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Deficit at ruin with threshold proportional reinsurance 
Abstract 

In this paper, we focus our analysis on the distribution function and the moments of the deficit at ruin in a model with a 
threshold proportional reinsurance strategy using the Gerber-Shiu function. This strategy considers a proportional 
reinsurance, but the retention level is not constant and depends on the surplus. Then a retention level k1 is applied 
whenever the surplus is less than a specific threshold b, and a retention level k2 is applied in the other case. 

In a Poisson risk model, we derive the integro-differential equation for the Gerber-Shiu function when the claim 
amount is exponentially distributed. Then, we obtain the analytical expression for the Gerber-Shiu function for a set of 
penalty functions. This analytical expression is applicable for several penalty functions and includes, among others, the 
ruin probability, the time of ruin and the distribution function of the deficit at ruin. 

Keywords: Gerber-Shiu function, reinsurance, penalty function. 

Introduction© 

The classical compound Poisson risk model has 
been studied extensively (Bowers et al., 1997; 
Gerber, 1979; Dickson, 2005; Asmussen 2000...). 
In 1998, Gerber and Shiu introduced the so-called 
Gerber-Shiu function defined as a discounted 
penalty function payable at ruin. This function 
allows obtaining, among others, ruin probability, 
the time to ruin, the level of the surplus both prior 
and at ruin. 

In this paper, using the Gerber-Shiu function, we 
focus our analysis on the distribution function and 
the moments of the deficit at ruin in a model with a 
threshold proportional reinsurance strategy. This 
strategy considers a proportional reinsurance, but 
the retention level is not constant and depends on 
the surplus. Then a retention level k1 is applied 
whenever the surplus is less than a specific 
threshold b, and a retention level k2 is applied in the 
other case. Since for the insurer, reinsurance is a 
tool for controlling the solvency of the portfolio, it 
seems natural that the retention level should depend 
on the surplus level at any given moment. The 
threshold proportional reinsurance strategy is an 
easy and clear way to include such dependence. The 
aim of this paper is to analyze the deficit at ruin in a 
Poisson risk model with a threshold proportional 
reinsurance strategy. 

The paper is organized as follows: In Section 1, the 
assumptions and some preliminaries are explained. 
In Section 2 we derive the integro-differential 
equation for the Gerber-Shiu function in a model 
with threshold proportional reinsurance strategy and 
assuming an exponential distribution for the 
individual claim amount. Then, we obtain the 
corresponding ordinary differential equation that 
allows us obtaining the ruin probability, the Laplace 
transform of the time of ruin, and the distribution 
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function and the moments of the deficit at ruin. In 
Section 3 we obtain analytical expressions for the 
distribution function and the moments of the deficit 
at ruin if ruin occurs for exponential individual 
claim amount. In Section 4 some numerical results 
are presented. The final section concludes the paper. 

1. Assumptions and preliminaries 

In the classical risk theory model, the surplus, R(t), 
at a given time t∈[0,∞) is defined as R(t) = u + ct – 
S(t), with u = R(0) ≥ 0 being the insurer’s initial 
surplus, S(t) the aggregate claims and c the rate at 
which the premiums are received. 

( )S t  is modeled as a compound Poisson process 

( )

1
( )

N t

i
i

S t X
=

= ∑ ,
 

where N(t), the number of claims occurring until 
time t, follows a Poisson process with parameter λ, 
the amount of individual claims {Xi, i≥1} is a 
sequence of independent and identically distributed 
random variables with density function f(x) and N(t) 
is independent of {Xi, i≥1}. 

The instantaneous premium rate, c, is proportional 
to the product of the mean number of claims, λ, and 
the mean value of the individual claim amount, 
E[X]. In other words, c = λE[X](1 + ρ), where ρ, 
called the security loading coefficient, is a positive 
constant, in order to fulfill the net profit condition. 

In this model, and in the more general ordinary 
renewal model, the interclaim-time random 
variables, { } 1i i

T ∞

=
, are modeled as a sequence of 

independent and identically distributed random 
variables, where T1 denotes the time until the first 
claim and Ti, for i > 1, denotes the time between the 
(i-1)th and ith claims. Note that in a Poisson process 
with parameter λ, Ti, i > 1 has an exponential 
distribution with mean 1/λ. 
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The time to ruin is defined as T = min {t|R(t) < 0}, 
with T = ∞ if R(t) ≥ 0 for all t ≥ 0. The ultimate ruin 
probability is 

[ ]
( ){ }

( ) | (0)

| (0) ,

u P T R u

E I T R u

ψ = < ∞ =

= < ∞ =
 

where I(A) = 1 if A  occurs and I(A) = 0 otherwise. 

Let us first consider the effect of a proportional 
reinsurance. The ceding company (insurer) and the 
reinsurer agree on a cession percentage, say (1 – k), 
being k the retention level applied to each claim. Then, 
in one period, the expected aggregate cost assumed by 
the insurer is kλE[X] and the expected aggregate cost 
assumed by the reinsurer is (1 – k)λE[X]. 

We assume that insurance and reinsurance 
premiums are calculated following the expected 
value principle with positive loading factors, being 
ρR > 0 the reinsurer loading factor. 

The total premium income rate retained by the 
insurer, c′, depends on ρR and k, where  

[ ]( ) ( )( ) [ ]XλEρkρXλEc' R+−−+= 111 .    (1) 

A new security loading for the insurer, ρN, can be 
defined, considering that [ ]( )NρXkλλc' += 1 , 
from (1) 

.0, >∀
−

−= k
k

R
RN

ρρρρ      (2) 

If ρ = pR, the total premium paid by the 
policyholder c is shared between insurer and 
reinsurance in the same proportion k, so c′ = kc and 
ρN = p. It is normally assumed that ρR > ρ, because 
if ρ > ρR  the insurer would simply cede his entire 
portfolio to the reinsurer, a situation which would be 
senseless. 

Let R–(T) be the surplus immediately before ruin, 
and R+(T) the surplus at ruin if ruin occurs. Gerber 
and Shiu (1998, 2005) define the function 

( ) ( )( ) ( ), ( ) | (0) ,Tu E e w R T R T I T R uδφ − − +⎡ ⎤= <∞ =⎣ ⎦  
(3)

 
where δ ≥ 0 is the discounted factor, and w(x,j), x ≥ 0, 
j > 0, is the penalty function, so that φ(u) is the 
expected discounted penalty payable at ruin. This 
function is known to satisfy a defective renewal 
equation (Gerber and Shiu, 1998; Li and Garrido, 
2004; Willmot, 2007). 

In this paper, we consider a threshold proportional 
reinsurance strategy, which is defined by a threshold  

b ≥ 0. A retention level k1 is applied whenever the 
surplus is less than b, and a retention level k2 is 
applied in the other case. Then, the premium income 
retained is c1 and c2, respectively. We consider that 
the retention levels give new positive security 
loadings for the insurer, i.e., the net profit condition 
is always fulfilled. From (2), we can define 
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Fig. 1. Threshold reinsurance strategy 

Depending on w(x,j), we can obtain different 
interpretations for the Gerber-Shiu function. In this 
paper, we will consider the following possibilities, 
for w(x,j) 
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(4) 

The interpretations shown in (4) include the 
discounted factor, δ. For w(x,j) = 1, we obtain the 
defective Laplace transform of the time of ruin being δ 
the parameter. If we consider δ = 0, in addition to the 
ultimate ruin probability included in (4), two other 
interesting functions can be obtained by dividing the 
Gerber-Shiu function by the probability of ruin: first, 
for w(x,j) = jm, m > 0, the ordinary moments of the 
deficit at ruin if ruin occurs, and second, for w(x,j) = 
I(j ≤ y), the distribution function of the deficit at ruin if 
ruin occurs. 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 1, Issue 1, 2010 

 40

2. Integro-differential equation for the Gerber-
Shiu function 

We derive the integro-differential equations 
satisfied by the Gerber-Shiu discounted penalty 
function. The discounted penalty function φ(u) 
behaves differently, depending on whether its 
initial surplus u  is below or above the level b. 
Hence, for notational convenience, we write 
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( ), .
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u
u u b
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φ

φ
≤ <⎧

= ⎨ ≥⎩  
The following theorem provides integro-
differential equations for φ(u) in a Poisson 
process model with unitary exponential individual 
claim amount. 

Theorem 1. The discounted penalty function φ(u) 
satisfies the integro-differential equations 
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and 
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Let w(R–(T| R+(T)|) be a nonnegative function of 
R–(T) > 0, the surplus immediately before ruin, 
and R+(T) > 0 the surplus at ruin. 

Proof. For 0≤u<b, 
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Now, a change of variables in (6) results in 
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By differentiating (7) with respect to u  we obtain 

( )

1

1 1
1

1 1 1
1 10

' ( ) ( )

( ) ( )
u
k x

u u
c

u k x e dx u
c c

λ δ
φ φ

λ λφ ξ−

+
=

− − −∫ .

 

Similarly, when u ≥ b, 
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With a change of variable and differentiating with 
respect to u  
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by which the proof is concluded.  

From (5), differentiating with respect to u  we can 
obtain the ordinary differential equation 
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for i = 1,2 being i = 1 for 0 < u < b and i = 2 for 
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For all the specific forms for w(x,j) included in (4) it 
is easy to demonstrate that ( )i uξ  has the form 
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with i = 1 for 0 < u < b and i = 2  for u > b. 

The ordinary differential equation (9) is common to 
all forms of w(x,j) included in (4). In the next 
Section, we obtain the explicit solutions of the 
Gerber-Shiu function considering (9) and the 
conditions in which Ai appear. 

3. Analytical expressions for the deficit at ruin 

In this section, we obtain the analytical expressions 
for the different particular cases that arise from the 
Gerber-Shiu function when w(x,j) has the forms 
included in (4). 

From (9), 
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The coefficients of the solution of the ordinal 
differential equations (Ci, Di, i = 1,2) are obtained 
from a system of four conditions. The first two 
conditions are common for all w(x,j) included in (4) 
and are ( )lim 0

u
uφ

→∞
= , and the continuity condition 

φ1(b) = φ2(b). The other two are obtained by 
substituting (10) in (5) and depend on w(x,j), 
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Once obtained the coefficients Ci, Di, i = 1,2 the 
solution of φ(u) from (10) is, 
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where ai,j = (kirj + 1), i, j = 1,2. 
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For A1 = A2 = 1, (11) is the explicit solution of 
the defective Laplace transform of the time of 
ruin if claim amount is exponential with unitary 
mean. This expression can be found, for example, 
in Castañer (2009). 

The ruin probability can be obtained from (11) for 
A1 = A2 = 1, δ = 0, 
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The distribution of the deficit at ruin if ruin occurs 
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the weights of the distribution. The weight P(u) 
depends on the initial surplus, but in contrast, the 
weight Q is independent of u. If the initial surplus is 
less than b, the deficit at ruin if ruin occurs depends 
on this initial surplus through the weight P(u). But, 
if the initial surplus is greater than or equal to b, the 
distribution of the deficit at ruin is constant with 
respect to u. 

The result that the deficit at ruin if ruin occurs 
follows a mixed exponential distribution is an 
expected one and we can give a probabilistic 
explanation to this. 

Let [ ]1P T S∈  be the probability that the surplus 
prior to ruin is less than b if ruin occurs, 

[ ] ( )1 |P T S P R T b T−⎡ ⎤∈ = < < ∞⎣ ⎦ . 

Let [ ]1P T S∈  be the probability that the surplus 
prior to ruin is greater than or equal to b if ruin 
occurs, 

[ ] ( )2 |P T S P R T b T−⎡ ⎤∈ = ≥ < ∞⎣ ⎦ . 

By definition [ ] [ ]1 2 1P T S P T S∈ + ∈ = . 

Taking into account the total probability law, we 
can write 

( )
( )( ) [ ]
( )( ) [ ]

1

1 1

2 2

,

| 0 ,

| 0 , .

jF u y

P j y R u T S P T S

P j y R u T S P T S

⎡ ⎤= ≤ = ∈ ∈⎣ ⎦
⎡ ⎤+ ≤ = ∈ ∈⎣ ⎦

 

[ ] [ ]22,)0(| STPSTuRyjP ∈∈=≤  is the 
distribution function of the deficit at ruin if ruin 
occurs and the surplus prior to ruin is less than b, 
and due to the memory less property of the 
exponential distribution, it is an exponential 
distribution with mean k1. Thus, this gives an 
interpretation to the weight P(u) as the probability 
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that the surplus prior to ruin is less than b if ruin 
occurs, P(u) = P[T∈S1].  

Let P[j ≤ y|(R(0) = u, T∈S2)] 
be the distribution 

function of the deficit at ruin if ruin occurs and the 
surplus prior to ruin is greater than b, then this 
distribution is an exponential distribution with mean 
k1. Therefore, 1 – P(u) is the probability that the 
surplus prior to ruin is greater than b if ruin occurs, 
1 – P(u) = P[T∈S2]. A similar interpretation can be 
done with respect to F2j (y). 
The Gerber-Shiu function is a general one, and 
includes also the weights P(u) and Q as particular 
cases. Let us consider first P(u). It can be 
obtained directly from (5) whereas the penalty 
function is ( ) ( ),w x j I x b= < , and δ = 0. In this 
case, the Gerber-Shiu function gives 

( ) ( ) ( )| 0E I x b I T R u< < ∞ =⎡ ⎤⎣ ⎦  and its ordinary 
differential equation is (8) and also (9) because for 
( ) ( ),w x j I x b= <  it is easy to demonstrate that the 

corresponding ( )i uξ  has the form i

u
k

iAe
−

, with 

1 1A =  and 2 0A = . Then from (11) and (12) for 
0 u b≤ < , 

( ) ( )
( )

( ) ( )
( ) ( ) ( )

11

1 2 1

1 0 ,0
1 0 0 ,0

d H uu
P u

u d d H u
φ
ψ

−⎡ ⎤⎣ ⎦= =
+ −⎡ ⎤⎣ ⎦

.

 
In order to obtain Q from the Gerber-Shiu function, 
we have to consider that ( ) ( ),w x j I x b= ≥ , and 

0δ = . Therefore, in this case in (11) and (12), 

1 0A =  and 2 1A =  and then 

( )
( )

( ) ( )
( ) ( ) ( ) ( )( )

2 2

2 2 1

0 0
0 0 0 0

u d J
Q

u E J d d
φ
ψ

= =
+ −⎡ ⎤⎣ ⎦

 
. 

4. Numerical examples 

In this Section, some numerical examples are 
presented with the following values of the 
parameters: 1λ = , 0.15ρ = , 0.25Rρ = , 2b = , 

1 0.8k =  and 2 0.45k = . 

The distribution function of the deficit at ruin if ruin 
occurs as a function of the initial surplus is 

( ) ( )( )
( )

( )( )
( )

( )

0.139 1.25 0.139 1.25

1 0.139

0.139 2.22

0.139

1.25 2.22
2

0.644 0.276 1
,

1 0.452 1.125

0.191 1.125 1 0 2,
,

1 0.452 1.125

1 0.915671 0.0843291 , 2.

u y u y

j u

u y

u

y y
j

e e e
F u y

e

e e u
e

F y e e u

− −

−

− −

−

− −

+ −
=

+ −

− − ≤ <
−

+ −

= − − ≥
 

 (13) 

In Figure 2, this distribution is displayed 

 
Fig. 2. The distribution function of the deficit at ruin if ruin 

occurs 

The discounted distribution of the deficit at ruin if 
ruin occurs (with 0.03δ = ) is  

( ) ( )| , 0TE e I j y T R uδ−⎡ ⎤≤ < ∞ = =⎣ ⎦  

( )( )
( )

( )( )
( )

( )

0.264 1.25 0.422 1.25

0.139

0.264 0.158 2.22

0.139

1.25 0.317

2.22 0.317

0.877 0.125 1

1 0.452 1.125

0.024 1.427 1 0 2,
,

1 0.452 1.125

0.856394 0.78246
2.

0.0739334 ,

u y u y

u

u u y

u

y u

y u

e e e

e

e e e u
e

e e
u

e e

− −

−

− −

−

− −

− −

⎧ − −
⎪

+ −⎪
⎪
⎪ − − ≤ <
−⎪
⎨ + −
⎪
⎪
⎪ −⎪ ≥⎪ −⎩

 

In Table 1, we present the values of ruin probability 
(in column (1)), and the expected deficit at ruin if 
ruin occurs (in column (3)) for different values of 
the initial surplus u . The expected deficit at ruin if 
ruin occurs is the expectation of a mixture of two 
exponential distributions, the first with mean 0.8 , 
and the second with mean 0.45. The weights of the 
mixture are indicated in (13). Then, this expectation 
decreases with respect to u , for 0 2u≤ < , and is 
constant for 2u ≥ . 
Table 1. Ruin probability (1) and expected deficit at 

ruin if ruin occurs (3) 

u ( )uψ  
(1) 

( ) ( )| 0E yI T R u<∞ =⎡ ⎤⎣ ⎦  
(2) 

( )( )| 0 ,E y R u T⎡ ⎤= < ∞⎣ ⎦  
(3) = (2) / (1) 

0 0.943442 0.746385 0.791129 
0.5 0.913087 0.717609 0.785915 
1 0.884768 0.690764 0.780728 

1.5 0.858349 0.66572 0.775581 
2 0.833703 0.642356 0.770485 

2.5 0.809039 0.623352 0.770485 
3 0.785105 0.604911 0.770485 

3.5 0.761879 0.587016 0.770485 
4 0.73934 0.56965 0.770485 

4.5 0.717467 0.552798 0.770485 
5 0.696242 0.536444 0.770485 

5.5 0.675645 0.520574 0.770485 
6 0.655657 0.505173 0.770485 
8 0.581445 0.447995 0.770485 
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In order to obtain the total losses if ruin occurs, we 
have to consider the present value of the deficit at 
ruin if ruin occurs. In Table 2, we present the values 
of the expected present value of the deficit at ruin if 
ruin occurs (column (5)) and the expected total 
losses if ruin occurs (column (6)), considering that 
the total losses include the deficit at ruin and the 
initial surplus u. 

Table 2. ( ) ( )| 0TE ye I T R uδ−⎡ ⎤<∞ =⎣ ⎦  (4), 

( )( )| 0 ,TE ye R u Tδ−⎡ ⎤= < ∞⎣ ⎦  (5) and 

( )( )| 0 ,Tu E ye R u Tδ−⎡ ⎤+ = < ∞⎣ ⎦  (6)  

u (4)
 

(5) = (4) / (1)
 

(6) = u + (5) 
0 0.605917 0.642241 0.642241 

0.5 0.513665 0.562559 1.06256 
1 0.431371 0.487553 1.48755 

1.5 0.357689 0.416717 1.916717 
2 0.291427 0.349558 2.34956 

2.5 0.241328 0.298289 2.79829 
3 0.199841 0.254541 3.25454 

3.5 0.165486 0.217208 3.71721 
4 0.137037 0.185351 4.18535 

4.5 0.113479 0.158166 4.65817 
5 0.0939709 0.134969 5.13497 

5.5 0.0778163 0.115173 5.61517 
6 0.0644389 0.0982814 6.09828 
8 0.030301 0.0521132 8.05211 

In Figure 3, we plot the values included in Table 2. 
As it can be seen, the expected present value of the 
deficit at ruin if ruin occurs decreases with u and 

tends towards zero, whereas the expected total losses 
if ruin occurs increase with the initial surplus and 
tend to this initial surplus. 

 
Fig. 3. Expected present value of the deficit at ruin if ruin 
occurs (5) and expected total losses if ruin occurs (6) for 

different values of u 

Conclusions 

In this paper we have analyzed the classical model 
of risk theory with a dynamic proportional 
reinsurance strategy. The Gerber-Shiu function 
allows us to obtain ruin probability and the deficit at 
ruin. The study of these two measures of solvency is 
very important for the manager of the portfolio in 
order to make decisions about the retention levels 
and the financial requirements (initial surplus) to 
achieve a desired level of solvency. 
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