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Abstract
The aim of this work is by combination of the graph theory and Markowitz portfolio 
theory to illustrate how some graph characteristics are related to the diversification 
potential of individual portfolio-forming stocks. Using the graph characteristic, the 
vertex eccentricity, individual stocks are divided into two groups: a group of large and 
group of small eccentricity. Eccentricity in this context is considered to be a very suit-
able metric of the centrality of individual vertices. Different price histories (5 to 30 
years) of the Standard and Poor’s index are analyzed. Using the simulation analysis, 
samples of mentioned groups are generated and then tested by means of comparison to 
show that larger eccentricity samples, representing stocks on the periphery of the mini-
mum spanning tree of the graph, have a higher potential for diversification than those 
found in the center of the graph. The results published in the article can be a practical 
guide for an individual investor during the portfolio creation process and help him/her 
with decision-making about stock selection.
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The goal of the investor is to create a portfolio that has a high expected 
return and the low risk level. The first problem is that the investor 
needs to solve the selection of the stocks into the portfolio and then he 
has to determine the weights of the individual stocks. 

In the paper, for the stock selection process, it is proposed to use graph 
characteristic known as the vertex eccentricity. Every vertex of the 
graph represents an individual stock, which can form a portfolio. The 
eccentricity of the graph vertex can identify the so-called centrality 
of stocks and, as shown in the paper, this measure is very effective in 
identifying certain stocks that are more suitable for diversifying the 
risk the investor requires.

1. LITERATURE REVIEW

Harry Markowitz (1952, 1959) and William Forsyth Sharpe (1992) are 
those authors, by whom pioneering work in modern portfolio theory 
was done. The effect of asset risk, return, correlation, as well as diver-
sification on expected investment portfolio returns, are issues, which 
were studied by them. Methods of Markowitz portfolio optimization 
are used in this paper. 

Approach to portfolio optimization used in this article is based on net-
work theory. Network theory is the tool and methodology approach, 
which can be used to explain and better understand financial mar-
kets. When talking about financial markets, the mutual development 
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of some particular financial instruments (stocks, 
shares, indices, etc.) is mostly observed. Since the 
correlation coefficient is the most used dependency 
measure of this mutual development, the main area 
is the study of correlation-based networks. These 
networks can be used to reduce the complexity of 
financial dependencies and to understand and fore-
cast the dynamics of financial markets. This part of 
the chapter is the introduction of some methodolog-
ical approaches that are frequently used in the field 
of correlation-based networks.

The first publication about correlation-based net-
works with using the graph theory tools was written 
by Professor Rosario Mantegna (1999). The author 
introduced the method of minimum spanning tree 
while analyzing financial markets and described 
main advantages of this methodology. By construct-
ing this subgraph (minimum spanning tree), the au-
thor finds the US stocks are grouped based on their 
industry sector. This means that price of the stock 
includes not only information about the current and 
past financial situation of the company, but also in-
formation about structure and topology.

Onnela et al. (2003a) introduce a new network type 
– the dynamic asset graph. In comparison with the 
previous one done in the static time period the 
methodology is similar, but not the analysis. The au-
thors, for analysis and smoothing purposes, divided 
the data into M windows of width T, where T cor-
responds to the number of daily returns included in 
the window, which made their analysis dynamic.

The same authors (2003b) analyzed financial mar-
kets from the perspective of portfolio creation. They 
showed that the assets with the highest diversifica-
tion potential are located on the edge of minimum 
spanning tree. Authors used a combination of the 
vertex degree and the concept of the weighted port-
folio layer. The hypothesis was that stocks with the 
greatest diversification potential are located on the 
periphery of the minimum spanning trees. This as-
sumption forms the core of our analysis. 

Bonanno et al. (2004) consider how the returns of 
market-traded stocks are affected by varying the 
time horizons used to compute the correlation co-
efficients. They find that the graph structure pro-
gressively changes from a complex organization to a 
simple form as the time horizon decreases.

Another way how to define a structure of the finan-
cial market is to use the planar maximally filtered 
graph. It is more difficult method regarding the cal-
culation, but by using it, we can get more informa-
tion about the market structure. This approach was 
used by Tumminello et al. (2005, 2010) or Kenett et 
al. (2010). Other authors dealing with the correla-
tion-based networks are for example Mizuno (2005), 
Naylor (2006) or Miskiewicz (2012).

There are, of course, other approaches to the analy-
sis of financial markets. For example, international 
portfolio diversification, used by Bailey et al. (1990) 
or Abidin et al. (2004).

For an institutional investor, it is also important to 
monitor the so-called credit risk. Interesting ap-
proach to assessing credit risk using the correction 
to the KMV Black and Scholes model is introduced 
by Iazzolino and Fortino (2012). The risk from the 
perspective of the company and the comparison of 
real economy data and financially efficient work-
ing capital decisions and predictions is analyzed by 
Michalski (2016).

Šoltés (2003, 2012) have made a theoretical 
introduction to quantifying return and risk in the 
case of two and three asset portfolios. 

2. METHODS

The same database is used as in Šoltés, Danko 
(2017). The Standard and Poor’s 500 Index (from 
now on referred to as the S&P 500) serves as a 
basis for stock analysis. The S&P 500 is an index of 
500 stocks seen as a leading indicator of U.S. equi-
ties and it is a market value weighted index and 
one of the standard benchmarks for the U.S. stock 
market. The S&P 500 is widely regarded as the 
most accurate scaling factor of the performance of 
large cap U.S. equities. Individual stocks, forming 
the index at the date of compilation of the data-
base (March 2016), were divided into six groups 
according to their price history (5-year history, 
10-year history... 30-year history). It is assumed 
that the business year has on average 240 business 
days (approximately 20 business days in a month). 
Data from finance.yahoo.com, which are available 
from January 2, 1962, are the source of informa-
tion that helped to perform an analysis.
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As can be seen from Table 1, only 197 companies 
forming the index have a price history of 30 years 
and more (at the day of database creation). Stocks 
which do not have a price history for at least 
1200 days have not been included in the analysis. 
Because of the growth of the reporting period, the 
number of companies that meet a given price his-
tory decreases. Stocks which are found in 30-year 
price history are certainly also found for example 
in 5-year price history; the opposite is not neces-
sarily exact.

When creating the portfolio and analyzing its el-
ements, there occurs the issue of so-called survi-
vorship bias. In finance and investment, survivor-
ship bias is the tendency for failed or new com-
panies to be excluded from performance studies 
because they no longer exist or exist only for a 
concise time period. It often causes the results of 
studies to skew higher because only companies 
which were successful enough to survive until the 
end of the period are included. Survivorship bias, 
in our case, is not relevant because the aim of the 
investor is to create a portfolio, so only stocks of 
the existing companies whose price history is high 
enough are relevant.

The analysis was performed using the statistical 
programming language R. When working with 
graphs, the library (igraph) was used. For descrip-
tive statistics computation, the library (psych) was 
used.

3. CORRELATION-BASED 
ANALYSIS

For each price history, a data matrix is created. 
Rows of the matrix represent individual observa-
tions and columns represent individual stocks be-
longing to a particular price history. The value in 
the -thi  row and -thj  column represents the ad-

justed close price of the stock j  at time i.  It is clear 
from Table 1 that for example for the 5-year price 
history this matrix has a dimension of 1200x478 
and similarly for other price histories. Adjusted 
close price was selected because it abstains from 
the effect of dividends and stock splits.

Furthermore, for each data matrix, the returns ma-
trix is calculated according to formula 1. Because 
the oldest observations of the original data matrix 
do not have its predecessors, we lose one obser-
vation. It is clear from Table 1 that for example 
for 5-year price history returns matrix has a di-
mension of 1199x478 and similarly for other price 
histories.
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where iP  is adjusted close price in time ,i  1iP−  is 
adjusted close price in the previous business day 
(in time 1i − ) and ir  represents a daily return in 
time i.

The aim is to compute mutual relationship of each 
pair of stocks. Because of that, the correlation 
matrix for each price history is calculated using 
the Pearson correlation coefficient given by the 
formula 2:

,i , j
i , j
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ρ

σ σ
=
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where i , jρ  is correlation coefficient between re-
turns of stocks i  and ,j  i , jcov  is covariance be-
tween these returns and iσ  is the standard devia-
tion of the stock’s i  return.

The correlation matrices were converted to dis-
tance matrices using the ultra-metric:

( ) ( )2 1 ,i , jd i, j ρ= ⋅ −  (3)

Table 1. Criteria for classification of companies into different price histories

Price history Since year Minimal number of business days Number of companies
5-year history 2011 At least 1 200 business days 478 companies

10-year history 2006 At least 2 400 business days 454 companies

15-year history 2001 At least 3 600 business days 425 companies

20-year history 1996 At least 4 800 business days 371 companies

25-year history 1991 At least 6 000 business days 305 companies

30-year history 1986 At least 7 200 business days 197 companies
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where ( )d i, j  is the distance. For further details 
on the ultra-metric, see Mantegna (1999). As can 
be seen from Figure 1, there is the nonlinear nega-
tive dependence between distance and correlation.

It is clear from Figure 1 that the distance between 
stocks decreases as the correlation coefficient in-
creases. The pair of absolutely positive correlated 
stocks ( )1i , jρ =  has a distance equal to zero (see 
the black triangle). The pair of absolute negative 
correlated stocks ( )1i , jρ = −  has a distance of two 
(the maximum value of the distance function – see 
the black circle). The pair of absolute uncorrelated 
stocks ( )0i , jρ =  has a distance equal to square 
root of two (see the black square). Therefore, the 
more similar is the development of stock returns 
given by the correlation coefficient, the closer are 
the stocks and vice versa.

4. GRAPH THEORY 
APPROACH

Distance matrix with the application of discrete 
mathematics tools is the basic that gives the op-
portunity to receive new mathematical objects, 
complete graphs, which are given by vertices and 
edges. A complete graph has an edge between 
every pair of vertices. For a given number of ver-
tices, there is a unique complete graph, which 
is often written as ,nK  where n  is the number 
of vertices. It is clear from Table 1 that for ex-
ample for 5-year price history, n  is equal to 478. 
Vertices of these objects represent stocks form-
ing the index, taking into account different price 

history, while the edges between the vertices 
represent distances between calculated stocks 
from a distance matrix. We get these subgraphs 
for each of six complete graphs by applying 
the method of minimum spanning tree, which 
shows that such a subgraph of the original graph, 
that is continuous, has minimal edge evalua-
tion because of considering that there is a path 
between every pair of vertices, and it does not 
contain cycles. The structure of stocks, in which 
ones that are the closest (they have the greatest 
possible cross-correlation) are mutually linked, 
is exactly the structure that is represented by the 
minimum spanning tree. These minimum span-
ning trees and certain graph characteristics are 
the basis for selection of stocks for our portfolio.

During the analysis, graph characteristic eccen-
tricity of the vertex is used which is considered to 
be very suitable for identifying individual stock 
centrality. According to West (2000), the eccen-
tricity of the graph vertex v  in the connected 
graph is the maximum graph distance between 
v  and any other vertex of this graph. For a dis-
connected graph, all vertices are defined to have 
infinite eccentricity. The maximum eccentricity 
is the graph diameter. The minimum graph ec-
centricity is called the graph radius.

Based on the findings of Onella et al. (2003b), 
there are some interesting attributes regarding 
the relationship between graph characteristics 
of vertices forming the minimum spanning tree 
and their corresponding portfolio forming stocks. 
The authors examined the change in the length of 

Figure 1. Negative dependence between distance and correlation
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each minimum spanning tree in time. Based on 
the assumption that the more stocks are uncor-
related, the more they are suitable to diversify the 
portfolio risk, the authors claim that the longer 
the length of the minimum spanning tree repre-
senting the taxonomy of stocks, the greater the 
potential of the stock market (or portfolio) for risk 
diversification. An explanation could be the neg-
ative correlation between correlation coefficient 
and distance given by formula 1. Uncorrelated 
stocks, therefore, form the more extended mini-
mum spanning trees and create additional op-
portunities for risk diversification. The authors 
analyzed the stock market using the minimum 
spanning trees changing over time and conclud-
ed that the longer minimum spanning trees have 
greater diversification potential that the smaller 
ones. If the dynamics over time would be ignored 
and only one minimum spanning tree for a whole 
analyzed time period is assumed, the question re-
mains where are the stocks with the greatest di-
versification potential located. The authors claim 
that in any minimum spanning tree, stocks with 
the greatest diversification potential are located 
closer to the graph periphery than to the center 
of the graph. To verify this assumption, the au-
thors used the so-called weighted portfolio layer, 
which represents the combination of the degree 
of the vertex (graph characteristic), the distance 
of the vertices (length of the shortest path having 
the two vertices as its endpoints) and Markowitz 
theory of the optimal portfolio. 

The analysis described in the following section is 
not in this sense dynamic because six static time 
periods are analyzed, so the minimum spanning 
tree length is not used. Based on the findings 
above to identify the centrality of the vertex, in-
stead of the weighted portfolio layer, vertex eccen-
tricity was used. If the assumption of the diversifi-
cation potential of the stocks located on the graph 
periphery is correct, then the use of the vertex ec-
centricity appears to be very appropriate charac-
teristic. Large eccentricity indicates the vertices 
found on the graph periphery and the smaller ec-
centricity is related to the stocks in the center of 
the graph.

Characteristic of the vertex degree, defined as fol-
lows was also considered. The degree of a graph 
vertex v  is the number of graph edges which 
touch v.  A vertex whose degree is one is called 
leaf. Leafs are more likely located on the graph 
periphery because they have only one neighbor 
and the connection between vertices ends in these 
vertices. Neighbor is a vertex that is adjacent (rela-
tion between two vertices that are both endpoints 
of the same edge) to a given vertex. Vertices with 
higher degrees should be located more in the cen-
ter of the graph. However, in Figure 2, both ways 
of identifying stocks on the graph periphery are 
shown, for example, for the minimum spanning 
tree of 30-year history. As can be seen, the use of 
the eccentricity is in this case much more suitable 
than the use of the vertex degree (see Figure 2).

Figure 2. Identification of the central and periphery vertices using eccentricity and degree
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In Figure 2, on the left, we can see division the ec-
centricity of the individual vertices into two groups: 
large eccentricity vertices and small eccentricity 
vertices so that both groups had approximately 
the same number of vertices (for more details of 
this division, see Table 2). Vertices with large ec-
centricity are highlighted in black. In Figure 2 on 
the right, all vertices with a degree equal to one 
are highlighted in black. If the assumption of the 
diversification potential of the stocks located on 
the graph periphery is correct, we consider the use 
of eccentricity to be more appropriate, because, in 
case of the vertex degree, there are a lot of degree 
one vertices located in the center of the graph. 

5. RESULTS

For each price history, minimum spanning trees 
are calculated. For the vertices of these spanning 
trees are then calculated eccentricities, and for 
each price history, two groups were formed: large 
eccentricity vertices and small eccentricity verti-
ces so that the number of elements in both groups 
is relatively equal. The procedure is explained in 
Table 2 below.

The aim is to test the assumption of the diversifi-
cation potential of the stocks located on the graph 
periphery and to find out if there is a statistically 
significant difference between the risk of portfo-
lios created from the stocks of only the first or only 
the second group. 

For each price history, stocks are divided into 
two groups based on Table 2. From each group, 
we randomly selected ten stocks. It means that 
each stock in the particular group was given 
equal chance of being selected but with no stock 
being selected twice within a single portfolio. 
Subsequently, using Markowitz portfolio theory, 
we searched for the weights of stocks ( )1 10w w−  
to minimize the standard deviation of the 
portfolio. 

The standard deviation of the portfolio is calcu-
lated as the square root of the product of the vector 
of individual stocks equities (weights) with the co-
variance matrix of stocks’ returns and the trans-
posed vector of these equities:

,Tw    wσ = ⋅∑⋅  (4)

Table 2. Process of division into large and small eccentricity for individual time histories 

Eccentricity/History 5 10 15 20 25 30
10 0 0 0 0 0 1

11 0 0 0 0 0 2

12 0 1 1 0 2 15

13 0 4 20 2 7 34

14 1 8 30 7 22 24

15 21 21 42 19 34 24

16 28 42 39 38 47 33

17 51 55 46 33 45 30

18 60 78 64 47 47 24

19 75 82 70 45 49 6

20 60 67 60 69 27 4

21 59 52 36 45 9 0

22 43 30 8 26 12 0

23 27 11 6 24 4 0

24 22 3 3 13 0 0

25 18 0 0 3 0 0

26 8 0 0 0 0 0

27 3 0 0 0 0 0

28 2 0 0 0 0 0

Breakpoint 19-20 18-19 18-19 19-20 17-18 15-16

Small eccentricity 236 209 242 191 157 100

Large eccentricity 242 245 183 180 148 97

Total 478 454 425 371 305 197
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where w  represents row weight vector, ∑  covari-
ance matrix of returns and T w  transposed row 
weight vector (column weight vector).

For each price history for both groups, was run 
10,000 times the random selection of ten stocks. 
After each simulation was stored the value of the 
minimized standard deviation of the portfolio. 
Storing optimal portfolio weights was ignored to 
save memory and accelerate the calculation. To 
find optimal portfolio weights is not the aim of 
this consideration. Optimization is performed 
using the algorithm introduced by Byrd et al. 
(1995), which represents a modification of the 
Newton optimization method.

For each price history, there are two samples 
with 10,000 values of the minimized standard 
deviation of the portfolio. In the first group 
(sample 1), these deviations are calculated from 
portfolios whose stock have a large eccentricity 
(located on the periphery of the minimum span-
ning tree). In the second group (sample 2), there 
are deviations of portfolios whose stocks have 
small eccentricity (located in the center of the 
minimum spanning tree). 

Table 3 shows descriptive statistics of the sam-
ples, where n is the number of observations; sd is 
standard deviation; trim is trimmed mean with 
trim defaulting to 0.1; mad is median absolute 
deviation; min is minimum; max is maximum; 
skew is skewness of the sample distribution, and 
kurt is kurtosis of the sample distribution. As 
can be seen, the mean values, as well as other 
characteristics, such as the median, the standard 

deviation or the range of values, differ as well. 
Another interesting finding is that for stocks 
with large eccentricity (sample 1) compared to 
sample 2 (low eccentricity stocks), the skewness 
and kurtosis of the minimized standard devia-
tion of the portfolio for each price history are 
higher. This means that in case of sample 1 the 
distribution is right-skewed: most values are be-
low the average (mean is higher than median). 
For the sample 1 compared to sample 2, the dis-
tribution of minimized standard deviation of 
the portfolio is sharper. Sample 2 is from this 
point of view flatter.

The aim is to test the differences in the mean 
value of these samples and to show that stocks 
located on the periphery of minimum spanning 
tree have a better diversification potential. There, 
we assume that minimized standard deviation of 
the portfolio of Sample 1 is statistically signifi-
cantly smaller than the one of sample 2. 

Tests for comparison of means are used. 
Distribution of minimized standard deviations 
of the portfolio is not normally distributed, de-
spite a large number of observations. Because of 
that, the non-parametric independent 2-group 
Mann-Whitney U Test is used, not the standard 
parametric unpaired (two sample) t-test. For 
most samples, the assumption of normality is 
corrupted mainly because of high kurtosis and 
right-skewed distribution. As an example, plots 
of the density and normal Quantile-Quantile 
(Q-Q) plot of minimized standard deviation of 
the portfolio for 5-year history and sample of 
large eccentricity are shown in Figure 3.

Table 3. Descriptive statistics of minimized standard deviation of the portfolio

History Sample n mean sd median trim mad min max range skew kurt
5 1 10000 0.00879 0.00078 0.00867 0.00872 0.00070 0.00709 0.01373 0.00664 1.03551 1.79264

5 2 10000 0.01034 0.00090 0.01042 0.01035 0.00085 0.00771 0.01405 0.00634 –0.09309 –0.22795

10 1 10000 0.01122 0.00142 0.01092 0.01105 0.00123 0.00871 0.02032 0.01161 1.29803 2.49398

10 2 10000 0.01263 0.00135 0.01266 0.01261 0.00136 0.00934 0.01778 0.00844 0.13617 –0.20176

15 1 10000 0.01042 0.00102 0.01022 0.01032 0.00094 0.00841 0.01646 0.00805 1.03987 1.55338

15 2 10000 0.01265 0.00136 0.01256 0.01257 0.00138 0.00919 0.01751 0.00832 0.20724 –0.26484

20 1 10000 0.01127 0.00118 0.01107 0.01115 0.00106 0.00891 0.01719 0.00828 1.00762 1.24435

20 2 10000 0.01240 0.00106 0.01233 0.01236 0.00109 0.00969 0.01991 0.01022 0.46667 0.38655

25 1 10000 0.01027 0.00086 0.01013 0.01019 0.00074 0.00842 0.01531 0.00689 1.19428 2.46169

25 2 10000 0.01190 0.00095 0.01186 0.01188 0.00093 0.00928 0.01625 0.00696 0.33633 0.21913

30 1 10000 0.00996 0.00058 0.00990 0.00992 0.00054 0.00856 0.01415 0.00558 0.86116 1.66173

30 2 10000 0.01195 0.00086 0.01196 0.01196 0.00077 0.00967 0.01548 0.00581 –0.05178 0.12166
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The null hypothesis is formulated as follows: the 
mean value of the minimized standard deviation 
of both portfolios’ samples is equal. 

The alternative hypothesis is as follows: the mean 
value of the minimized standard deviation of sam-
ple 1 (a group of peripheral stocks with larger ec-
centricities) is statistically significantly lower than 
of sample 2. To support our assumption, we would 
like to reject the null hypothesis. 

H0: 1 2 ,µ µ=  

H1: 1 2 ,µ µ<

where index 1 represents sample 1 (stocks with 
larger eccentricities) and index 2 represents sam-
ple 2 (stocks with smaller eccentricities). 

Because the aim is to show that peripheral stocks 
have a better diversification potential (lover mini-

mized standard deviation of the portfolio), one-
tailed tests are used. 

Due to the high number of observations, we could 
also come out of the conclusions of the standard 
unpaired t-test. Results of this test in comparison 
with the non-parametric independent 2-group 
Mann-Whitney U Test are not different. Table 4 
below shows results of both tests.

As can be seen in Table 4, in case of both, parametric 
and nonparametric tests of mean values, the p-val-
ues are asymptotically equal to 0, which means that 
for each price history the null hypothesis is rejected. 
The assumption about diversification potential of 
the periphery stocks is supported and clearly con-
firmed. As shown, this is true for any price history. 
Furthermore, it is clear that the minimized standard 
deviations of portfolios are not differentiated from 
the perspective of the price history. In other words, 
there is no dependence between the price history and 
the minimized standard deviation of the portfolio.

Figure 3. Density and normal Q-Q plot of minimized standard deviation of the portfolio
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CONCLUSION

The process of portfolio creation while minimizing its standard deviation was investigated in this con-
tribution. By simulations was showed that the stocks located on the periphery of the estimated mini-
mum spanning trees have a higher diversification potential than others. Higher diversification potential 
means a lower average value of the minimized standard deviation of the portfolio created by simulation 
of a particular sample (small vs. large eccentricity). It was shown that in the case of random selection 
of stocks with larger eccentricity, can be created on average a lower risk portfolio as from a random se-
lection of stocks with lower eccentricity. The eccentricity of the vertex is, according to these results, a 
very suitable method for identifying the centrality and the remoteness of the individual stocks. Future 
analysis could be complemented by the inclusion of other graph characteristics, such as a vertex degree 
or a weighted portfolio layer, and the results could be confronted with each other.
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