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and stochastic interest rates 
Abstract 

This paper presents a model for the pricing of an index linked insurance contract with a basket cliquet option embedded. The 
model moves from the seminal and widely accepted model of Brennan & Schwartz but uses a dynamic copula ap-
proach to describe the dependence between the two stochastic assets composing the underlying basket. 

As no closed form is available for this kind of contract, the pricing is performed via Monte Carlo stochastic simulation; 
some useful algorithms are also described. For what concern the main features of the model, the time varying depend-
ence structure between the correlated assets is given by a t-Student copula and the underlying assets are modelled 
through a AR(1)-GARCH(1,1) process. The time varying correlation between assets needed as input for the dynamic 
copula structure follows the DCC model developed by Engle. Parameters of the model are estimated through IFM 
(inference function of margins) method and Maximum Likelihood Estimation. The model also takes into account a 
stochastic instantaneous risk free interest rate driven by the CIR process. 

Finally, a numerical application illustrates the model considering real data issued from the US markets. The author per-
forms a sensitivity analysis with respect to some parameters of the basket cliquet option embedded and the CIR process. 

Keywords: index linked policies, basket cliquet options, dynamic copula, CIR process, Monte Carlo simulation. 
 

Introduction 

The literature about the pricing of the index linked 
insurance policies starts with the seminal paper of 
Brennan & Schwartz (1976). 

In their paper “The pricing of equity-linked life insur-
ance policies with an asset value guarantee” the two 
authors recognize for the first time the presence of an 
embedded option in an ELPAVG (“equity linked life 
insurance policy with an asset value guarantee”) con-
tract and use the option theory to price the single and 
periodic premium of this kind of insurance products. 

In particular, they find an explicit formula for the 
pricing of the single premium using the valuation 
model of Black & Scholes (1973) while they apply 
the finite difference equation numerical method to 
value the periodic one. 

Almost all the successive papers analyzing these kind 
of insurance contracts (even more complex than the 
first one) used the contract decomposition proposed by 
Brennan & Schwartz (1976) to evaluate the implicit 
options and the price of the consequent premium. 

Delbaen (1990), for instance, applies the martingale 
theory developed by Harrison & Kreps (1979) (in-
stead of the Black & Scholes formula) to evaluate 
the periodic premium of policies with a minimum 
guarantee, while Bacinello & Ortu (1993) analyze 
the case of an insurance contract in which the mini-
mum guarantees are endogenous, i.e. they are not fixed 
as data of the model, but depend on the premium 
(premia) paid. Moreover Bacinello & Ortu (1993) 
analyze insurance contracts not explicitly linked to a 
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minimum amount guarantee but to a minimum 
number of units of the fund that must be bought 
each time the periodic premium is paid. 
Among these models describing maturity guaran-
tees, which are binding only at the expiration of the 
contract, there is an increasing literature analysing 
multiperiod guarantees (see, for example, Hipp, 
1996) and multiasset options (see, for example, 
Stulz, 1982). Bacinello & Persson (2002) incorpo-
rate stochastic interest rates for the pricing of equi-
ty-linked life insurance contracts. 
The models just described have a distinctive proper-
ty: they all move from the typical hypotheses of the 
Black & Scholes model assuming the normality of 
underlying assets stochastic returns and linear corre-
lation amongst them. 

The main purpose of this work is to propose a model 
based on a dynamic copula dependence structure 
approach to price basket index linked insurance poli-
cies and, in particular, we present some simple algo-
rithms useful to price the basket cliquet option em-
bedded in a real policy where the basket is formed by 
two correlated stochastic assets. The marginal assets 
are then modelled through a AR(1) process with dy-
namic volatility given by a GARCH(1,1) process. 

The model of valuation uses the traditional paradigms 
of quantitative finance (no arbitrage, risk neutral val-
uations) and introduces new features such as copula 
functions to model the dependence between the two 
sources of uncertainty. Indeed, copula functions pro-
vide a more flexible tool than the linear Pearson coef-
ficient to describe dependence structures. 

A fundamental feature of our model comes from the 
following remark. The constant correlation hypothe-
sis among financial returns has been a challenging 
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problem in recent years as the dependence structure 
plays in general a fundamental role in risk manage-
ment. Several authors proposed statistical tests in 
order to verify the constant correlation hypothesis 
and they found evidence that correlations among 
assets tend to be time-varying. We can enumerate at 
this purpose Bera & Kim (2002), Engle & Sheppard 
(2001) and Tse (2000). 

For these reasons, we take into account dynamic 
copulas which permit to consider a time varying 
dependence structure. At this purpose, we use the 
DCC(1,1) model developed by Engle (2002). The 
innovative aspect of this contribution concerns 
mainly the application of a dynamic dependence 
structure to index linked policies, which aims to 
generalize the surveys on this subject present in 
literature. The main steps of the model are thor-
oughly illustrated through a numerical application. 

The paper is organized as follows. Section 1 de-
scribes briefly the theoretical backgrounds of the 
pricing model; section 2 introduces the economic 
framework and defines the insurance contract to 
evaluate; section 3 illustrates the model through a 
numerical application and the final section concludes. 

1. The model specifications 

1.1. Copula functions. Copula functions enable to 
deal with multivariate modeling by taking into ac-
count complex non linear dependence structures be-
tween the marginals. The fundamental feature of a 
copula function is given by the fact that a joint distri-
bution can be factored into the marginals and a de-
pendence function which is represented by the copula 
(indeed, the Latin term copula means “link” so that 
the copula joins the marginal distributions together in 
order to form a multivariate distribution). The de-
pendence structure between the marginals is entailed 
in the copula function, while other characteristics 
such as mean, standard deviation, skewness and kur-
tosis are fully determined by the marginals. We can 
enumerate in literature a great variety of copula func-
tions. Copulas can be used to obtain more general 
multivariate densities than the traditional joint normal. 
For example, we can maintain the normal dependence 
structure by considering the so-called Normal copula, 
but on the other side the marginals can be modelled 
separately with specific distributions. 

Abe Sklar (1959) introduced copula functions in the 
framework of “probabilistic metric spaces”. From 
1986 on copula functions are intensively studied from 
a statistical point of view due to the impulse of Genest 
and MacKay’s work “The joy of copulas” (1986). 

Nevertheless, applications in financial and (in par-
ticular) actuarial fields are revealed only in the end 
of the 90’s. We can quote for example the seminal 

papers of Frees and Valdez (1998) in actuarial field 
and Embrechts for what concerns financial applica-
tions (Embrechts et al., 2002, 2003). 

We have just observed that Copula functions allow 
to model efficiently the dependence structure be-
tween variates, that’s why they assumed in these last 
years an increasingly importance as a tool for inves-
tigating problems such as risk measurement in fi-
nancial and actuarial applications.  

In this paper we restrict to the bidimensional case. 
The next definition and the subsequent consequenc-
es can be adapted to the multivariate case. 

Definition 1. A bidimensional copula (“2-copula”) 
is a function C satisfying the following properties: 

(1) domain [0,1][0,1]; 

(2) C(0,u) = C(u,0) = 0; C(u,1) = C(1,u) = u for 
every u[0,1]; 

(3) C is a 2-increasing function, that’s to say: 

C(v1, v2) + C(u1, u2) ≥ C(v1, u2) + C(u1, v2) for every 
(u1, u2)[0,1][0,1]; (v1, v2)[0,1][0,1] such that       
0 ≤ u1 ≤v1 ≤ 1 and 0 ≤ u2 ≤v2 ≤ 1. 

Consequences: 

 C is a distribution function with uniform 
marginals; 

 consider now two one-dimensional probability 
distributions F1 and F2, and a bidimensional 
copula C. It is clear that F(x1, x2) = C(F1(x1),F2(x2)) 
represents a bidimensional distribution with 
marginals F1 and F2. 

The last result can be inverted; this conduces to the 
following fundamental theorem demonstrated by 
Sklar (1959). 

Theorem 1. Let F be a bidimensional distribution, 
with marginals F1 and F2. Then there exists a 2-
copula C such that 

F(x1, x2) = C(F1(x1),F2(x2)). 

If the marginals F1 and F2 are continuous, then the 
copula C is unique. 
The previous representation is called canonical rep-
resentation of the distribution. Sklar’s theorem is 
then a powerful tool to construct bidimensional dis-
tributions by using one-dimensional ones, which 
represent the marginals of the given distribution. 
Dependence between marginals is then character-
ized by the copula C. Note moreover that the con-
struction of multidimensional non-Gaussian models 
is particularly hard. An approach using copulas 
permits to simplify this problem; moreover one can 
construct multidimensional distributions with differ-
ent arbitrary marginals. 
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Suppose that the bivariate X = (X1, X2) possesses a 
density function f(x1, x2). We can then express it by 
means of the marginal density functions fi(x) and the 
copula in the following manner: 

F(x1, x2) = c(F1(x1),F2(x2))f1(x1)f2(x2) with 

21

21
21

),(),(
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uuCuuc
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and Fi(x) are the c.d.f. of the marginals. 

The definition 1 can be easily generalized to the n 
dimensional case. 

1.2. Conditional copulas. Let us now generalize the 
notion of copula introduced before. We just observe 
that time series often involve random variables con-
ditioned on some variables (we shall denote hereaf-
ter conditioning variables at time t by Ft). A typical 
example is furnished by lagged returns. The intro-
duction of the so-called conditional copula appears 
then very natural. The definition in the bidimensional 
case is established as follows. 

Definition 2. The conditional copula of 1),( tFyx , 
where 1 ttx F F  and 1 tty G F , is the conditional joint 
distribution function of  1t t tU F x  F  and 

 1t t tV G y  F  given Ft1. 

The meaning of conditional copulas is unchanged. 
Indeed, a two-dimensional conditional copula is the 
conditional joint distribution of the probability inte-
gral transforms of each marginal Xt and Yt with re-
spect to their marginal distributions Ft and Gt. Fur-
thermore, it can be proved that the Sklar theorem 
stated before admits an obvious generalization. 

Theorem 2. Sklar’s theorem for the conditional copula. 

Let Ft be the conditional distribution of 1tFx , given 
the conditioning set 1tF , Gt be the conditional dis-
tribution of 1tFy , and Ht be the joint conditional 
bivariate distribution of 1),( tFyx . Assume that Ft 
 

and Gt are continuous in x and y. Then there exists a 
unique conditional copula Ct such that: 

.))(),((),( 1111   tttttttt FFyGFxFCFyxH  

Conversely, if we let Ft and Gt be the conditional 
distributions of the two random variables Xt and Yt, 
and Ct be a conditional copula, then the function Ht 
defined above is a conditional bivariate distribution 
function with conditional marginal distributions Ft 
and Gt (for a proof, see Patton, 2006). 

The Sklar’s theorem just stated for conditional 
distributions requires necessarily that the condi-
tioning variable Ft-1 must be the same for both 
marginal distributions and the copula. Otherwise, 
if the conditioning variable for Ft, Gt and Ct do 
not coincide, the function Ht will not be, in gen-
eral, a joint conditional distribution function. As a 
particular case, it can be showed that Ht is the joint 
distribution of ),,(),( 211 wwyxFyx t   whenever 

),()( 211 wwxFwxF tt   and ),()( 212 wwyGwyG tt  , in 
other words when some variables influence the condi-
tional distribution of one variable but not the other. 

As a consequence of the previous statements, we de-
duce that the implied conditional copula can be 
derivated from any bivariate conditional distribution. 
We just have to apply Sklar’s theorem and to consider 
the well-known relation between the distribution and 
the density function. Thus, the bivariate copula density 

))(),(( 111  tttttt FFyGFxFC  associated to a copula 
function ))(),(( 111  tttttt FFyGFxFC  is given by: 
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We apply now these considerations to the Normal 
(Gaussian) copula and the Student t-copula. 

We remind that the Normal copula is the copula of the 
bivariate Normal distribution, whose probability densi-
ty function in the bivariate case is the following: 
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where ρt is the conditional linear correlation, given 
the conditioning set Ft-1 and Φ-1 is the inverse of the 
standard univariate Normal distribution. 

Regards the Student’s t-copula, which is the copula 
of the bivariate Student’s t-distribution, the density 
function is: 
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where ρt is the conditional linear correlation, υt are 
the conditional degrees of freedom and 

1
t

t


 is the 
inverse of the Student’s t cumulative distribution 
function. Some recent applications of dynamic cop-
ulas can be found in Ausin & Lopes (2010), 
Fantazzini (2008) and Manner & Reznikova (2011). 
1.3. Marginal modeling and estimation. We have 
just stated that the joint density function in the biva-
riate conditional case is: 
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where  1 ;t t fu F x  F ,  1 ;t t gv G y  F  and 

h , 
f , g , c  denote respectively the joint densi-

ty, marginals and copula parameters’ vectors, with 
' ' ', ,h f g c       . 

We deduce by applying Maximum likelihood meth-
od that: 

       , ,xy h x f y g c f g cL L L L        ,
 

where    1log , ;xy h t t hL h x y  F , 

   1log ;x f t t fL f x  F ,

   1log ;y g t t gL g y  F  and 

   1, , log , ;c f g c t t cL c u v    F . 

In order to estimate all the parameters, we use the 
inference functions for margins (IFM) method. Ac-
cording to this method, the parameters of the mar-
ginal distributions are estimated separately from the 
parameters of the copula. Thus, the estimation pro-
cess consists in the following two steps: 

1. Estimate the parameters f  and g  of the mar-
ginal distributions Ft and Gt using the Maximum 
Likelihood method: 
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2. Estimate the copula parameters c , using the re-
sults of step 1: 
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For what concerns the marginal distributions time 
series, we use a general AR(1)-GARCH(1,1) model 
for the continuously compounded log-returns yt 
given by: 

,1 ttt yy     
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tttt    
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1   ttt hh   

Such a choice has been carried out by Guégan & 
Zhang (2008), Hafner & Reznikova (2010), Palaro 
& Hotta (2006). We estimate the given model as-
suming two typical density functions f(0,1) for ηt 
namely the Normal and the Student’s t distributions. 
After having estimated the parameters of the mar-
ginal distributions {Ft, Gt} in the first step through 
the AR(1)-GARCH(1,1) model just described, we 
finally estimate the copula parameters in the next 
step, as previously explained. 

We remind that in the framework of dynamic copu-
las, the Sklar’s theorem for conditional distributions 
requires that the conditioning variable must be the 
same for both marginal distributions and the copula. 
We suggest that the dynamic evolution of the corre-
lation parameter ρr evolves through time as in the 
DCC(1,1) model of Engle (2002): 

,1)1( 1   ttt Q   

where Q is the sample correlation and Ψt  is a sample 
correlation of a moving window of arbitrary size . 
The parameter constraints for the DCC are the same as 
for the univariate GARCH(1,1) models, namely: 

).1,0(,1    

This model has been also proposed by Patton 
(2006), Jondeau & Rockinger (2006) and Embrechts 
& Dias (2010). Furthermore, Vogiatzoglou (2010) 
illustrates an algorithm written in Matlab which 
permits to estimate these parameters. 
The final goal is then to generate a large number of 
daily log-returns {r1(t), r2(t)} for the two assets 
through a classical Monte Carlo simulation. 
We describe hereafter the detailed steps of the 
whole procedure. 

1. In order to generate pseudo-random numbers 
from the t-Student copula we use the following al-
gorithm (we assume that the correlation is time-
varying and the degree of freedom υ is fixed): 
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 set initial value of the correlation and determine 
recursively the time-varying correlation through 
DCC(1,1) model:  1)1( tt Q   

1 t ; 
 find the Cholesky decomposition At of the corre-

lation matrix t; 
 simulate two independent random variates z = 

(z1, z2) from the standard normal distribution; 
 simulate a random variate s from 2

  distribu-
tion, independent of z; 

 determine the vector yt = At  z; 

 set ;tt y
s

x   

 determine the components Ri(t) = tυ(xi,t) i = 1,2. 
The resultant vector is .~))(),(( 2

,21 t
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The algorithm for the Gaussian copula is simpler and 
very similar so that we omit it for sake of brevity. 

2. Regards the simulation of the marginal distribu-
tions, we describe the algorithm for the AR(1)-
GARCH(1,1) process: 

 fix an initial value for ri(t) and hi(t); 
 set recursively (for t = 1,…,T) the following 

relations (for i = 1,2) 
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where ωi, αi, βi, µi and Øi are the estimated parame-
ters of the AR(1)-GARCH(1,1) model and Ri(t) are 
the random numbers obtained from the copula algo-
rithm determined at the previous step. 

3. We finally deduce the simulated time series’ pric-
es through the relation Pi(t) = Pi(t  1)exp(ri(t)) 
after assigning the starting value Pi(0), for i = 1,2. 

The next step will be the simulation of the pay offs’ 
contracts, which will be revealed in the next section. 
1.4. Stochastic risk free rate. The Cox, Ingersoll, 
Ross (CIR) model (Cox et al., 1985) is a standard 
one-factor model for term structure of interest rates, 
which ensures the positivity of rates at any time-to-
maturity. In the CIR model the instantaneous short 
term interest rate r(t) satisfies the following diffu-
sion equation: 

tdWtrdttrbatdr )())(()(   , 

where aR+ is the mean-reverting parameter, bR+
 is 

the long run parameter, R+ is the volatility and Wt is 
a standard Brownian motion. The parameters of this 
rocess can be estimated by several standard methods 
(for example least square method or MLE). 

We assume that the risk free rate process is inde-
pendent from the asset portfolio returns. 

In order to draw Monte Carlo simulations from the 
risk free process we will consider the following dis-
cretization form (coming from the Euler’s scheme): 

,)())(()()(   trtttrbatrttr  

where  is a pseudo-random number extracted from 
the Normal distribution. 

2. The index linked contract and the economic 
framework 

In this section we introduce our assumptions and 
notations concerning the economic framework and 
the contract to evaluate. The contract is an index 
linked policy with a basket cliquet option embed-
ded; the basket is composed of two US assets in-
cluded in the Dow Jones Index: AT&T Inc. and 
Microsoft Corporation. We remind that a cliquet (or 
ratchet) option is a particular type of exotic option 
in which the strike price periodically resets at speci-
fied dates before the final expiration time is reached. 
The application described in this section aims to 
explain the different steps of the model. 

2.1. Notations and assumptions. As usual in finan-
cial literature, we assume a perfectly competitive 
and frictionless market, no arbitrage and rational 
operators all sharing the same information revealed 
by a filtration. 

In this economic framework, we introduce the fol-
lowing variables: 

T is the expiration date of the contract; r(t) is the 
instantaneous risk-free interest rate (stochastic CIR 
model); x(t) is the value of the first asset at time t 
(AT&T asset); y(t) is the value of the second asset at 
time t (MSFT asset); b(t) is the benefit payable at 
time t; D is the reference capital invested at time t = 
0; v(,t) is the price at  ≤ t of a unitary zero coupon 
bond with maturity time t. 

We now remind the characteristics of the state vari-
ables characterizing our model: 

 first asset (AT&T): AR(1)-GARCH(1,1) model; 
 second asset (MSFT): AR(1)-GARCH(1,1) model; 
 the dependence between x(t) and y(t): dynamic 

copula (Gaussian and Student) model where the 
correlation parameter evolves through a 
DCC(1,1) dynamic. 

Figure 1 is a scatter plot of the historical return val-
ues of the AT&T versus the MSFT asset (the data 
are referred to the period September 2007-
September 2012; 1,260 records are available); the 
global correlation coefficient ρ between the two 
returns vectors is 59.24%. 
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Fig. 1. Scatter plot of AT&T vs. MSFT returns 

As stated before, it’s a well-known fact from litera-
ture that the correlations between stock assets are 
generally time-variable. For this reason, the pricing of 
multivariate financial products based on the hypothe-

sis of constant correlation may be flawed. In order to 
highlight this feature, we exhibit in the next Figure 2 
the correlation coefficient between the two assets 
estimated on a rolling window of 50 trading days. 

 
Fig. 2. Correlation dynamic 

We deduce from this figure the variability of the 
correlation coefficient, which justify the use of the 
DCC model. We also assert that the time-variability 
correlation can be emphasized by changing the 
width of the rolling windows. 

2.2. Definition of the index linked insurance con-
tract. We consider an index linked insurance con-
tract which pays at time T = 4 a benefit b(T) consist-
ing in the reference capital equal to a notional 
amount D (conventionally 100 Euro) plus the payoff 
of a basket cliquet option; the benefit b(T) can then 
be expressed as: 
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and the symbol k denotes the k-th semester be-
tween date 0 (the starting date of the contract) and 
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8 (the maturity date equal to four years). We also 
denote Fg the global floor, Fl the local floor and Cl 
the local cap. 

Therefore, the price of the policy depends on the 
value at time 0 of a zcb with maturity T = 4 and on 
the pricing of the basket cliquet option whose evalu-
ation will be discussed in the next section. 

Due to the presence of a bivariate risk neutral distri-
bution with copulas, in order to price the option 
embedded in the contract we will perform a Monte 
Carlo simulation as no closed form is available to 
evaluate this kind of derivative. 

3. The evaluation model 

According to the standard results in Harrison & 
Kreps (1979) and Harrison & Pliska (1981) and to 
the generalization of the option pricing with a biva-
riate risk neutral distribution proposed by Rapuch & 
Roncalli (2004), the price of the proposed contract 
is given by: 
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where )(0 CE  is the date 0 expectation of b(T) taken 
under the bivariate risk neutral distribution with a 
copula dependence structure. 

The expression of V0(x,y) will be obtained thanks 
to numerical methods because no pricing formula 
is available. The next subsection will then be de-
voted to the pricing of V0(x,y) through Monte Carlo 
simulation. 

3.1. A Monte Carlo approach. The evaluation of 
the basket cliquet option embedded in the benefit 
proposed in the previous sections requires the 
pricing a derivative written on two correlated 
assets, namely AT&T denoted x(t) and Microsoft 
denoted y(t). 

Let us simulate a large number M of the bivariate 
assets (xs(t), ys(t)). The price of the benefit 
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We remind that the interest rate r(t) follows a sto-
chastic CIR process. We simulate random trajecto-
ries of this process thanks to the discretized equation 

given in subsection 1.4. The discount factor 

T

duur

e 0

)(

 
is then discretized and estimated through the simu-
lated values of r(t) previously determined. 

3.2. The value of the policy. In this subsection we 
present a numerical application of the model de-
scribed. 

The application has been carried out with the fol-
lowing parameters: T = 4, ∆t = 1/2, Fg = 4%, Fl = 
2%, Cl = 10% and D = 100. 

The parameters of the CIR model have been esti-
mated from the US Daily Treasury Yield Curve 
Rates for the period January 2, 2009 to July, 27, 
2010. This estimation, performed with Matlab 
software through maximum likelihood techniques, 
furnished the following values: a = 0.01, b = 0.001, 
 = 0.0074 and r(0) = 0.0016. 

The parameters of the AR(1)-GARCH(1,1) model 
and the test statistics for the two marginal assets are 
illustrated in Table 1 and Table 2. 

Table 1. AT&T parameters 
Parameter Value St. error t-stats 

µ 0.0007 0.000 2.2368 
 -0.0116 0.013 -0.9209 
ω 8.842·10-7 0.000 1.6683 
α 0.0829 0.019 4.3375 
β 0.9141 0.018 51.6216 
dof 9.2647 1.561 5.9357 
Akaike: -7,348.0656 
BIC: -7,317.2372 
Log likelihood: -3,680.033 

Table 2. MSFT parameters 
Parameter Value St. error t-stats 

µ 0.0005 0.000 1.1576 
 -0.0307 0.024 -1.2948 
ω 8.504·10-7 0.000 0.9079 
α 0.0553 0.016 3.4993 
β 0.9447 0.013 73.2363 
dof 5.3073 0.806 6.5873 
Akaike: -6,686.1450 
BIC: -6,655.3165 
Log likelihood: -3,349.072 
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Finally, the Student copula estimation and the 
parameters of the DCC model are revealed in the 
Table 3. 

Table 3. t-copula & DCC parameters 

Parameter Value St. error t-stats 
λ 0.0532 0.019 2.8381 
γ 0.9237 0.033 28.1328 
dof 4.4676 0.838 5.3339 
Akaike: -391.8522 
BIC: -376.4379 
Log likelihood: -198.926 

The parameters for the Gaussian copula are revealed 
in Table 4. 

Table 4. Gaussian copula & DCC parameters 
Parameter Value St. error t-stats 

λ 0.0658 0.025 2.6313 
γ 0.9057 0.054 16.7169 
Akaike: -361.9579 
BIC: -351.6817 
Log likelihood: -182.979 

The value of the policy is 122.71 for the Student 
copula and 122.70 for the Gaussian copula. We can 
also examine the price sensitivity with respect to the 
local floor. At this purpose, we let Fl vary in the 
range 0%-4%. The results are given in the Figure 3 
for the Student copulas. We obtain for the Gaussian 
copula very similar results. 

 
Fig. 3. Price sensitivity vs. Fl 

The numerical application also highlights that the 
value of the policy depends on the parameters of the 
CIR process. For example, let us change the value 

of the mean-reverting parameter a. We exhibit in 
Figure 4 the increasing behavior of the policy value 
with respect to this parameter. 

 
Fig. 4. Price sensitivity vs. a 
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Conclusions 

In this paper we propose a procedure useful to per-
form the pricing of an index linked insurance policy 
with a basket cliquet option embedded. This basket 
is composed of two assets included in the Dow 
Jones Index (AT&T Inc. and Microsoft Corporation). 

The scheme considers that the dependence between 
the two risky assets can be expressed and modeled 
through a dynamic copula in order to consider the 
realistic hypothesis of time varying dependence 
structure and the pricing procedure is based on the 
Monte Carlo method. At this purpose the two mar-
ginal assets have been carefully modeled through a 
AR(1)-GARCH(1,1) model. 

We have carried out a numerical simulation to esti-
mate the value of the policy and of the embedded 
option. Besides, we considered a stochastic interest 
rate whose dynamic is driven by the CIR process. 

One of the main challenges is to highlight that 
copula functions can represent a useful tool to 
realize more refined risk management strategies 
for the financial risk managers of insurance com-
panies, following the traditional scheme of risk 
neutral valuations. Copula functions permit to 
model correctly the dependence structure and the 
algorithms involved are easily implemented. Fur-
thermore, dynamic copulas permit to take into 
account the more realistic features of time-
varying dependence structure. At this purpose, we 
also pretend that the pricing of such policies un-
der the hypothesis of constant correlation may be 
particularly misleading. As a further generaliza-
tion, we should consider an embedded basket 
composed with more than two risky assets. The 
dynamic correlation between the risk free interest 
rate and the underlying index could also be inves-
tigated. 
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