on all
three sets of data.

Investment Management and Financial Innovations, Volume 12, Issue 4, 2015

197

9 500

9 600

9 700

9 800

9 900

10 000

10 100

10 200

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199

Generation

M
SE

Source: Processed by authors.

Fig. 3. Progress of best individuals

Source: Processed by authors.

Fig. 4. Genetic network residuals by observation

Source: Processed by authors.

Fig. 5. Actual vs. Genetic network fitted values by observation

Investment Management and Financial Innovations, Volume 12, Issue 4, 2015

198

Table 3. Overview of performance of all techniques
 GD GDM CGPB BFGS SCG LM GNET

Training MSE 4543600 2004600 11140 21713 11528 10071 9487
Validation MSE 4580600 2023900 11415 23444 11760 9679 9598
Testing MSE 4602200 1972200 12257 21273 11522 9923 9681
 GD GDM CGPB BFGS SCG LM GNET
Training R-squared 47.32% 37.05% 85.55% 68.91% 85.08% 87.17% 88.79%
Validation R-squared 47.03% 37.44% 84.88% 69.17% 85.27% 87.51% 88.15%
Testing R-squared 47.48% 37.62% 84.65% 68.77% 84.42% 87.07% 88.36%

Source: Processed by authors.

Similar results were obtained for determination
coefficient, where the highest value of GNET was
produced on training set and confronted to other
approaches, genetic network had the best outcomes
on all data sets. Regarding overall performance, it
might be concluded that more sophisticated artificial
neural networks significantly overran linear
methods as well as simply neural networks based on
gradient descent backpropagation. Moreover, on
explored sample of bond offering yields achieved
presented Genetic network the best overall
performance not only in terms of mean squared
error, but also in form of highest determination
coefficient on training, testing and validation sets.
However, it must be noted that Levenberg-
Marquardt algorithm required higher computational
time than gradient based methods. Table 4 describes
the processing time of all explored neural network
learning algorithms.

Table 4. Computational time of neural network
learning algorithms

 GD GDM CGPB BFGS SCG LM
Time (seconds) 3 4 8 15 8 11

Source: Processed by authors.

Fastest methods were the Gradient descent and
Gradient descent with momentum. Both conjugate
gradient based techniques took 8 seconds,
Levenberg-Marquardt took 11 seconds and
Broyden-Fletcher-Goldfarb-Shanno algorithm
worked 15 seconds. Despite the fact that the
difference of three seconds between best performing
Levenberg-Marquardt and both conjugate gradient
methods can be ignored in case of single neural
network, it has significant impact on design of
proposed Genetic network which generates
thousand of networks as individuals. Providing 1200
individuals, the three second difference results into
one hour longer computational time. Nevertheless,
the bond issuing process is not a real-time matter
and preparations often take more than a month.
Thus the computational time is not the primary
parameter of algorithm efficiency and we might
focus on the precision of yield prediction using

Levenberg-Marquardt method as Genetic network
learning algorithm.

Conclusion

Presented Genetic network implements the
methodology of genetic algorithms into the initial
weight selection process of conventional artificial
networks. It creates and breeds generations of
individual neural networks trained by Levenberg-
Marquardt algorithm based on their fitness function
in terms of mean squared error. Such network
should be able to escape from the first found local
minimum of error function and potentially converge
to its global minimum. Even though that the Genetic
network reached the best determination coefficient
and lowest mean squared error among explored
techniques on all three groups of data (training,
validation, testing set), it required significantly
higher computational time. This fact does not overly
matter in case of bond yields offerings, but duration
of optimization process in magnitude of hours
complicates its real-time applications. One
possibility is to amend additional termination
criterion in form of stall generations which stops
the algorithm if there is no significant
improvement in the objective function for a
sequence of consecutive generations. This might
save the computational time and produce
satisfactory solution in more reasonable period.
However, it is crucial that on examined sample of
bond offerings Genetic network outperformed
other analyzed methods and obtained best results.

In our following research we would like to decrease
the necessary computational time of learning
process thus permit the real-time utilization of
proposed hybrid methodology. Perspective classes
of algorithms, which have already been
implemented into neural network framework, are
artificial immune systems and swarm intelligence
techniques such as fish swarm algorithm, cuckoo
search algorithm and firefly algorithm.
Alternatively, Invasive weed colony optimization or
Shuffled frog leaping algorithm might be tested.

Investment Management and Financial Innovations, Volume 12, Issue 4, 2015

199

References

1. Beale, E.M.L. (1972). A derivative of conjugate gradients. In Lootsma, F.A. (Ed.) Numerical methods for
nonlinear optimization, Academic Press.

2. Boussabaine, A.H. (1996). The use of artifical neural networks in construction management: a review,
Construction Management and Economics, 14 (5), pp. 427-436.

3. Broyden, C.G. (1970). The convergence of a class of double-rank minimization algorithms, Journal of the Institute
of Mathematics and Its Applications, 6 (1), pp. 76-90.

4. Fletcher, R. (1970). A new approach to variable metric algorithms, The Computer Journal, 19 (3), pp. 317-322.
5. Goldfarb, D. (1970). A family of variable-metric methods derived by variational means, Mathematics of

Computation, 24 (109), pp. 23-26.
6. Hayashi, Y. et al. (2010). Understanding consumer heterogeneity: A business intelligence application of neural

networks, Knowledge-Based Systems, 23 (8), pp. 856-863.
7. Jain, B.A., Nag, B.N. Artificial neural network models for pricing initial public offerings, Decision Sciences, 26

(3), pp. 283-302.
8. Jarque, C.M., Bera, A.K. (1980). Efficient tests for normality, homoscedasticity and serial independence of

regression residuals, Economics letters, 6 (3), pp. 255-259.
9. Koskivaara, E. (2000). Artificial neural network models for predicting patterns in auditing monthly balances,

Journal of the Operational Research Society, 51, pp. 1060-1069.
10. Lee, T.S., Chen, I.F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and

multivariate adaptive regression splines, Expert Systems with Applications, 28 (4), pp. 743-752.
11. Levenberg, K. (1944). A method for the solution of certain problems in least squares, Quarterly of applied

mathematics, 2 (2), pp. 164-168.
12. Maier, H.R., Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A

review of modelling issues and applications, Environmental Modelling and Software, 15 (1), pp. 101-124.
13. Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society

for Industrial & Applied Mathematics, 11 (2), pp. 431-441.
14. Møller, M.F. (1993). A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 6 (4),

pp. 525-533.
15. Moosmayer, D.C. et al. (2013). A neural network approach to predicting price negotiation outcomes in business-

to-business contexts, Expert Systems with Applications, 40 (8), pp. 3028-3035.
16. Powell, M.J.D. (1977). Restart procedures for the conjugate gradient method, Mathematical programming, 12 (1),

pp. 241-254.
17. Robertson, S.J. et al. (1998). Neural network models for initial public offerings, Neurocomputing, 18 (1), pp. 165-182.
18. Shaphiro, S.S., Wilk, M.B. (1965). An analysis of variance test for normality, Biometrika, 52, pp. 591-611.
19. Shanno, D.F. (1970). Conditioning of quasi-Newton methods for function minimization, Mathematics of

Computation, 24 (111), pp. 647-656.
20. Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of

more than a decade of research, Mechanical Systems and Signal Processing, 16 (4), pp. 487-546.
21. Tang, T.C., Chi, L.C. (2005). Neural networks analysis in business failure prediction of Chinese importers: A

between-countries approach, Expert Systems with Applications, 29 (2), pp. 244-255.
22. Tkáč, M., Czillingová, J., & Petruška, I. (2012). Financial and economic analysis of steel industry by multivariate

analysis, Ekonomický časopis, 4, pp. 388-405.
23. West, D. (2000). Neural network credit scoring models, Computers & Operations Research, 27 (11-12), pp. 1131-1152.
24. Zgodavova, K. (2015). Self-Assessment. In Dahlgaard-Park, S.M. (Ed.). The SAGE Encyclopedia of Quality and the

Service Economy. SAGE Publications, pp. 664-668.

