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Yield spreads prediction using genetic neural network 
Abstract 

In this paper, the authors aim at prediction of demanded yield spreads on primary bond market using biologically 
inspired algorithms. The researchers combine genetic algorithms and multilayered feedforward neural network trained 
by Levenberg-Marquardt algorithm in order to present a genetic artificial neural network. Consequently it is estimated 
demanded yield spread of bonds based on parameters of individual offerings. The results indicate that compared to 
conventional types of artificial neural networks, genetic network reached the lowest mean squared error and highest 
determination coefficient on the investigated sample of 23 844 initial bond offerings and outperfomed other networks, 
primarily on out-of-sample data. 
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Introduction© 

The idea of resolving complicated finance and 
business problems using an artificial intelligence 
approach has been an interesting task for academic 
researchers and biologically inspired computing 
methods have proven themselves to be an important 
tool across a wide range of functional areas 
affecting most businesses. These methods are 
simple computational instruments for exploring the 
data and developing models that help to identify 
crucial patterns, characteristics or structures. 
Standard econometric methods might have several 
limitations regarding the complexity of public 
offering problems. Conventional models require 
various assumptions of the data and variables. But 
public issues include many variables with unknown 
or ill-defined relationships.  

Artificial neural networks can be considered as 
computational structures that mimic the biological 
nervous system. Their ability to learn and generalize 
enable them to produce reasonable outcomes for 
inputs not seen during the training (learning). In 
most cases the neural network is presented with 
examples and its free parameters are modified to 
minimize the error between the actual and desired 
output. The learning is repeated for many examples 
in the dataset until it reaches a steady state with no 
further significant improvements. Since they are 
very adaptive, neural networks can operate in 
nonstationary environment. Using parallel structure 
they are able to resolve nonlinear, stochastic and ill-
defined tasks.  

Since artificial neural networks have been 
successfully applied to solve nonlinear and 
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challenging problems, they have been actively used 
for applications such as bankruptcy prediction, 
predicting costs, forecast revenue, credit scoring and 
more (Lee and Chen, 2005; Hayashi et al., 2010; 
Moosmayer et al., 2013; Tang and Chi, 2005; West, 
2000). Other more specific discipline-based reviews 
have appeared in auditing (Koskivaara, 2004), 
manufacturing (Sick, 2002), management 
(Boussabaine, 1996), and resource management 
(Maier and Dandy, 2000). These neural network 
systems are typically only a few basis points more 
precise than their alternatives, but because of the 
amounts of money involved, these methods are very 
profitable. Jain and Nag (1995) developed a neural 
network model for pricing initial public offerings. 
The neural network model significantly improved 
accuracy of prediction and reduced underpricing 
costs. Robertson et al. (1998) proposed neural 
networks models in order to estimate the first-day 
return of an initial public offering. They divided the 
data set into technology and non-technology 
offerings and constructed a regression model and 
two neural network models. Their results indicated 
that neural network models performed better on 
both technology and non-technology groups and 
overwhelmed linear regression model at predicting 
the first-day return of a public offering. 
The most applied network learning method in 
practice is the error backpropagation based on 
gradient descent. However, it has several 
shortcomings, major of which is the significant risk 
of being stuck in a local valley of the cost function. 
In case of cost function with many local minima, its 
performance depends on the beginning point given 
by the vector of initial synaptic weights. But 
somewhere in the connection weight space there may 
be alternative vector of initial weights that results into 
considerably lower error (either better local minimum 
or possibly global minimum). The aim of this work is 
to present neural network learning and initial weights 
selection algorithm which might overcome the related 
local minimum and initial weights selection problems 
without requiring any intervention from the researcher. 
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The presented hybrid learning algorithm should 
consistently examine the space of initial synaptic 
weights and possibly overcome the chance of getting 
stuck in the local minimum of network error function 
(Zgodavova, 2015).  

1. Methodology 

In order to avoid above mentioned premature 
convergence, we propose implementation of genetic 
algorithms into the learning process of neural 
network and incorporate the element of 
stochasticity which should enable the learning 
algorithm to escape from the local minimum of 
error function and converge to a better (potentially 
global) solution. We might define the topology of 
 

multilayer feedforward network as i – h1 – h2 –…– 
hN – oi with i as the number of input neurons, h1 – h2 
–…– hN representing hidden neurons in N hidden 
layers and o as the output nodes, weights of the 
network may be captured in a form of vector: 

111, 1 12, 1 1 , 1, 1 ,( , ,..., ,..., ,..., ),
N

T
i i h ii o N oo Nhw w w w w w=  

where w11,i1 is the weight between first input neuron 
and the first neuron in hidden layer h1, w12,i1 is the 
weight between first input neuron and the second 
neuron in h1, etc. Finally, NNhoow ,  represents the 
connection between the last output neuron and last 
neuron from final hidden layer hN and as shown on 
Figure 1. 

 
Source: Processed by authors. 

Fig. 1. Connection weights 

The logic behind application of genetic algorithms 
in the initial weights selection is the following: 

1. At the beginning of learning process, genetic 
algorithm generates the first random population 
of initial weight vectors u

sw  − i.e. the generation 
of neural networks (individuals) with pre-
defined architecture. s = 1 to S denotes the total 
number of individuals in one generation, while u 
= 1 to U is the total number of generations. At 
this step s = 1 to S and u = 1. 

2. Levenberg-Marquardt algorithm (Levenberg, 
1944; Marquardt, 1963) evaluates the error 
function of each neural network (fitness of each 
individual in population) using the second-order 
information about the error surface. The final 
outcome of the network is its performance in 
terms of mean squared error on the never seen 
testing test (out-of-sample data). 

3. Based on the achieved MSE (fitness), genetic 
algorithm performs breeding (selection, 
crossover, mutation, replacement) of current 
population of initial weight vectors in order to 
create new generation of initial weight vectors 

1t
sw +  (i.e. 2

sw  in this case). 
4. Continue with step 2, until the termination 

criteria are met. 

According to genetic algorithms methodology, at 
the first step of the learning process presented 
algorithm generates initial population of vectors w. 
If we set the total number of individuals in the 
generation as S = 100 and the total number of 
generations as U = 1000, then at the first step we 
would have generation of chromosomes (genetic 
representations of individuals): 

( )1
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while at the last step we would obtain final 
generation of chromosomes: 

( )1000
1 11, 1 12, 1 1 , 1, 1 ,, ,..., ,..., ,...,

N

T
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( )1000
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Genetic algorithm performs roulette wheel selection 
of individual initial weights vectors and realizes 
single line crossover, mutation and replacement so 
that we can obtain next generation with superior 
genetic information. The algorithm runs until the 
predefined maximal number of generations is 
reached.  

 
Source: Processed by authors. 

Fig. 2. Genetic neural network 

Even though the selection of stopping criteria is 
solely up to researcher, excessively strict termination 
conditions inhibit the convergence ability of the 
algorithm. Despite the computational costs, in order 
to achieve the diversibility and profoundness of the 

search, number of individuals in every generation 
had been established as S = 200. It is worth to notice 
that the process of tuning the functional parameters of 
most stochastic algorithms is usually the matter of 
trials and errors. However, if small change in input 
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parameter results into large modification of algorithm 
performance and output, such method cannot be 
considered as very robust and its general practicability 
is questionable. Figure 2 depicts the flowchart of 
proposed genetic neural network. 

2. Data 

Our data sample consisted of 23 844 EUR and USD 
denominated straight bond offerings with fixed 
coupon issued between January 2003 and April 
2015 from the BondRadar information service. 
Perpetual and floating rate obligations have been 
excluded from the sample. Regarding the sample, 
we focused on following independent variables 
which characterized every debt offering: 

♦ volume (in USD mil. equivalent); 
♦ maturity (in years); 
♦ rating by Moody’s; 
♦ rating by Standard & Poor’s; 
♦ rating by Fitch; 
♦ subordinated status (yes/no); 
♦ collateral (yes/no); 
♦ prestige of issue leader (in total size of led issues);  
♦ prestige of bookrunner 1 to 4 (in total size of led 

issues). 

Independent variable was the spread over middle 
value of interest rate swaps (in case of EUR issues) 
or over US Treasury yields (in case of USD issues) 
with corresponding maturity in basis points. Yields 
of US Treasuries are approximately equal to USD 
interest rate swaps. Since the rating grades of credit 
rating agencies are in form of symbols, we 
evaluated the symbols on equidistant basis from 1 
(default) to 21 (prime grade). Issue without credit 
rating from particular rating agency was assigned 
with 0. Tables 1 and 2 present summary statistics of 
independent variables. We might see that the size of 
an average deal was 953.23 mil. USD eq. and the 
largest issue was enormous 15 bln. USD eq. 
Average maturity of the examined bond sample was 
slightly below 9 years and maximal maturity 100.32 
years for one obligation maturing in 2114. 

In order to check the normal distribution of 
explanatory variables we applied Shapiro-Wilk 
(Shapiro and Wilk, 1965) and Jarque-Bera (Jarque 
and Bera, 1980) tests. Null hypothesis of both above 
mentioned tests is the normal distribution of data. 
Based on p-values (zero or very close to zero) we 
can reject the null hypothesis of normal distribution 
for all independent variables (Tkáč et al., 2012). 

Table 1. Summary statistics of independent variables 1 
 Volume Maturity Moodys SP Fitch Subord. 

Mean 953.23 8.9875 14.019 13.674 8.4833 0.027973 
Median 700 7.0384 15 16 0 0 
Minimum 10 1.9973 0 0 0 0 
Maximum 15000 100.32 21 21 21 1 
Standard deviation 924.06 7.4932 6.1955 6.4311 8.99007 0.1649 
Variation coefficient 0.9694 0.83373 0.44194 0.47033 1.0598 5.8949 
Skewness 3.3684 3.2372 -0.80427 -0.88986 0.23455 5.7251 
Ex. Kurtosis 20.325 17.13 -0.16694 -0.13651 -1.7524 30.777 
Shapiro-Wilk 0.691913 0.65056 0.895309 0.181956 0.746506 0.151567 
p-value 4.74E-108 2.21E-111 1.28E-81 9.19E-86 5.38E-103 2.73E-136 
Jarque-Bera 455499 333170 2598.28 3165.35 3269.53 1.07E+06 
p-value 0 0 0 0 0 0 

Source: Processed by authors. 

Table 2. Summary statistics of independent variables 2 
 Covered Lead Book1 Book2 Book23 Book2 

Mean 0.086437 1.11E+06 1.01E+06 7.53E+05 4.11E+05 1.86E+05 
Median 0 1.14E+06 1.14E+06 7.05E+05 19327 0 
Minimum 0 0 0 0 0 0 
Maximum 1 1.88E+06 1.88E+06 1.88E+06 1.88E+06 1.88E+06 
Standard deviation 0.28101 4.95E+05 6.35E+05 6.61E+05 5.78E+05 4.24E+05 
Variation coefficient 3.2511 0.44602 0.6252 0.8769 1.4073 2.2713 
Skewness 2.9434 -0.71138 -0.33345 0.30836 1.24 2.4483 
Ex. Kurtosis 6.6638 -0.2142 -1.205 -1.3066 0.27329 5.2193 
Shapiro-Wilk 0.314425 0.904278 0.903363 0.88161 0.734626 0.508991 
p-value 4.50E-130 1.35E-79 8.25E-80 1.93E-84 3.59E-104 1.25E-120 
Jarque-Bera 78546.8 2056.7 1884.54 2073.94 6184.59 50885.4 
p-value 0 0 0 0 0 0 

Source: Processed by authors. 
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Out of 23 844 deals only 667 (2.80%) were 
subordinated and 2 061 (8.64%) were backed by 
some collateral (covered). In case of credit rating 
variables we cannot take average values as 
fundamental, because the absence of rating is valued 
by zero which decreases the total mean value. While 
median credit rating grade from Moody’s was 15 
(A3) and from Standard & Poor’s was 16 (A2), 
median for Fitch was 0 (no rating). 

3. Results 

In order to examine the abilities of standard artificial 
neural network structures, we created architecture 
consisting of one input layer with 12 input neurons (for 
independent variables) and two hidden layers with 20 
hidden neurons in every layer. Output layer had single 
neuron with desired yield spread as outcome. 
Activation function had been set as hyperbolic tangent 
for neurons in input and hidden layers and linear 
function for output neuron. Since hyperbolic tangent 
limits the values to >−< 1.1  this activation for output 
neuron would not be able to correctly estimate actual 
yield spreads. Another possibility was to scale the data 
sample to >−< 1.1  and apply hyperbolic tangent 
activation for all neurons. We have tried this approach 
with no significant difference in obtained results, 
therefore we used unscaled data and linear activation 
function for output neuron. 

We selected six conventional neural network 
learning algorithms and evaluated their mean 
squared error and determination coefficient on the 
sample of presented bond offerings. The most 
simple was the standard Gradient descent (GD), 
followed by Gradient descent with momentum 
(GDM), Scaled conjugate gradient (SCG) proposed 
by Møller (1993), Levenberg-Marquardt (LM) 
algorithm and Conjugate gradient with Powell/Beale 
restarts (CGPB). Powell/Beale restart algorithm 
improves the search direction using specific restart 
strategy (Powell, 1977; Bale, 1972). Quasi-Newton 
methods were represented by Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (Broyden, 
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 
1970). For all neural networks was the data sample 
divided as follows: training set comprised of 70% 
(16 690 observations), validation set consisted of 
15% (3577 observations) and testing set contained 
15% (3577 observations). This distribution should 
have assured not only the proper learning process, 
but also should have preserved the generalization 
ability of networks and the prevented overfitting the 
training data. Out-of-sample testing group is usually 
set from 10% to 20% of the total observations, i.e. 
15% was reasonable compromise. 

Genetic network was created in Java programming 
language, specifically for the purpose of investigating 

initial bond offering yields. Its characteristics had 
been determined to be consistent with standard 
methods built in Matlab, i.e. architecture with one 
input layer containing with 12 input neurons and 
two hidden layers containing 20 hidden neurons in 
every layer. Output layer had single neuron with 
desired yield spread as outcome and hyperbolic 
tangent activation function for neurons in input and 
hidden layers, while linear activation function for 
output neuron. After roulette wheel selection of 
individual initial weights vectors algorithm 
realized single line crossover, mutation and 
replacement and produced the next generation 
until one of the two termination criteria 
(maximum generations U = 200 or stall 
generations = 10) was met. One generation 
comprised of 50 individual neural networks. The 
data sample was divided in a same way as in case of 
other explored neural networks, i.e. training set 
contained 70%, validation set 15% and testing set 
15% of observations. 

The algorithm stopped after 200 generations which 
took more than 28 hours. A total of 10 000 networks 
were created and their fitness was evaluated using 
Levenberg-Marquardt algorithm. Final fitness was 
measured on testing set (out-of-sample data). The 
outcome of the program was in form of actual and 
fitted values as well as residuals of final best 
individual (neural network). Moreover, the program 
stored the best individual in every generation. Figure 3 
presents the learning process of Genetic neural 
network in terms of the fitness function of the best 
individual in the generation obtained on testing set. It 
might be stated that despite oscillations, means 
squared error of Genetic network gradually decreased 
and converged to MSE values around 9 700. 

Figure 4 depicts the residuals of Genetic network, 
while Figure 5 compares actual bond offering yields 
to its fitted values. 

Table 3 introduces the performance of all explored 
techniques. We might see that the weakest 
performance in terms of means squared error was 
unambiguously achieved by Gradient descent and 
Gradient descent with momentum. Other learning 
algorithms reached comparable results, however, 
Broyden-Fletcher-Goldfarb-Shanno algorithm had 
approximately double MSE than remaining three 
algorithms. Good outcomes by means of mean 
squared error on all three data sets were obtained 
by Levenberg-Marquardt algorithm. Focusing on 
the mean squared error, the lowest value of MSE 
was obtained by Genetic network (GNET) on 
training set and comparing to other applied 
techniques, GNET reached the smallest MSE on all 
three sets of data. 
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Source: Processed by authors. 

Fig. 3. Progress of best individuals 

 

Source: Processed by authors. 

Fig. 4. Genetic network residuals by observation 

 
Source: Processed by authors. 

Fig. 5. Actual vs. Genetic network fitted values by observation 
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Table 3. Overview of performance of all techniques 
 GD GDM CGPB BFGS SCG LM GNET 

Training MSE 4543600 2004600 11140 21713 11528 10071 9487 
Validation MSE 4580600 2023900 11415 23444 11760 9679 9598 
Testing MSE 4602200 1972200 12257 21273 11522 9923 9681 
 GD GDM CGPB BFGS SCG LM GNET 
Training R-squared 47.32% 37.05% 85.55% 68.91% 85.08% 87.17% 88.79% 
Validation R-squared 47.03% 37.44% 84.88% 69.17% 85.27% 87.51% 88.15% 
Testing R-squared 47.48% 37.62% 84.65% 68.77% 84.42% 87.07% 88.36% 

Source: Processed by authors. 

Similar results were obtained for determination 
coefficient, where the highest value of GNET was 
produced on training set and confronted to other 
approaches, genetic network had the best outcomes 
on all data sets. Regarding overall performance, it 
might be concluded that more sophisticated artificial 
neural networks significantly overran linear 
methods as well as simply neural networks based on 
gradient descent backpropagation. Moreover, on 
explored sample of bond offering yields achieved 
presented Genetic network the best overall 
performance not only in terms of mean squared 
error, but also in form of highest determination 
coefficient on training, testing and validation sets. 
However, it must be noted that Levenberg-
Marquardt algorithm required higher computational 
time than gradient based methods. Table 4 describes 
the processing time of all explored neural network 
learning algorithms. 

Table 4. Computational time of neural network 
learning algorithms 

 GD GDM CGPB BFGS SCG LM 
Time (seconds) 3 4 8 15 8 11 

Source: Processed by authors. 

Fastest methods were the Gradient descent and 
Gradient descent with momentum. Both conjugate 
gradient based techniques took 8 seconds, 
Levenberg-Marquardt took 11 seconds and 
Broyden-Fletcher-Goldfarb-Shanno algorithm 
worked 15 seconds. Despite the fact that the 
difference of three seconds between best performing 
Levenberg-Marquardt and both conjugate gradient 
methods can be ignored in case of single neural 
network, it has significant impact on design of 
proposed Genetic network which generates 
thousand of networks as individuals. Providing 1200 
individuals, the three second difference results into 
one hour longer computational time. Nevertheless, 
the bond issuing process is not a real-time matter 
and preparations often take more than a month. 
Thus the computational time is not the primary 
parameter of algorithm efficiency and we might 
focus on the precision of yield prediction using 

Levenberg-Marquardt method as Genetic network 
learning algorithm.  

Conclusion 

Presented Genetic network implements the 
methodology of genetic algorithms into the initial 
weight selection process of conventional artificial 
networks. It creates and breeds generations of 
individual neural networks trained by Levenberg-
Marquardt algorithm based on their fitness function 
in terms of mean squared error. Such network 
should be able to escape from the first found local 
minimum of error function and potentially converge 
to its global minimum. Even though that the Genetic 
network reached the best determination coefficient 
and lowest mean squared error among explored 
techniques on all three groups of data (training, 
validation, testing set), it required significantly 
higher computational time. This fact does not overly 
matter in case of bond yields offerings, but duration 
of optimization process in magnitude of hours 
complicates its real-time applications. One 
possibility is to amend additional termination 
criterion in form of stall generations which stops 
the algorithm if there is no significant 
improvement in the objective function for a 
sequence of consecutive generations. This might 
save the computational time and produce 
satisfactory solution in more reasonable period. 
However, it is crucial that on examined sample of 
bond offerings Genetic network outperformed 
other analyzed methods and obtained best results.  

In our following research we would like to decrease 
the necessary computational time of learning 
process thus permit the real-time utilization of 
proposed hybrid methodology. Perspective classes 
of algorithms, which have already been 
implemented into neural network framework, are 
artificial immune systems and swarm intelligence 
techniques such as fish swarm algorithm, cuckoo 
search algorithm and firefly algorithm. 
Alternatively, Invasive weed colony optimization or 
Shuffled frog leaping algorithm might be tested. 
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