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Abstract 

The purpose of this paper is to analyze the occurrence of extreme price change in power delivery forward and futures con-
tracts. The results indicate that the distribution of price changes are significantly fatter tailed than a normal distribution 
function and the authors discuss that risk managers in the power industry can obtain better insight in the amount of risk 
their companies face by applying extreme value theory. 
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Introduction© 

In this paper we focus on the occurrence of extreme 
price changes in power delivery forward or futures 
contracts. These contracts are traded on exchanges 
worldwide and energy companies use these contracts 
to hedge themselves against market risk. For in-
stance, an energy company that needs to deliver 
power to clients in the year 2011, can buy a power 
futures contract somewhere in 2010 and fixate the 
price against which it will purchase power for it’s 
clients. We refer to these contracts as both power 
delivery forward and futures contracts in the remain-
der of this paper. The pricing of these contracts is not 
as straightforward as pricing futures contracts on 
stocks, for instance. As discussed by Fama and 
French (1987) and many others traders use the avail-
ability of storage capacity to valuate futures con-
tracts. A trader that sells a futures contract can make 
his position risk free by purchasing the commodity on 
the spot market. As a result, the futures price should 
reflect the spot price of the commodity plus interest 
forgone, storage costs, and a convenience yield that 
reflects the value that can be derived out of having 
the commodity physically. Power is not yet economi-
cally storable and, as a consequence, the power fu-
tures prices reflect expectations and risk premiums 
(see Fama and French, 1987; Lucia and Schwartz, 
2002; Eydeland and Wolyniec, 2003; and Huisman, 
2009 among others). Power futures prices do not 
necessarily depend on the spot price of power and 
therefore their price dynamics should be modeled as a 
stand-alone process. 

Risk managers in the power sector use these con-
tracts to actively manage market risk. For instance, 
consider a power company that has agreed to deliver 
power against a fixed price to clients in 2011. When 
the company will buy the power during the delivery 
period 2011 in the spot market, it faces the risk that 
the average price, paid in the spot market, is higher 
than what is agreed with the clients. By purchasing a 
power forward delivery contract, the risk manager 
can fixate the price against which the company will 
purchase power in the market in 2011 and by doing 

                                                      
© Ronald Huisman, Mehtap Kilic, 2011. 

so price risk is reduced. However, the timing of 
when to purchase these forward contracts is a diffi-
cult decision. One can buy such a contract today or 
perhaps tomorrow when prices might be lower. It 
depends on the risk of a potential price increase that 
might occur between today and tomorrow, whether 
a company wants to purchase today or wait. 

In this paper, we focus on this price risk. We exam-
ine to what extend changes in power delivery fu-
tures prices can be modeled using a normal distribu-
tion function or whether another method should be 
applied. We apply extreme value theory to assess 
the level of tail-fatness, i.e., the frequency with 
which large price movements occur, such that we 
can observe whether these price changes can be 
modeled using a normal distribution or not. Bern-
hardt et al. (2008) apply extreme value theory to 
estimate high quantiles dynamically for day-ahead 
electricity prices in Singapore. Byström (2005) ap-
plies extreme value theory to model electricity 
prices on the NordPool market, making quantile 
(VaR) forecasts allowing both for fat tails and time-
varying volatility. Both papers find strong support 
for the existence of fat tails in day-ahead prices and 
for the superior quantile estimates that extreme 
value theory produces. Ren and Giles (2007) present 
an extreme value analysis of daily Canadian crude 
oil prices and find strong support for fat tails. Al-
though the amount of tail-fatness is examined in oil 
markets and for day-ahead power prices, it has 
never been examined for changes in the price of 
power futures delivery contracts. This is the goal set 
in this paper. 

We analyze the occurrence of extreme price change 
in power delivery forward and futures contracts. Our 
results indicate that the distribution of price changes 
are significantly fatter tailed than a normal distribu-
tion function and we discuss that risk managers in 
the power industry can obtain better insight in the 
amount of risk their companies face by applying 
extreme value theory. 

1. Extreme value theory 

Extreme value theory is a field within statistics that 
deals with the frequency with which extreme obser-
vations occur. We follow Hull (2007) and Huisman 
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(2009) in discussing extreme value theory and we 
start with the key result in extreme value theory 
found by Gnedenko (1943). Suppose F (ν) is the cdf 
of a variable ν: F (ν) = Pr {V ≤ ν}. As extreme value 
theory focuses on the structure of the tail, consider a 
value u that is a value of ν somewhere in the right tail 
of the distribution function of ν. The probability that 
ν lies between u and u + y equals F (u + y) – F (u) for 
y > 0. Define Fu (y) as the probability that ν lies 
between u and u + y conditional on ν > u. Thus, 
Fu (y) = Pr {u ≤ ν  ≤ u + y|ν  > u}. Gnedenko (1943) 
shows that for large values for u, Fu (y) converges to 
the generalized Pareto distribution for many prob-
ability distribution functions F (.). The generalized 
Pareto distribution Gα,β (y) is: 
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Hull (2007) continues reasoning that the probability 
that ν > u + y given that ν > u, 1 – Fu (y), then equals 
1 – Gα,β (y). Furthermore, the probability that ν > u 
is 1 – F (u). The unconditional probability that ν 
exceeds a value x, Pr {ν > x} equals: 
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This result of Gnedenko (1943) implies that many 
distribution functions follow a generalized Pareto dis-
tribution in the tails. When we approximate 1 – F (u) 

by it’s empirical counterpart 
n
nu , where n is the 

number of observations in the sample and nu is the 
number of observations that exceed the value u, 
equation (2) can be written as: 
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obtain what is called the power law: 

{ } .α−=> KxxXPr       (4) 

We have now formalized the main ideas within ex-
treme value theory. Beyond a certain threshold, fat-
tailed distribution functions exhibit power decay. 
The speed of decay is measured by α in equation (4). 
This parameter is called the tail-index. The bigger 
α is, i.e., the steeper the decay, the thinner the tails 
become and vice versa. The normal distribution, being 

a thin tailed distribution function, exhibits exponential 
decay, which is obtained when α → ∞. 

The goal of this paper is to examine the tail structure 
of log-price changes of electricity forward prices. 
To do so, we estimate the tail-index α using the 
procedure outlined in the following paragraph. 

1.1. Estimating the tail-index α. Let’s focus on 
estimating the tail-index of the right tail of the dis-
tribution function. Let k be the number of tail obser-
vations that we include in the estimation, such as the 
k highest or lowest returns. Let xi be the ith order 
statistic, such that xi ≥ xi-1. Hill (1975) shows that 

the estimate of the inverse of the tail-index, 
α

γ 1
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for k tail-observations equals: 
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where n is the total number of observations in the 
entire sample. How to select k, the number of tail 
observations to include in the estimate? Initially, 
researchers calculated estimates for α for different 
values for k and then state their conclusions in terms 
of the average result. Others tried to approximate 
the optimal k by assuming that the data came from 
some distribution function and then select k that 
would lead to the best results in a simulation study. 
Examples of these approaches are (among others) 
Jansen and de Vries (1991), Koedijk and Kool 
(1994), and Kearns and Pagan (1997) who estimated 
the tail-index for the returns distributions of ex-
change rates and stocks. The results indicated fat-
tails, but one is left with the uncomfortable feeling 
that the tail-index estimates suffer from a bias in 
choosing k. One way to limit the influence of this 
bias is proposed by Huisman et al. (2001), a method 
that we apply in this paper. It is an extension of the 
Hill (1975) estimator. Huisman et al. (2001) observe 
that the expected value for the estimate kγ  equals 

α
1  plus some function f () that depends on k: 

( ) ( ).1 kfE k +=
α
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Huisman et al. (2001) show for several distribution 
functions, among them the Student-t, that the func-
tion f () is almost linear. They formulate the follow-
ing regression equation: 

,10 kk k εββγ ++=       (7) 

and the estimate for β0 is then an accurate estimate 

for
α

γ 1
= . Basically, the Huisman et al. (2001) 
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estimator combines information from different 
choices of k to reduce the bias in the Hill (1975) 
estimator. Still, a number k of observations needs to 
be chosen, however Huisman et al. (2001) show that 
the estimates of γ  are not that sensitive to wrong 

choice for k. In this paper, we set 
4
nk =  as sug-

gested by Huisman et al. (2001)1. They applied their 
method to changes in the values of exchange rates, 
finding values for α between 3 and 5. 

2. Data and descriptive analysis 

The primary data for this study consists of daily 
forward closing prices for two markets, the Euro-
pean Energy Exchange (EEX) in Germany and the 
Nordic Power Exchange (NordPool), which is the 
single power market for Norway, Denmark, Sweden 
and Finland. The forward contracts for the EEX 
market include the base- and peakload delivery con-
tracts for the years of 2009, 2010, and 20112. These 
contracts are traded for several years before delivery 
on the exchanges. We limit ourselves to study the 
forward prices obtained in the period between one 
year before maturity until the last trading day before 
delivery starts as commonly the next-year’s delivery 
contract is the most liquid. Therefore, we study the 
prices as quoted in 2008 for the 2009 delivery con-
tracts, the prices quoted in 2009 for the 2010 deliv-
ery contracts and the prices quoted in 2010 for the 
2011 delivery period. Our dataset spans the trading 
days between January 1, 2008 through December 
17, 2010, having approximately 250 daily forward 
price observations per year. Table 1 contains de-
scriptive statistics for the daily changes in the natu-
ral logarithms of the forward prices for the EEX and 
NPX base- and peakload forward contracts. 

Table 1. Statistics for the daily log forward price 
changes observed 

2009 2010 2011  
Base Peak Base Peak Base Peak 

EEX 
Mean 0.000 0.000 -0.001 -0.001 0.000 -0.001 
Median 0.000 0.000 -0.001 -0.002 -0.002 -0.002 
Max 0.065 0.049 0.052 0.045 0.037 0.038 
Min -0.059 -0.057 -0.046 -0.035 -0.033 -0.025 
St.dev. 0.015 0.014 0.295 0.012 0.010 0.010 
Skew -0.229 -0.618 0.295 0.395 0.558 0.696 
Kurt 2.386 2.574 1.926 2.029 0.926 1.253 
n 251 251 251 251 247 247 

                                                      
1 We refer to Huisman et al. (2001) for the weighted least squares method to 
estimate the tail-index and for the procedure to obtain standard errors. 
2 For instance, the baseload 2009 contract involves the delivery of 1MW 
of power in any hour of the calendar year 2009 and the peakload 2009 
contract involves the delivery of 1MW of power in any hour on week-
days between 8 a.m. and 8 p.m. in 2009. 

2009 2010 2011  
Base Peak Base Peak Base Peak 

NPX 
Mean -0.001 -0.001 0.000 -0.001 0.001 -0.001 
Median 0.001 0.000 0.000 -0.002 0.002 -0.002 
Max 0.067 0.059 0.092 0.045 0.064 0.038 
Min -0.090 -0.090 -0.068 -0.086 -0.056 -0.059 
St.dev. 0.023 0.023 0.023 0.024 0.017 0.020 
Skew -0.72 -0.736 0.248 0.336 0.099 0.327 
Kurt 2.094 1.587 1.339 1.957 1.040 1.292 
n 249 248 248 244 243 243 

Table 1 shows that the daily mean log-price change 
was about -0.001 in 2010, or -0.1%, for the 2011 peak-
load delivery contract. The maximum price change 
was 3.8% on one day and the minimum was 2.5%. 
The daily log-price changes for the peakload 2011 
contract were positively skewed, 0.696, and exhibit 
excess kurtosis of 1.253 (in excess of the normal dis-
tribution function) indicating fatter tails than a normal 
distribution function. All excess kurtosis values are 
positive, which is a sign of fat tails in all years. On 
average, it seems that the tails of the distribution of 
log-price changes for EEX contracts are fatter than for 
the distribution of log-prices changes in the NPX. 

3. Results 

This section shows the tail-index estimates for the 
power delivery forward contracts. Table 2 shows the 
tail-index estimates for the baseload contracts and 
Table 3 shows those estimates for the peakload con-
tracts. Let’s focus on the baseload results in Table 2 
first. The γ  estimate for the 2009 delivery contract as 
traded on the EEX is significantly different from zero, 
being 0.267 with a standard error of 0.118. This γ  
estimate yields a value of 3.748 for α. The left tail of 
the empirical distribution of log-price changes of the 
EEX 2009 delivery contract has a γ  estimate of 0.286 
and the right tail has a γ  of 0.386, implying that the 
right tail is fatter than the left tail, i.e., more extreme 
positive than negative price changes occurred for the 
EEX 2009 delivery contract. 

The first result we learned from Tables 2 and 3 is that 
the tail-index estimates (in terms of α) vary between 
1.837 and 6.609 for the EEX baseload contracts and 
between 2.461 and 12.040 for the NPX baseload con-
tracts3. For the peakload contracts these values vary 
between 2.313 and 6.399 for the EEX and 3.015 and 
31.707 for the NPX contracts. These levels are in line 
with the tail-index estimates as observed for returns on 
stocks and exchange rates4. The empirical distribution 
of log-price changes on power delivery forward con-
tract are clearly fatter tailed than a normal distribution. 

                                                      
3 We ignore the α estimate of -42.433 here, which is perhaps due to some 
estimation error. 
4 See for instance Jansen and de Vries (1991), Koedijk and Kool (1994), 
Kearns and Pagan (1997), and Huisman et al. (2001). 
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The second result we learned from these tables is 
that there is no clear relation between the level of 
the tail-index and the specific market in which the 
forward delivers. Neither it seems that there is an 
apparent difference in tail-index values between the 
baseload and peakload contracts or between the left 
and the right tail of the distribution. 

Table 2. Tail fatness estimates for EEX and NPX 
forward base returns 

2009 γ α γl α γr α 

EEX 0.267 
(0.118) 3.748 0.286 

(0.051) 3.491 0.386 
(0.016) 2.593 

NPX 0.281 
(3.027) 3.559 0.406 

(0.014) 2.461 0.284 
(0.115) 3.521 

2010 γ α γl α γr α 

EEX 0.151 
(0.021) 6.609 -0.024 

(0.003) 
-

42.433 
0.275 

(0.443) 3.635 

NPX 0.089 
(0.012) 11.185 0.083 

(0.023) 12.040 0.122 
(0.119) 8.182 

2011 γ α γl α γr α 

EEX 0.402 
(0.008) 2.489 0.544 

(0.007) 1.837 0.284 
(0.058) 3.527 

NPX 0.258 
(0.029) 3.882 0.166 

(0.017) 6.025 0.359 
(0.022) 2.781 

Notes: Standard errors are in parenthesis. γ reflects the tail-
index for both tails; γl for the left tail, γr for the right tail; α is 
calculated as 1/γ. 

Table 3: Tail fatness estimates for EEX and NPX 
forward peak returns 

2009 γ α γl α γr α 

EEX 0.343 
(0.015) 2.918 0.300 

(0.197) 3.335 0.357 
(0.022) 2.801 

NPX 0.173 
(0.022) 5.787 0.161 

(2.433) 6.218 0.161 
(0.058) 6.207 

2010 γ α γl α γr α 

EEX 0.242 
(0.099) 4.139 0.164 

(0.070) 6.102 0.267 
(0.023) 3.747 

NPX 0.300 
(0.073) 3.333 0.239 

(0.209) 4.179 0.332 
(0.033) 3.015 

2011 γ α γl α γr α 

EEX 0.370 
(0.011) 2.702 0.432 

(0.010) 2.313 0.156 
(0.032) 6.399 

NPX 0.119 
(0.014) 8.436 0.181 

(0.018) 5.514 0.032 
(0.021) 31.707 

Notes: Standard errors are in parenthesis. γ reflects the tail-
index for both tails; γl for the left tail, γr for the right tail; α is 
calculated as 1/γ. 

Discussion and concluding remarks 

In this paper, we have shown that the empirical distri-
butions of log-price changes (or returns) of power 
forward prices exhibit significant fat tails. This implies 
that extreme price movements (both up and down) 
occur more frequently than what a normal distribution 
function would express. This is a result too important 
to ignore for risk managers, for instance, as they can-

not use normal distributions to calculate their risk 
measures or values for options and other derivative 
contracts. If they would do so, they would underesti-
mate the level of risk. With this in mind they can im-
prove their estimates of value at risk, the average loss 
beyond the value at risk measure, or expected maxi-
mum losses using extreme value theory. To see this, 
we briefly discuss in the extreme value theory way of 
calculating value at risk, based on Huisman (2009). 
Suppose a risk manager likes to measure the 99% one-
day Value at Risk (VaR) faced on an open position in 
the 2011 power baseload delivery contract on the 
EEX. Per definition, the one-day 99% VaR is that price 
increase that is being exceeded in only 1% of all days. 
Let r be the one-day percentage return. Then 

{ } .01.0%99 => VaRrPr      (8) 

From equation (3), we can derive 
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Using the estimates for α we have obtained before 
and if we choose a proper value for u, we can easily 
measure VaR using extreme value theory. Hull 
(2007) suggests to set u equal to the 95% quantile of 
the distribution function obtained from historical 

observations, such that 05.0=
n
nu . Still, the risk 

manager has to estimate β. Huisman et al. (1998) 
show an alternative way of calculating VaR using 
extreme value theory. They argue that the degrees of 
freedom ν in a Student-t distribution, which is fat-
tailed, equals the tail-index α. They apply extreme 
value theory to estimate the degrees of freedom ν and 
then they read off the value at risk from the Student-t 
distribution. The advantage of this method is that one 
does not need to estimate β in equation (10) or to 
choose a proper value u. They show that their method 
provides better VaR estimates for stocks and bonds 
compared to VaR based on the normal distribution. 

This paper shows that the price changes of power de-
livery forward contracts are fatter tailed than a normal 
distribution function. A risk manager in the power 
industry can, therefore, obtain more accurate risk cal-
culations by applying extreme value theory than by 
applying measures based on normal distributions. 
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