ПРИМЕНЕНИЕ АНТИБИОТИКОВ И АНТИСЕПТИКОВ В АКУШЕРСКОЙ И ГИНЕКОЛОГИЧЕСКОЙ ПРАКТИКЕ

3. Д. Каримов, М. Т. Хусанходжаева, Б. С. Абдикулов

Республиканский научный центр экстренной медицинской помощи МЗ Республики Узбекистан, Ташкент

Адрес для переписки:

Каримов З. Д.

Республиканский научный центр экстренной медицинской помощи МЗ РУз

2, ул. Фархадская, Ташкент, Республика Узбекистан, 100107

ВВЕДЕНИЕ

Структура условно патогенной инфекции (УПИ) у больных гинекологическими заболеваниями изучена достаточно хорошо и не наблюдается существенных изменений в последнее десятилетие. Ведущее место в ней занимают неклостридиальные анаэробы, гноеродные стафилококки, грамотрицательная микрофлора [1, 2]. Вместе с тем, вопросы чувствительности микроорганизмов к антибиотикам и антисептикам всегда будут актуальными из-за их высокой приспосабливаемости.

Важное место в лечении больных осложненными формами гнойно-воспалительных заболеваний органов малого таза (ГВЗОМТ) занимает местная санационная терапия. Установлено, что результаты промывания брюшной полости и полости матки при тяжелых септических осложнениях зависимы не только от тщательности механической очистки, но в существенной мере определяются антибактериальными свойствами и токсичностью промывающего агента.

Возникает необходимость получения общей картины эффективности применения наиболее употребляемых антибиотиков и антисептиков при различных видах УПИ. Этот вопрос имеет прямое отношение для рекомендаций по начальной эмпирической антибактериальной терапии в протоколах диагностики и лечения большого круга ГВЗОМТ у женщин.

Цель работы — определить характер чувствительности возбудителей УПИ у больных акушерского и гинекологического профиля к группе широко применяемых в настоящее время антибиотиков и антисептиков в Республике Узбекистан.

ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

Материалом бактериологического исследования служили 215 штаммов возбудителей гнойной УПИ выделенные из 197 образцов, взятых у 109 больных женщин с тяжелыми ГВЗОМТ (перфорация тубоовариального гнойного образования, пельвиоперитонит, диффузный и разлитой гинекологический перитонит, послеродовой эндомиометрит), из которых 70 штаммов выделены из брюшной полости (у 68 больных с осложненными формами гнойно-воспалительных заболеваний придатков матки), 45 — из полости матки (у 41 больной с послеродовым эндометритом) и 100 штаммов — из нижнего отдела генитального тракта (у 88 женщин, страдавших острым колыпитом и бактериальным вагинозом на фоне вышеуказанных заболеваний внутренних гениталий.

Бактериологическое исследование материала (гной, фибринозные массы, пиогенная капсула,

соскоб полости матки, содержимое влагалища, цервикального канала, уретры) с определением чувствительности выделенной микрофлоры к антибиотикам и антисептикам проводили в бактериологической лаборатории РНЦЭМП по общепринятым методикам. Для оценки чувствительности микрофлоры к антибактериальным препаратам использовали только два критерия: чувствительный или устойчивый штамм. Все штаммы микроорганизмов со слабой чувствительностью к тому или иному препарату нами были отнесены в категорию устойчивых. Изучение эффективности антисепти- κ ов — 0,02% раствор нитрофурала (Фурациллин), водный 0,05% раствор хлоргексидина, 0,02% повидон-йода (Бетадин, Эгис) и декаметоксина (Декасан, Юрия-Фарм, Украина) — проводили в бактериологической лаборатории РНЦЭМП по стандартной методике. Использовали выделенные штаммы *E. coli* и *P. aeruginosa* в концентрации $> 10^9$ KOE/мл.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В таблице 1 представлена структура выделенных возбудителей УПИ из брюшной полости, полости матки и нижнего отдела гениталий. Как видно, по-прежнему ведущее положение занимает гноеродная грамотрицательная микрофлора и стрепто-стафилококковая инфекция. Ассоциативный рост преимущественно отмечался в материале из нижнего отдела гениталий. Сравнивая спектр возбудителей, выделенных из брюшной полости, полости матки и нижнего отдела гениталий, следует отметить: в брюшной полости ведущее положение занимают E. coli, S. epidermidis и P. aeruginosa, тогда как в нижнем отделе гениталий — S. epidermidis и S. saprophyticus. Частота выделения УПИ из полости матки не отличалась от такой в брюшной полости. Необходимо отметить уменьшение частоты ассоциативного роста по восходящей — от нижнего отдела гениталий до брюшной полости.

В таблице 2 приведены уровни устойчивости выделенной микрофлоры из изучаемых сред к наиболее применяемым в настоящее время антибиотикам. Очевидно, что возбудители УПИ, выделяемые при акушерских и гинекологических гнойно-воспалительных заболеваниях, проявляют высокую степень устойчивости к изучаемым препаратам, а к таким, как ампициллин и амоксициллин/клавуланат, чувствительными были 23,3 % выделенных штаммов. Более 60 % выделенных штаммов УПИ были чувствительны только к 5 из 16 антибиотиков — к цефалексину, цефотаксиму, цефтриаксону, амикоцину и

Таблица 1 — Структура возбудителей ГВЗОМТ

				Моно	Ассоциации						
Возбудитель	Брюшная полость		Полость матки		Нижний отдел гениталий		Всего		Брюшная полость	Полость матки	Нижний отдел гениталий
	n	%	n	%	n	%	n	%	n	n	n
E. coli	22	32,4	11	26,8	19	21,6	52	47,7	1	2	4
S. epidermidis	17	25,0	7	17,1	30	34,1	54	49,5	1	2	4
P. aeruginosa	10	14,8	5	12,2	7	8,0	22	20,2	-	-	4
K. pneumoniae	6	8,8	5	12,2	7	8,0	18	16,5	1	2	2
S. saprophyticus	5	7,4	4	9,8	10	11,4	19	17,4	-	-	2
S. viridans	4	5,9	4	9,8	6	6,8	14	12,8	-	2	1
S. fecalis	-	-	2	4,9	5	5,7	7	6,4	-	-	1
S. aureus	3	4,4	3	7,3	5	5,7	11	10,1	1	-	1
Enterobacter spp.	2	2,9	2	4,9	4	4,5	8	7,3	-	-	2
S. pyogenes	1	1,5	2	4,9	3	3,4	6	5,5	-	-	-
Candida spp.	-	-	-	-	3	3,4	3	2,8	-	-	-
C. freundi	-	-	-	-	1	1,1	1	0,9	-	-	3
Всего штаммов	70		45		100		215				
Количество больных	68		41		88		109				

доксициклину. Неожиданно низким был уровень чувствительности к цефтазидиму и цефуроксиму, а также более высоким он ожидался у цефаперазону. Уровни чувствительности к офлоксацину, пефлоксацину, цефазалину и гентамицину приближаются либо незначительно превышают 50 %, что указывает на истощающийся ресурс использования этих препаратов при лечении пациентов с тяжелыми гнойно-воспалительными заболеваниями.

Вместе с тем, данные таблицы 2 позволяют обратить внимание на следующие особенности. Показатель чувствительности (почти ко всем антибиотикам) микрофлоры, выделенной из брюшной

полости выше такового нижнего отдела гениталий. Вероятно, в этом имеет место некий биологический смысл, нуждающийся в дальнейшем изучении, хотя теоретические предпосылки для объяснения этого факта есть. Второй особенностью, на наш взгляд, является сохранение высокой эффективности «старых» препаратов, например цефотаксима. На рынке постсоветского пространства он появился в 80-х годах прошлого века и, тем не менее, до настоящего времени успешно конкурирует с новыми препаратами.

Из-за громоздкости материала, мы не можем привести результаты изучения чувствительности к

Таблица 2 — Устойчивость микроорганизмов к антибиотикам у больных ГВЗОМТ

Препарат		цел гениталий таммов)	Брюшная (70 шта		Полость г (45 штам		Всего (215 штаммов)	
	абс. число	%	абс. число	%	абс. число	%	абс. число	%
Ампициллин	79	79,0	58	82,9	36	80,0	173	80,5
Амоксициллин/ клавуланат	79	79,0	52	74,3	34	75,6	165	76,7
Цефалексин	35	35,0	16	22,9	13	28,9	64	29,7
Цефазолин	41	41,0	32	45,7	20	44,4	93	43,3
Цефуроксим	51	51,0	37	52,9	24	53,3	112	52,1
Цефотаксим	33	33,0	22	31,4	15	33,3	70	32,6
Цефаперазон	52	52,0	29	41,4	20	28,6	101	47,0
Цефтазидим	70	70,0	35	50,0	24	53,3	129	60,0
Цефтриаксон	40	40,0	24	34,3	17	37,8	81	37,7
Линкомицин	67	67,0	19	27,1	13	28,9	99	46,0
Гентамицин	54	54,0	30	42,9	30	66,7	114	53,0
Амикоцин	29	29,0	23	32,9	13	28,9	65	30,2
Пефлоксацин	52	52,0	21	30,0	14	31,1	87	40,5
Офлоксацин	55	55,0	24	34,3	16	35,6	95	44,2
Ципрофлоксацин	53	53,0	24	34,3	16	35,6	93	43,3
Доксициклин	50	50,0	10	14,3	7	15,6	67	31,2

антибиотикам остальных выделенных возбудителей УПИ. Однако принципиальных различий (от приведенных в таблице 2) в характере полученных результатов нет. Вместе с тем, выявили наличие существенного расширения спектра подавления микрофлоры при использовании комбинации препаратов. С этой точки зрения, выявленные нами возможные комбинации (применяя критерии химической совместимости) не существенно отличаются от известных рекомендаций 80-90 гг. XX века, например гентамицин+ампициллин, цефотаксим+доксициклин [1]. Это показывает, что несмотря на постепенное увеличение устойчивости микроорганизмов к «традиционным» антибиотикам, характер синергического их применения не меняется. Вместе с тем, мы не можем ответить на вопрос о динамике повышения устойчивости гнойной УПИ к «традиционным» антибиотикам, т.к. не выявили аналогичной (табл. 2) информации в доступной региональной литературе, а последнее обстоятельство имеет важное значение.

В таблице 3 представлены результаты исследования бактерицидной активности антисептиков, наиболее часто употребляемых для санации инфицированных полостей организма. Как видно, по критерию концентрация/бактерицидная активность, после пятикратного разведения в 2 раза декаметоксин сохранял бактерицидную активность к двум тестируемым микроорганизмам. Повидон-йод в четвертом разведении уже давал рост микроорганизмов, а хлоргексидин — в третьем. Нитрофурал имел наихудшие результаты тестирования.

Для лаважа брюшной полости при распространенном гинекологическом перитоните мы использовали 2 из 4 исследованных антисептиков (кроме хлоргексидина и нитрофурала): повидон-йод в разведении 1:3 и декаметоксин без разведения. При наблюдении в послеоперационном периоде с использованием ряда критериев (количество послеоперационных фибрильных дней, частота и тяжесть послеоперационных осложнений, уровень лейкоцитоза) в равноценных выборках существенной разницы не выявили. Вместе с тем, при лечении больных послеродовым эндометритом с применением декаметоксина и повидон-йода (оба препарата без разведения) для программного лаважа полости матки установлена достоверно лучшая клиническая динамика. Так, при использовании декаметоксина, по сравнению с повидон-йодом, было меньше дней с фебрильной температурой тела с момента начала терапии ($(3,0\pm0,1)$ и $(5,2\pm0,1)$ дня, соответственно); у большего количества больных к 4 дню лечения нормализовался лейкоцитоз (у (70.4 ± 3.1) и $(48.8 \pm$ 2,1) % больных, соответственно) прекратились гнойные выделения из полости матки (у (86,4 ± 2,1) и ($52,2\pm3,1)$ % больных, соответственно). К 4 суткам лечения результаты бактериологического исследования содержимого из полости матки были положительными только у 3,1% больных использовавших повидон-йод, а в группе, где применялся декаметоксин, они были отрицательными. Никаких нежелательных явлений, связанных с характером препарата, как при внутрибрюшном введении, так и при лаваже полости матки, мы не наблюдали.

Таблица 3 — Результаты исследования бактерицидной активности антисептиков (исходного официнального раствора и последующих пятикратных разведений в 2 раза)

Тестируемые микроорганизмы, >10 ⁹ КОЕ/мл	Длительность экспозиции, мин	Контроль	Препарат	Концентрация препарата							
			КСИН	0,02 %	0,01 %	0,005 %	0,0025 %	0,00125 %	0,000625 %		
E. coli	10	+	декаметоксин	-	-	-	-	-			
P. aeruginosa	10	+	дека	-	-	-	-	-			
			йод	исходный	0,5 исх.	0,25 исх.	0,125 исх.	0,0625 исх.	0,03 исх.		
E. coli	10	+	повидон-йод	-	-	-	-	+	+		
P. aeruginosa	10	+	ПОВ	-	-	-	-	+	+		
			дин Ный	0,02 %	0,01 %	0,005 %	0,0025 %	0,00125 %	0,000625 %		
E. coli	10	+	хлоргексидин 0,02 % водный	-	-	-	+	+	+		
P. aeruginosa	10	+	хлор 0,02	-	-	-	+	+	+		
			лал	0,05 %	0,025 %	0,0125 %	0,00625 %	0,003 %	0,0015 %		
E. coli	10	+	нитрофурал 0,05 %	-	+	+	+	+	+		
P. aeruginosa	10	+	НИТ	+	+	+	+	+	+		

выводы

Таким образом, частота выделения возбудителей гнойной УПИ, устойчивых к наиболее распространенным антибиотикам в нашей стране, высока. Вместе с тем, резервы использования некоторых из них не исчерпаны. В качестве начальной эмпирической антибактериальной терапии больных гнойно-воспалительными заболеваниями в гинекологической практике в настоящий период можно рекомендовать применение цефотаксима, цефалексина, цефтриаксона и амикоцина, к которым установлен наименьший уровень устойчивости

выделенной микрофлоры. Неизменная комбинация указанных препаратов с метронидазолом представляется наиболее рациональной в лечении тяжелых форм инфекции. Существенное значение в лечении распространенных форм гнойной инфекции брюшной полости и полости матки занимает местная санационная терапия растворами антисептиков. Выявленные результаты сравнительного тестирования наиболее употребляемых антисептиков, позволяют рекомендовать декаметоксин к широкому применению в акушерской и гинекологической практике.

ПРИМЕНЕНИЕ ДЕКАМЕТОКСИНА В ЛЕЧЕНИИ БОЛЬНЫХ ГНОЙНО-РАНЕВОЙ ИНФЕКЦИЕЙ

Н. А. Алиев, Т. Н. Буриев, Д. А. Курбонов, Х. Т. Шомуродов, Б.А Эшмирзоев

Центральная районная больница Шахринавского района, Республика Таджикистан

Адрес для переписки:

Алиев Нурали Ахмедович.

E-mail: jam-03@mail.ru

Об актуальности проблемы борьбы с гнойно-раневой инфекцией свидетельствует ее активное обсуждение на II конгрессе Ассоциации хирургов им Н.И. Пирогова (Санкт-Петербург, 1998 г.), на Форуме хирургов мира (Москва, 1999 г.) и на III съезде хирургов и детских хирургов, анестезиологов и реаниматологов Таджикистана (Душанбе, 2008 г.) На современном этапе возрастает значимость грамотрицательной и условно патогенной микрофлоры в этиологии гнойно-раневой хирургической инфекции. Поэтому наряду с разработкой новых антибиотиков возникает необходимость изыскать средства местно влияющие на инфекцию и раневой процесс. Широко применяемые гипертонический раствор хлористого натрия, фурациллин, хлоргексидин, Ура-Султан и др. не всегда отвечают тем требованием, которые предъявляют к лекарственным средствам для местного лечения раневой инфекции на современном этапе — не всегда обладают бактерицидным свойством, не проникают в мертвый субстрат и не способствует активному удалению некротической ткани. Поэтому поиск наиболее эффективных, доступных и недорогих антисептиков для местного лечение пациентов с ранами остается актуальным.

Для лечения 82 больных в возрасте от 1 до 34 лет с различными острыми гнойными процессами (у 36 человек), с перитонитом (у 21) и загрязненными обширными ранами мягких тканей (у 25) применяли 0,02 % раствор декаметоксина (Декасан, Юрия-Фарм, Украина). У 67 пациентов острый гнойный процесс мягких тканей был в септико-пиемической (у 45) и септико-токсической (у 22) стадии.

Всем больным после вскрытия и освобождения гнойной полости от некротических масс рану промывали марлевым тампоном, смоченным в растворе декаметоксина, высушивали и рыхло дренировали турундой, смоченной в растворе декаметоксина. Сверху накладывали салфетку пропитанную этим же раствором.

Повязки меняли два раза в сутки до уменьшения отека, прекращения выделения гнойного содержимого и появления мелкозернистых грануляций.

Воздействие декаметоксина на процесс очищения раны от микробов и некротического субстрата связано со стимуляцией местного клеточного иммунитета и пролиферативной активности эпителиоцитов и эпидермиса кожи. Декаметоксин не препятствует фагоцитарной реакции клеток и несколько усиливает ее за счет снижения поверхностного натяжения, увеличения электрического заряда оболочки микробной клетки и инактивации токсических энзимов.

По динамике результатов клинико-лабораторных исследований в процессе лечения пациентов с острыми гнойными заболеваниями мягких тканей раствором декаметоксина воспалительный процесс регрессировал быстрее, чем в случаях применения других антисептических средств.

Таким образом, полученные данные свидетельствуют о том, что декаметоксин ускоряет процесс очищения рани от мертвого субстрата, быстрее исчезают признаки воспаления, раньше появляется грануляционная ткань, увеличивается репаративная активность местных тканей. Декаметоксин целесообразно использовать для лечения и профилактики гнойно-хирургической инфекции мягких тканей.