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Information precision and its determinants 
Abstract 

Investors commonly rely on information received from analyst forecast to optimize portfolios and control investment 
risk. This paper presents a stochastic model of earnings to study and estimate the precision of information in biased 
analyst earnings forecasts about the unobservable expected (or future) earnings growth rates of firms, and examines 
factors that may affect the information precision. Using data from I/B/E/S, this study finds that the precision of infor-
mation about expected earnings growth rates varies from firm to firm and is associated with firm-specific characteris-
tics such as earnings growth volatility and the number of analysts studying a firm. The precision of information is also 
found associated with analyst characteristics such as analysts’ ability, skills and accessible resources in acquiring non-
public firm information about expected earnings growth rates. The empirical results in this study suggest a possible 
explanation of Stickel’s (1992 and 1995) finding that investors tend to respond more to the recommendations of large 
broker analysts. In addition, the results have implications for how investors utilize information from financial analyst to 
manage firm-specific risk. 
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Introduction© 

In risk management literature, how investors utilize 
information from financial analysts to manage their 
exposures to idiosyncratic investment risk is an im-
portant research question. Analyst earnings forecasts 
provide an important source of information about the 
unobservable expected (or future) earnings growth 
rates of firms. Despite the extensive study of analyst 
earnings forecasts, several interesting research ques-
tions still remain unaddressed about the precision of 
information that investors receive from analyst earn-
ings forecasts. First, how do we measure the preci-
sion of information that investors receive from biased 
analyst earnings forecasts?1 Second, in the financial 
market, do analyst earnings forecasts provide inves-
tors with relatively precise or noisy information about 
the unobservable expected earnings growth rates of 
firms? Third, if the precision of information that in-
vestors receive from biased analyst earnings forecasts 
varies from firm to firm, what variables of interest 
affect the precision of information? For example, do 
firm characteristics such as earnings growth volatility 
and the number of analysts studying a firm affect the 
precision of information? On the other hand, do ana-
lyst characteristics such as analysts’ ability, skill and 
assessable resources also contribute to the precision 
of information? 

These issues have become more relevant in light of 
the recent financial crisis in the U.S. Although fi-
nancial analysts’ earnings forecasts are a key deter-
minant of stock prices, the effect of them on asset 
prices are murky at best. For example, several fi-
nancial analysts, including the famous George Soros 
and Meredith Whitney, warned unsustainable bub-

                                                      
© Donglin Li, Gang George Li, Ming Li, 2012. 
1 Earnings forecasts have been found to be biased by many empirical 
studies, for example, Abarbanell (1991), Brown, Foster and Nereen 
(1985), and Stickel (1990). 

bles in housing markets back in 2004 and 2005. 
Apparently few investors heeded this message se-
riously until 2008. What was the reason that the 
market ignored these warning signs? One would 
postulate that these warnings were just like a typical 
noise that overwhelmed the market. They were just 
too noisy to pay attention to. We have seen too 
many missed forecasts by financial analysts. But 
this is not the reason to discredit all financial ana-
lysts, as many investors would hold this thought. 
The main issue is “we don’t have a ready tool to 
measure the informativeness of analyst research. Or 
we don’t know how precise the warnings are”. 

In this paper, we address the research questions 
discussed above as well as pragmatic applications. 
We first present a model of earnings with a time-
varying expected growth rate and then discuss how 
to use the model and the I/B/E/S data set to estimate 
the precision of information that investors receive 
from analyst earnings forecasts. In addition, we 
examine how firm and analyst characteristics affect 
the precision of information. 

We use biased earnings forecasts to construct un-
biased earnings forecasts, which are used to estimate 
the precision of information. This approach is based 
on the idea that unbiased earnings forecasts are ana-
lysts’ expectations of future earnings conditional on 
analysts’ information about unobservable expected 
earnings growth rates. Thus, unbiased earnings fore-
casts incorporate analysts’ information about ex-
pected earnings growth rates. By using unbiased 
forecasts, investors can extract this information. 
Thus, our approach is consistent with the practice in 
accounting and finance that unbiased forecasts are 
used as investors’ expectation of future earnings 
(see, for example, Brown, Foster and Noreen, 1985; 
Hughes and Ricks, 1987; McNichols, 1989; 
Landsman and Maydew, 2002; Frankel et al., 2006). 
Our estimation shows that the precision of informa-
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tion that investors receive from analyst earnings 
forecasts varies from firm to firm. For some firms, 
analyst earnings forecasts provide relatively precise 
information to investors; for some firms, informa-
tion provided to investors by analyst forecasts is 
relatively noisy. 

We use a cross-sectional analysis to examine how 
firm and analyst characteristics affect the precision 
of information. We find that the precision of in-
formation about the expected earnings growth rate 
of a firm is associated with firm characteristics 
such as the number of the analysts studying the 
firm and earnings growth volatility. The number of 
the analysts following a firm surrogates the amount 
of effort taken by analysts to obtain private infor-
mation about the expected earnings growth rate of 
the firm. Earnings growth volatility of a firm de-
notes how volatile the earnings growth process is 
and thus indicates how difficult it is to obtain pre-
cise information about the expected earnings 
growth rate of the firm. 

In addition, we find that the precision of information 
is also related to analyst characteristics such as the 
size of a brokerage firm in which analysts work. 
Specifically, the more analysts coming from large 
brokerage firms, the more precise information is. 
There are two possible explanations for this empiri-
cal finding. First, brokerage firm size may denote 
the resources available for analysts to gain private 
information about expected earnings growth rates of 
firms. As pointed out by Clement (1999), a large 
brokerage firm is expected to provide better re-
sources such as better databases and administrative 
support for analysts to obtain precise information. 
Thus, the more analysts coming from large broker-
age firms, the more precise information is supposed 
to be. Second, brokerage firm size may also denote 
analysts’ ability and skill, since larger brokerage 
firms tend to have better financial resources to 
compensate for their analysts, and thus can hire 
analysts with a better ability and skill. Regardless 
of what explanation is more likely, this empirical 
result provides a possible explanation of Stickel’s 
(1992 and 1995) finding that investors tend to re-
spond more to the recommendations of the analysts 
from large brokerage firms. Investors may respond 
more to the recommendations of these analysts, 
because large broker analysts have more accurate 
non-public firm information about expected earn-
ings growth rates. 

We don’t find significant evidence that analyst work-
ing experience is associated with the precision of 
information. Analyst working experience may not be 
correlated with information precision, since long 
working experience does not automatically imply a 
better skill and a higher ability to obtain more precise 

information. On the other hand, as discussed above, 
the size of a brokerage firm where analysts work may 
better surrogate analysts’ ability and skill. 

Our work is related to prior studies that use analyst 
forecasts to infer analysts’ information characteris-
tics. A partial list of works in this area includes Bar-
ry and Jenning (1992), Abarbanell, Lanen and Ver-
recchia (1995), and Barron, Kim, Lim and Stevens 
(1998), Hong and Kubik (2003), Frankel et al. 
(2006). Despite similarity, our work differs from 
their works in the following three aspects. First, we 
present a stochastic model of earnings with an unob-
servable time-varying expected growth rate, which 
must be estimated by using both historical earnings 
data and non-public firm information. Thus our 
model captures the notion that analysts use more 
than historical earnings data to make forecasts. 
Second, our paper addresses how to estimate the 
precision of information that investors receive from 
biased analyst earnings forecasts. Third, this paper 
documents some empirical evidences about how 
information precision is affected by firm and analyst 
characteristics. 

The rest of the paper is organized as follows. Sec-
tion 1 presents a model to discuss how to estimate 
the precision of information about the expected 
earnings growth rate of a firm. Section 2 discusses 
several variables of interest that may affect the pre-
cision of information. Section 3 discusses the data 
used in this study. The empirical results and discus-
sion are presented in section 4. The final section 
concludes the paper. 

1. The model 

In this section, we present a simple continuous-time 
model of earnings to discuss how to use biased ana-
lyst forecasts to estimate the precision of informa-
tion that investors receive from analyst earnings 
forecasts in the financial market. While a similar 
discrete-time model can be used to achieve the same 
purpose, the continuous-time model makes exposi-
tion much easier. 

Consider an earnings process X(t), which is as follows: 

dX = μdt + σXdWX ,       (1) 

where u(t) is the expected earnings growth rate at 
time t and is unobservable, σX is the volatility of the 
earnings growth rate and assumed to be a constant, 
and WX(t) is a standard Brownian motion. Moreover, 
the expected earnings growth rate μ(t) is time-varying 
and evolves as follows: 

μμσμμκμ dWdtd +−= )(  ,      (2) 

where σμ is the volatility of the expected earnings 
growth rate and assumed to be a constant, κ is the 
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mean-reverting speed parameter, μ  is the long-run 
mean of the expected growth rate, and Wμ(t) is a stan-
dard Brownian motion, correlated with WX(t). 

The consideration of a mean-reverting expected 
earnings growth rate in equation (2) captures the 
notion that in the real world, the expected earnings 
growth rate of a firm is not a constant but time-
varying and related to business cycles (see Kandel 
and Stambaugh, 1990). Previous authors such as 
Wang (1993) and Veronesi (2000) also model the 
expected growth rate of dividends as a mean-
reverting process, as we do here. 

While analysts cannot observe μ(t), they are assumed 
to have a private signal as follows: 

dI = μdt + σIdWI ,       (3) 

where σI is the volatility of this signal and assumed 
to be a constant, and WI(t) is a standard Brownian 
motion, which, for simplicity, is assumed to be in-
dependent of other Brownian motions. While a gen-
eral correlation structure among Brownian motions 
can be considered, it will introduce more parameters 
to be estimated but yield similar results. 

The volatility σI determines the precision of informa-
tion or the signal. When σI is large, information is 
relatively noisy; when σI is small, information is rela-
tively precise. At one extreme, when σI = 0, investors 
have perfect information about expected earnings 
growth rates. At the other extreme, when σI → ∞, the 
signal conveys no information and analysts use just 
historical earnings data to learn about expected earn-
ings growth rates. 

In this paper, the signal about the expected earnings 
growth rate is equal to the fundamentals plus a noisy 
term. Thus, this modeling approach is similar to that 
in Veronesi (2000) and Wang (1994). 

Since analysts cannot observe the expected earnings 
growth rate, to forecast future earnings, they have to 
estimate the value of μ(t) from information I(t), and the 
observation of X(t). As shown in Liptser and Shi-
ryayev (1978), the conditional distribution of μ(t) 
based on analysts’s information Ft = {X(s);I(s); ts ≤ } 
at time t is also normal, and the mean m(t) of this con-
ditional distribution evolves according to the following 
distribusion process, which is derived in the Appendix. 
The result is summarized in the following lemma. 

Lemma 1. Let m(t) = E[μ(t)/Ft] be the estimate of the 
expected earnings growth rate. Then m(t) satisfies the 
following stochastic differential equation: 

XI WdaWdadtmmtdm ~~)()( 21 ++−=κ ,                 (4) 

1 [ ( ) ],X
X

dW dX t mdt
σ

= −%  1 [ ],I
I

dW dI mdt
σ

= −%  

where a1 and a2 are constants, defined in the Appen-
dix. The innovation processes IW~  and XW~  are stan-
dard Brownian motions with respect to Ft ≡ zX,I(t). In 
fact, the information structure generated by )(tFW  
is equivalent to that generated by FX,I(t), where 

.]~,~[~ T
XI WWW =  

In equation (4), the estimate of the expected earn-
ings growth rate follows a mean-reverting two-
dimension process with a constant volatility. Two 
uncorrelated Brownian motions, XWd ~  and IWd ~ , are, 
respectively, the normalized innovation processes of 
the earnings and signal realizations. These two sto-
chastic components convey new information about 
surprises in earnings and signals. For example, 
when there is an unexpected high signal 0~

>IWd , the 
analyst increases the expectation of μ(t). 

When the estimate of the expected earnings growth 
rate at time t is m(t), the earnings are evolving as 
follows: 

XX WdmdtdX ~σ+= .       (5) 

Also, equation (4) can be simplified as: 

mm Wddtmtdm ~)()( σμκ +−= ,        (6) 

where ,2
2

2
1 aam +=σ m=μ and )(~ tWm  is a stan-

dard Brownian motion. 

Now analysts can use the estimate of m(t) at time 
t to forecast future earnings X(s), s > t. Let UFS(s) 
= E [X(s) | Ft], s > t, the unbiased earnings fore-
cast at time t. Then the following lemma summa-
rizes the relationship between the unbiased ana-
lyst forecast of future earnings X(s), UFS(s), s > t, 
and the estimate of the expected earnings growth 
rate, m(t). 

Lemma 2. Let UFS(s) = E[X(s) | Ft] be the unbiased 
forecast of earnings D(s), s > t. Then, we have 

( )( ( ) )( ) ( ) ( ) (1 ),s tm tUFS s X t s t e κμμ
κ

− −−
= + − + −  

where μ  is the long-run mean of the expected earn-
ings growth rate. 

Clearly, analysts use more than historical earnings 
data to forecast future earnings, since m(t) in UFS(s) 
is the estimation of the unobservable expected growth 
rate of earnings conditional on the analysts’ informa-
tion set, which includes historical earnings data and 
non-public firm information. This helps understand 
why analyst earnings forecasts are more accurate than 
the earnings forecasts that are based only on past 
earnings data (see, for example, Brown, Foster and 
Noreen, 1985). 
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In Lemma 2, to forecast future earnings, analysts 
have to use their information to learn about the val-
ue of the current expected earnings growth rate. To 
use discrete-time data of analyst earnings forecasts 
to estimate the precision of information, we first 
derive the discrete-time versions of equations (5) 
and (6) as follows: 

X(t) = X(t – 1) + a1 + 1φ m(t – 1) + εX(t) ,               (7) 

m(t) = α2 + 2φ m(t – 1) + εm(t),                             (8) 

where 

1 2
11 , (1 ),e e

k

κ
κα μ α μ

−
−⎛ ⎞−

= − = −⎜ ⎟
⎝ ⎠

 

1 2
1 , ,e e

k

κ
κϕ ϕ

−
−−

= =  

( )

1 1

( ) ( ) (1 ( ),
t t

tm
X X X m

t t

t dW e dWκ τσε σ τ τ
κ

− −

− −

= + −∫ ∫% %  

( )

1

( ) ( ( ).
t

t
X m m

t

t e dWκ τε σ τ− −

−

= ∫ %  

Lemma 3. Let εX(t) and εm(t) be defined as above. Let 
σ1 and σ2 be the standard deviations of εX(t) and εm(t), 
respectively. Let σ12 = ρ12σ1σ2 be the covariance of 
these two random variables. Define β(i) = (1 – e–iκ) / 
(iκ). Then εX(t) and εm(t) are both normal, with the 
following moments: 

E[εm(t)] = E[εX(t)] = 0, 

2
2 2
1 2

2[ ( )] [1 2 (1) (2)] [1 (1)],m mX
X XVar t σ σσ ε σ β β β

κ κ
= = + − + + −                      (9) 

2 2
2 [ ( )] (2),X mV ar tσ ε σ β= =                                    (10) 

)]2()1([)1()](),([
2

12 ββ
κ
σ

σβεεσ −+== m
mXmX ttCov .                                (11) 

 

Lemma 4. Let v be the estimation error in the 
steady state, as defined in the Appendix. Then we 
have: 

σmX = σμX + v,                  (12) 
22

2
2 2

( )
,X

m
I X

vv μσσ
σ σ

+
= +                               (13) 

where estimation error v is a function of σX, σμ, κ, ρXμ 
and σI. 

Let ρ12 be the correlation between εX(t) and εm(t). 
Using equations (9) to (13), we can have σ1, σ2 and 
 

σ12 expressed them as functions of σX, σμ, κ, ρXμ, μ  
and σI. Then, using equations (7) and (8), we have the 
likelihood function as follows: 

1 2 12
1

( , , , , , ) ( , , )exp( ( )),
n

X X I
t

L f Q tμ μσ σ κ ρ μ σ σ σ ρ
=

=∏  (14) 

2 1
1 2 12 1 2 12( , , ) (2 1 ) ,f σ σ ρ πσ σ ρ −= −  

2
12

1( ) ,
2(1 )

Q t
ρ

= − Λ
−

 

where 
2

12
1 1 2 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 ,X t X t X t X t m t m t m t m tρ
σ σ σ σ

⎛ ⎞ ⎛ ⎞− − − −
Λ = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

1 1( ) ( 1) ( 1),X t X t m tα ϕ= − + + −  

and 

2 2( ) ( 1).m t m tα ϕ= + −  

Thus, if we have time-series data about X(t) and 
m(t) for a firm, we can maximize the natural log 
of the likelihood function defined in (14) to esti-
mate σX, σμ, κ, ρXμ, μ  and σI. In section 4, we 
discuss how to use analyst forecast data from 
I/B/E/S to calculate X(t) and m(t). 

Next we examine several variables of interest that 
may affect the precision of information. 
2. What determines the precision of information? 

In this section, we briefly discuss several variables of 
interest that may affect the precision of information 

that investors receive from analyst forecasts. Subsec-
tion 2.1 discusses the variables that are related to firm 
characteristics and subsection 2.2 studies the va-
riables that are linked to analyst characteristics. 

2.1. Firm characteristics. 2.1.1 The number of 
analysts studying a firm. The precision of informa-
tion is expected to be positively associated with how 
much effort taken by analysts to obtain precise 
information. In the financial market, the number of 
analysts, as suggested by Hong and Stein (1999), 
Bhushan (1989) and Collins, Kothari and Rayburn 
(1987), measures the amount of effort taken by 
analysts to acquire precise information about the 
expected earnings growth rate of a firm. Thus, 
when a firm has more analysts to follow it, infor-
mation about the expected earnings growth rate 
tends to be more precise. 
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2.1.2. Earnings growth volatility. The precision of 
information is also expected to be related to how 
risky a firm’s earnings growth is. The more risky 
earnings growth, the more difficult to obtain precise 
information about the expected earnings growth 
rate. So, in this paper, we use earnings growth vola-
tility to capture this idea and test whether this varia-
ble is empirically associated with the precision of 
information. 

2.2. Analyst characteristics. 2.2.1. Analysts’ ability 
and skill. While we cannot observe analysts’ ability 
and skill, we may use some indicators of analysts’ 
ability and skill to investigate whether the precision 
of information is correlated with analysts’ ability 
and skill. We use two kinds of indicators to surro-
gate analysts’ ability and skill. The first indicator is 
analysts’ working experience. Since the analyst 
labor market can be considered a tournament in 
which strong analysts remain and the weak are 
forced out of the profession, it is expected that an 
analyst with a long working experience may have a 
better ability and skill to obtain more precise infor-
mation about the expected earnings growth rate of a 
firm. The second indicator of analysts’ ability and 
skill is the size of a brokerage firm in which analysts 
work. Since large brokerage firms have better finan-
cial resources to compensate for their analysts, they 
can hire analysts with a better ability and skill. 
Thus, it is expected that the more analysts coming 
from large brokerage firms, the more precise the 
information is. We use the number of the analysts 
employed by a brokerage firm to denote the size of 
the brokerage firm. 

2.2.2. Resources available for analysts. Analysts 
working in large brokerage firms may obtain more 
precise information about the expected earnings 
growth rate, since they have access to better databases 
and superior resources to gain managers’ private in-
formation about future earnings growth rates (Cle-
ment, 1999). We also use the number of the analysts 
employed by a brokerage firm to denote the resources 
available for analysts. 

3. Data and sample selection 

In this section, we discuss how to use actual quarterly 
earnings and analyst forecasts of quarterly earnings 
reported in I/B/E/S to calculate X(t) and m(t), which 
are defined in equations (7) and (8), respectively. 

Previous studies have shown that analyst earnings 
forecasts are biased. Following Das, Levine and Siva-
ramakrishnan (1998), we estimate the bias in analyst 
earnings forecasts for a firm as follows: 

1
( ( ) ( ))

,
T

t
FST t ESP t

Bias
T

=
−

=∑                               (15) 

where FST(t) is the forecast of the earnings at quar-
ter t, ESP(t) is the actual earnings at quarter t, and T 
is the total number of quarters in the historical earn-
ings data. 

From equation (15), the unbiased forecast of the earn-
ings at quarter t, UFS(t), is FST(t) – Bias. 

According to equation (7), X(t) is the actual quarterly 
earnings at quarter t. That is, 

X(t) = ESP(t). 

The estimate of the expected quarterly earnings growth 
rate, m(t) at quarter t, according to Lemma 2, is: 

( ) ( ( 1) ( ) ) ,
1

m t UFS t ESP t
e κ

κμ μ−

⎛ ⎞= + − − +⎜ ⎟−⎝ ⎠
 

where ESP(t) is the actual earnings at quarter t, 
UFS(t+1) is the unbiased forecast of the earnings per 
share at quarter (t + 1), μ  and κ are two of the six 
parameters to be estimated. 

We use the I/B/E/S summary file to obtain the con-
sensus forecasts of quarterly earnings and the num-
ber of analysts studying a firm at each quarter. Spe-
cifically, in the summary file, in each month of a 
quarter, there is a concensus forecast of the earnings 
in that quarter. In this paper, FST (t) in equation (15) 
is the mean of the three monthly forecasts of the 
earnings at quarter t. Actual quarterly earnings data 
are extracted from I/B/E/S actual files. The sample 
starts from the last quarter of 1985 and ends in the 
last quarter of 2008. 

4. Empirical results 

4.1. Descriptive univariate statistics. To estimate 
the volatility of the signal, σI, we maximize the 
natural logarithm of the likelihood function defined 
in equation (14). Since there is no closed-form 
solution, we use Nelder and Mead’s (1965) optimi-
zation approach to estimate σI, whose initial value 
is set at 15% for each firm. The estimation exercise 
shows that the mean and standard deviation of Iσ̂  
are about 16% and 20%, respectively. The relative-
ly noisy signal for the expected earnings growth 
rate can has a volatility of more than 300%, but the 
relatively precise signal about the expected earn-
ings growth rate of a firm has a volatility of less 
than 1%. Thus the precision of information about 
unobservable expected earnings growth rates varies 
from firm to firm. 

Iσ̂  is the estimate of the precision of information 
about the expected earnings growth rate of each 
share. Since the level of earnings may be related to 
the precision of information, to control for the impact 
of the level of earnings, we define a variable SVOL = 
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ln( Iσ̂ /EPS), where Ln indicates the natural loga-
rithm and EPS is the average earnings per share. 
Thus, SVOL measures the precision of information 
about the expected growth rate of each dollar of earn-
ings. Panel A of Table 1 reports the statistics for all 
the variables of interest in our model. 

Panel B of Table 1 shows the Pearson correlation 
coefficients of the regression variables. Note that a 
large value of SVOL means a low precision of in-
formation. As shown there, the precision of infor-
mation is negatively correlated with earnings 
growth volatility. This variable denotes how diffi-
cult it is to obtain precise information about the 
expected earnings growth rate of a firm. As ex-
pected, the precision of information is positively 
correlated with the number of the analysts studying 
a firm and the size of the brokerage firm. The for-
mer surrogates the amount of effort taken by ana-
lysts to obtain precise information about expected 
earnings growth rates; the latter represents ana-
lysts’ skill, ability and accessible resources to ob-
tain information. While the precision of informa-
tion is positively correlated with analysts’ expe-
rience, this correlation is not significant. Working 
experience may not be related to the precision of 
information, since it does not automatically imply 
a better ability and skill of analysts to acquire 
precise information. 

Panel A in Table 1 also shows the distribution of the 
regression variables. Since the means of these va-
riables are different from the medians, they are gen-
erally skewed. 

The univariate statistics in Table 1 provide us 
with a basic picture about the relation between 
information precision and each individual variable 
of interest. In the following, we consider all the 
variables of interest in the following regression to 
test how the precision of information is affected 
by these variables. 

4.2. Results from regression analysis. Table 2 
reports the regression results on how firm and ana-
lyst characteristic variables affect the precision of 
information about the expected earnings growth rate 
of a firm. 

The regression equation is as follows: 

SVOL = β0 + β1EVOL + β2ACS + β4EXP + β5NUM + ε, 

where all the variables are defined in Table 2 and 
the firm index is suppressed. 

As expected, the coefficient for earnings growth 
volatility, denoted by EVOL, is positive and sig-
nificant. This empirical finding confirms our in-
tuition that it is difficult for analysts to obtain 

very precise information about the expected earn-
ings growth rate of a firm if the firm’s earnings 
growth process is very volatile. The coefficient 
for the number of analysts following a firm is 
negative and significant. This empirical result is 
expected, since the number of analysts following 
a firm approximates the amount of effort taken by 
analysts to obtain precise information about the 
expected earnings growth rate. The more effort 
taken by analysts, the more precise the informa-
tion is. 

The coefficient for the brokerage firm size variable, 
denoted by ACS, is negative and also significant at 
the 1% level. This empirical finding has two impli-
cations. First, if brokerage firm size is a good sur-
rogate of the resources available for analysts to 
obtain precise information, the empirical finding 
implies that the more resources are available for 
analysts, the more precise information they are 
likely to obtain. Since large brokerage firms pro-
vide analysts with more resources to access manag-
ers’ private information about future earnings 
growth rates, the analysts from large brokerage 
firms are more likely to obtain precise information. 
Second, if brokerage firm size represents analysts’ 
ability and skill to obtain precise information, the 
finding implies that the analysts who have a better 
skill or a higher ability are likely to obtain more 
precise information about expected earnings growth 
rates for the firms they follow. Since large broker-
age firms have better financial resources to compen-
sate for their analysts and thus can hire analysts with 
better skills and higher ability than small brokerage 
firms, the analysts from large brokerage firms are 
more likely to provide very precise information to 
investors. Regardless of what implication is more 
likely, this empirical result provides a possible ex-
planation of Stickel’s (1992 and 1995) finding that 
investors tend to respond more to the recommenda-
tions of large broker analysts. Investors may re-
spond more to the recommendations of these ana-
lysts, because large broker analysts have more pre-
cise information about expected earnings growth 
rates of the firms they follow. 

However, the coefficient for the analyst working 
experience variable (EXP), as expected, is negative, 
but not significant. This result indicates that the 
number of working years as an analyst is not signif-
icantly correlated with information precision. This 
may be true, because long working experience does 
not automatically imply a better skill and higher 
ability of analysts for acquiring precise information. 
Rather, the size of a brokerage firm where analysts 
work can be a better indicator of analysts’ skill and 
ability, as shown above. 
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Conclusions 

In this paper, we present a stochastic model of earn-
ings to study and estimate the precision of informa-
tion that investors receive from analysts earnings 
forecasts. In addition, we examine whether firm 
and analyst characteristics, such as earnings 
growth volatility, the number of analysts follow-
ing a firm and analysts’s experience, ability, skills 
and accessible resources for obtaining informa-
tion, affect information precision. The firm and 
analyst characteristics variables are jointly ana-
lyzed since they are likely to be correlated. We 
use a cross-sectional analysis since our objective 
is to find out the cross-sectional differences in 
information precision. 

Information precision is found to decrease with 
earnings growth volatility and increase with the 
number of the analysts following a firm, analysts’ 
ability, skill and assessable resources used in obtain-
ing precise information. One important implication 
of our empirical results is that analysts from large 
brokerage firms tend to provide investors with more 
precise information about future earnings growth 
rates. Thus, our study provides a possible explana-
tion of the finding in the financial market that inves-
tors tend to respond more to the recommendations 
of large broker analysts. 

While the paper has examined how to measure the 
precision of noisy information that investors receive 
from analysts forecasts, it has not addressed the 
important question of whether the precision of in-
formation has a significant impact on asset prices 
empirically. So the future research in this direction 
is to empirically examine the impact of information 
quality on asset prices. 

Table 1. Discriptive statistics and Pearson correlation 
coefficients 

Panel A: Descriptive statistics for dependent and independent variables 
(sample size: 319) 

 SVOL EVOL ACS EXP NUM 
Mean -0.34 -1.90 5.60 1.56 2.04 
Median -0.43 -1.87 6.01 1.58 1.98 
SD 0.80 1.02 0.92 0.20 0.48 
Minimum -3.34 -5.26 2.77 0.91 0.30 
Maximum 5.60 0.70 6.48 2.15 3.01 
Panel B: Pearson correlation coefficients among variables (sample size: 319) 

 SVOL EVOL ACS EXP NUM 
SVOL 1.000     
EVOL 0.158** 1.000    
ACS -0.143** 0.187** 1.000   
EXP -0.030 0.053 -0.036 1.000  
NUM -0.116* -0.097* 0.013 0.194** 1.000 

Notes: SVOL = Ln (growth signal volatility for each dollar of earnings), 
Ln means the natural logarithm. EVOL = Ln (standard deviation of the 
earnings growth rate). EXP = Ln (the average number of working years 
for the analysts reporting the firm). NUM = Ln (the number of the analysts 
reporting the firm). ACS = Ln (the average number of the analysts em-
ployed by brokerage firms). Significance: ** < 0.01; * < 0.05. 

Table 2. Information precision and firm and analyst 
characteristics (sample size: 319) 

SVOL = β0+β1EVOL + β3ACS + β4EXP + β5NUM + ε 
 EVOL ACS EXP NUM Adj.R2 

Predicted signs + – – – – 
Estimated 
coefficient 0.144 -0.154 -0.120 -0.145 6% 

t-value 3.41** -3.30** -0.58 -1.65*  

Notes: SVOL = Ln (growth signal volatility for each dollar of earnings), 
Ln means the natural logarithm. EVOL = Ln (standard deviation of the 
earnings growth rate). EXP = Ln (the average number of working years 
for the analysts reporting the firm). NUM = Ln (the number of the analysts 
reporting the firm). ACS = Ln (the average number of the analysts em-
ployed by brokerage firms). Significance: ** < 0.01, * < 0.05. 
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Appendix. Proofs of the results in the paper 

Proof of lemma 1. We use Theorem 12.1 in Liptser and Shiryayev (1977) to show Lemma 1. Under the similar notation, 
we rewrite our problem as follows: 
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where ds is a 2×1 vector signal, which is used by investors to estimate μ(t), the state variable. Other parameters are as 
follows: 
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where σμX denotes the covariance between μ(t) and X(t). Let Ft = {s(τ) : τ ≤ t} be the information set with respect to the 
observable process s(t). Suppose that the prior is μ(0) ~ N(m(0); v(0)). Then, according to Liptser and Shiryayev (1977), 
the posterior mean of μ(t); m(t) = E [μ | Ft] ; and the posterior variance of μ(t); v(t) ≡ E[(m – μ)(m – μ)T | Ft] , are given, 
respectively, by the following stochastic differential equations: 

1
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−= + + + %                      (A1) 
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The earnings process then becomes 

( ) ( ) .X XdX t m t d t dWσ= + %  

The innovation process, ,]~,~[)(~ T
IXs WWtW =  defined by 0 1( ) ( ) [ ]s s s mdW t ds t a a dt= − +%  is a vector of Brownian 

motions. 

The solution to the Ricatti equation in (A2) is given by: 
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where 
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2 2 2
2 32 2 / , / .X I X Ib b b bμ μ μκ σ σ σ σ σ=− − = −  

In this paper, we are interested only in the steady-state solution, where estimation errors do not change over time. We can 
assume that the economy starts at – ∞, and the convergence of learning to the steady state is guaranteed for any finite t, 
since ω  ≥ 0. When learning reaches the steady state, dv(t) / dt = 0. Let v be the solution to the Ricatti equation in the 
steady state. Then v = v2. 

In the steady state, we have 

1 2( ) ,I Xdm m dt a dW a dWκ μ= − + +% %                                     (A3) 

where 
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Equation (A3) can be simplified as: 

( ) ,m mdm m dt dWκ μ σ= − + %                                       (A4) 

where mW~ is a standard Brownian motion and 

2 2
1 2 .m a aσ = +  

Proof of Lemma 2. From equation (A4), we have: 

( ) ( )( ) ( ( ) ) ( ),
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m s e m t e dWκ κ τμ μ σ τ− − − −= + − + ∫ % where s > t. 

Also, ( ) ( ) ( ) ( ).
s s

X X
t t

X s X t m d dWτ τ σ τ= + +∫ ∫ %  

Then straight calculation leads to the result. 

Proof of Lemma 3. According to the normal property of a Brownian motion, straight calculations lead to the result. 

Proof of Lemma 4. σmX = cov(dm; dX) = a2σX = σμX + v. 


