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A note on the satisfaction levels of two agents subscribing  
an insurance policy 
Abstract  

Classical actuarial theory focuses on insurance problems and in particular on the determination of a premium for the 
insured risk. However, once a premium has been chosen, at the end of the insurance period it may happen that the poli-
cy has been disadvantageous either for the insurer or for the customer. In fact, the premium was not set high enough to 
cover the total claim amount or, vice versa, it was too high from the customer point of view. Our aim is to introduce, 
for each agent, a measurement in order to value how he is restrained in his possibilities. More precisely, the authors 
define two “satisfaction levels” that compare the increment in the expected utility that each agent has subscribing the 
insurance policy, with the increment in the expected utility that he could have if, unrealistically speaking, the insurer 
(customer) could withdraw from the contract in the case where the total claim amount is larger (smaller) than the pre-
mium, so that he never could have losses. Under assumptions, the authors show that the satisfaction levels are linked to 
the risk aversion of the agents, proving that inequalities comparing risk aversion of two insurers (customers) are related 
to inequalities between their satisfaction levels. Finally, the determination of a “fair” premium for an insurance contract 
is considered. 

Keywords: risk aversion, expected utility, premium calculation principles, bargaining theory. 
 

Introduction 

We consider two agents: a customer, the owner of a 
risk X (a random variable), and an insurance 
company (insurer). The latter can accept to cover 
the risk against the payment of a premium from the 
customer. What should be an appropriate premium 
for the contract? Clearly, the premium cannot be too 
high because of competition between insurers and, 
at the same time, it cannot be too low because this 
would result in large losses for the insurer. 
However the premium should be also low enough 
so that the customer is willing to insure the risk. 
Several premium calculation principles have been 
proposed in actuarial sciences. All the proposed 
principles produce prices that are higher than the 
expected losses© (in this context actuaries ignore 
loadings for expenses and profit). Calculation 
principles often used in practice are the expected 
value principle:   ][1 XEP  , the variance 
principle: ][][ XVarXEP   and the standard 
deviation principle: ][][ XVarXEP  . Alternati-
ve rules are the modified variance principle: 

 ][XEP ][][ XEXVar  and the mixed principle: 
 ][ XEP ][][ XVarXVar   . Otherwise actua-

ries focused their attention on utility functions and 
their application to the risk evaluation (Daykin et 
al., 1994; Goovaerts at al., 1984; Rolski et al., 1999; 
Straub, 1988). In this context we consider a utility 
function u and an asset w. The compensating risk 
premium is defined as the unique solution of the 
equation     wuXPwuE  , whereas the 
equivalent risk premium is defined as the unique 
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solution of the equation     XwuE=Pwu  . 
Related to the determination of the premium is the 
concept of risk aversion of an agent. Arrow (1965) 
and Pratt (1964) introduced the coefficient of risk 
aversion r=-u''/u' and they showed that given a risk 
X and given two agents i1 and i2, both with initial 
asset w and with utility functions u1 and u2, 
respectively, if r1(x) > r2(x), for each x , then 
the compensating risk premium (equivalent risk 
premium) of the agent i1 is larger than the 
compensating risk premium (equivalent risk 
premium) of the agent i2.  

In the following we start with the consideration 
that an insurance policy can be disadvantageous 
either for the insurer or for the customer. There-
fore, we introduce two measurements called “satis-
faction levels” that quantify the agents satisfaction 
level with respect to the chosen premium, basing 
on the comparison between increments in the ex-
pected utility. Under our assumptions we show that 
the satisfaction levels are linked to the risk aver-
sion of the agents; that is, given two insurers (cus-
tomers), inequalities concerning their different risk 
aversions (in the Arrow-Pratt sense) are related to 
inequalities between their different satisfaction 
levels. 

Finally, we observe that classical actuarial theory 
mainly considers whether the premium is high 
enough to cover the risk, ignoring competition aris-
ing from the presence of the insurer and the custom-
er. Considering the situation concerning the two 
economic agents (the insurer and the customer) that 
are willing to sign an insurance contract is a classi-
cal example of bargaining problem which we can 
tackle by means of a game theoretical approach. In 
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fact, game theory analyses situations where agents 
have partially cooperative and partially conflicting 
goals. Otherwise, agents achieve greater benefits 
cooperating rather than not cooperating, and in the 
cooperation case they have to share benefits. In par-
ticular, Nash (1951) argued that cooperative actions 
are the results of some process of bargaining among 
the cooperating agents. We recall (Myerson, 1991) 
that “Nash's formulation of a two bargaining prob-
lem is based on the assumption that when two 
agents negotiate … the payoff allocations that the 
two agents ultimately get should depend only on the 
payoffs they would expect if the negotiation was to 
fail to reach a settlement and on the set of the payoff 
allocations that are jointly feasible for the two 
agents in the process of negotiation”. 

In the following, we want to show that the deter-
mination of a “fair” premium for the insurance 
contract can be obtained defining a suitable bar-
gaining problem. 

1. General framework 

Let us start by giving a formal description of our 
problem. We consider an insurer I who would like 
to buy a risk X, receiving a premium P. The first 
question we address is what is a reasonable premi-
um P from the insurer’s point of view. The insurer 
is assumed to be risk averse expected utility maxi-
mizer; this means that he prefers one risk to another 
if the expected utility of the former exceeds the ex-
pected utility of the latter. We can describe the risk 
X by its cumulative distribution function 

 1,0: XF , with    xXProbxFX  , left contin-
uous and increasing (or strictly increasing), being FX 
(x) = 0, for each x ≤ 0 and FX (x) > 0, for each x > 0. 

We denote by u the insurer’s utility function on 
amounts of money. We assume that u is strictly 
increasing and continuous; we suppose moreover 
that u is a concave function (i.e. the insurer is a risk 
averse agent). We denote by w the insurer’s asset. 
Let  XwuPI ,,  (compensating risk premium) be the 
unique solution of the following equation: 

    .wu=Xw+PuE        (1) 

The Insurer is restrained in his possibilities since he 
does not know the losses over time. If he could 
know in advance the experienced losses he would 
buy the risk only in case the premium P was higher 
than the total claim amount. In this context we de-
fine, for each P > 0: 

      

         
.,,,

0
  


 P

P
XX

I

wuxdFwuxdFxPwu

wuw+P-XuEXwPuV  (2) 

 XwPuVI ,,,  compares the increment in the ex-
pected utility     wuXw+PuE   that the insurer 
with asset w obtains receiving the premium P and the 
risk X, with the increment      .wuXPw+uE  

 
The latter is the increment in the expected utility 
that the Insurer would obtain if he could sign an 
advantageous contract, i.e. if the contract cover the 
total claim amount only if it is smaller than P, refund-
ing P otherwise. We, therefore, refer to VI as the “satis-
faction level function”. Does this function help the 
insurer in the choice of a reasonable premium? 

Let us start by giving some properties of the function 
VI. The satisfaction level does not vary under linear 
affine transformations of the utility function; that is VI 
(u', P, w, X) = VI (u', P, w, X) if u' = au + b, with 

0 ,,  aba . Moreover, the following proposition 
holds. 

Proposition 1. For each utility function u, for each 
asset w, for each risk X having cumulative distribution 
function FX, the function      ,0:,,, XwuVI  is 
increasing. 

Proof. Given a utility function u, for arbitrary w and 
z, define v (w,z) = u (w+z) – u(w); for each P > 0, 
for each risk X we have by (2), 
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Then, we have: 
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 

 
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 

  
and, consequently, the thesis holds. 

Remark 1. For each utility function u, for each as-
set w, for each risk X it results that 

  1,,,0  XwPuVI , if   XPXwuPI supess,,  ; 
moreover the function      XXwuVI sup ess,0:,,,   
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is strictly increasing. If Xsup ess , then 
  1,,, XwPuVI  for each XP supess  (in real 

life the insured risk X is a random variable of 
bounded range and Xsupess  is the maximal possi-
ble claim). 

1.1. Characterization. In this section, we study 
how the function V1 can be used to characterize the 
risk aversion. More precisely, consider two insurers 
having utility functions u1 and u2. 

Let '''
iii uur  , i=1, 2. It results that      xrxr 21  , 

for each x  if and only if it is 21 ugu  , being g 
a [strictly] concave function (Pratt, 1964; Mas-
Colell et al., 1995, Ch. 6). 

We observe that the above conditions are equivalent 
to the following: 

   
         
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yxvyxv   with ,, . 

We have: 

Theorem 1. Given two utility functions 1u and 2u  
the following conditions are equivalent, in either the 
strong form (indicated in brackets) or the weak form 
(with the bracketed material omitted): 

(a) u1 is a [strictly] concave transformation of u2; 

(b)      
 
1 2, , , , , , ,  , ,  with

0,ess sup .
I IV u P w X V u P w X P w X

P X

  


 

Proof. Assume (a); again let vi (w,z) = ui(w+z)
ui(w), i =1,2, .,  zw  

We observe that for each w, for each X and for 
each  XP sup ess,0  we have  XwPuVI ,,,1  
   XwPuVI ,,, 2  if and only if: 
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By means of the Fubini’s theorem, the previous 
inequality can be written as: 
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As we assume (3), then 
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consequently, (b) is proved.  

Vice versa, suppose that (b) holds. Fixed a number  
P > 0, let X be defined by the following cumulative 
distribution function  1,0: XF : 
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where   ,0 Py . 

It results that, for every utility function u, it is: 
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From the condition (b) it follows that:  
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So (a) holds.  

Remark 2. We recall that condition a) in Theorem 1 
is equivalent to the following condition on the com-
pensating risk premium (Pratt, 1964): 

      XwXwuPXwuP II , ,,,,, 21  . 

Moreover, we consider an agent having decreasing 
absolute risk aversion. Pratt (1964) proved that the 
function r=-u''/u' is [strictly] decreasing if and only 
if, for every risk X, the function PI (u,·, X) is [strict-
ly] decreasing. We can easily prove that PI (u,·, X) is 
a [strictly] decreasing function if and only if 

 XPuVI ,,,   is a [strictly] increasing function, for 
each risk X and for each  XP sup ess,0 . 

We now consider a function u such that r=-u''/u'=α, 
with  , α > 0; then     bxaxu  exp , 
for each x , with ba, , a > 0. For each 
asset w, for each risk X and for each P > 0, we have, VI 
(u, P, w, X) = S(a, P, X) where  
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So the Insurer’s satisfaction level does not  
depend on the asset w. Moreover, we have S (a/λ, 
λP, λX) = S(a, P, X), for every λ > 0; this property 
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states, for example, that the agent with constant 
coefficient of absolute risk aversion α, buying the 
risk X and receiving the premium P, has the same 
satisfaction level of the agent with constant coeffi-
cient of absolute risk aversion 2α, buying the risk 
X/2 and receiving the premium P/2.  

We provided theoretical characterizations of the 
function VI so far. Moreover, the function VI can 
give further information to the insurer. In fact, ac-
cording to the utility theory, each premium P is 
acceptable if  XwuPP I ,,  and the Insurer would 
decide to set the contract at a premium P which give 
him at least a fixed satisfaction level.  

We conclude this section with an example. 

Example 1. Consider a situation in which we 
have six insurers with utility functions:  xuI

  xii    exp11 , for each x , i = 1,2,…6, 
being a1 = 0.00006, a2 = 0.00007, a3 = 0.00008, a4 = 
0.00009, a5 = 0.0001, and a6 = 0.0002. For each 
asset w and for each risk X, it is  XwuP iI ,,

   XE ii  expln1 , i = 1,2,…6. As in Aumann and 
Serrano (2008), consider the risk X such that, FX (x) 
= 0 if, x ≤ 0 FX (x) = 0.999, if 0 < x ≤ 20000 and FX 
(x) = 1 if x > 20000, i.e. the risk consists in loos-
ing $20,000 with 0.001% probability, like when 
buying loss damage waiver in a car rental. We 
have, if P ≤ 20000. 

     
   

.6,...2,1

 ,
exp1999.0

20000exp1001.01,,,
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
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P

PXwPuV
i

i
II 



 

In Table 1 we calculate for each ai, i = 1,2,…6, the 
compensating risk premium PI (ui, w, X) and the 
Esscher premium  

       XEXXEXwuP iii
E

I  expexp,,    

(note that the Esscher premium is higher than the 
compensating risk premium (Buhlmann, 1980)). 
Table 2 shows, for different premiums, the induced 
values of VI, at different values of the risk aversion. 
Note that if the Insurer 1 uses the Esscher premium, 
he obtains a satisfaction level higher than 40%. A 
premium of $100, as assumed in Aumann and Ser-
rano (2008), gives him a satisfaction level higher  
than 60%. 

Finally, we consider an insurer with utility function 
        ,2exp12exp1, jjiiji xxxu    

i, j = 1,2,…6 and i ≠ j; if ai < aj, then, ai < ‒ u'i'j (x)/ 
/u'ij (x) < aj for each x .  

In particular (by previous Theorem and Table 2) if i 
= 1 and j = 2, a premium of $100 gives a satisfaction 
level higher than 56.5634 % and lower than 
61.5088%. 

Table 1. Compensating and Esscher’s premiums for 
different values of the risk aversion  

α IP  
E

IP  

0.00006 38.6238 66.24863 
0.00007 43.5792 80.85697 
0.00008 49.3155 98.6706 
0.00009 55.966 120.385 
0.0001 63.6873 146.8429 
0.0002 261.0556 1036.4132 

 

Table 2. Induced values of VI , for different premiums, at different values of the risk aversion 

P 
α 

0.00006 0.00007 0.00008 0.00009 0.0001 0.0002 
38.6238 0.113955      
43.5792 0.217269 0     
49.3155 0.310539 0.116613 0    
55.966 0.394390 0.221887 0.119185 0   
63.6873 0.417888 0.316531 0.226334 0.121665 0  

66.24863 0.523448 0.343053 0.256361 0.155759 0.038824  
80.85697 0.609873 0.462199 0.391251 0.308924 0.213236  
98.6706 0.615088 0.559748 0.501689 0.434324 0.356032  

100 0.680631 0.565634 0.508353 0.441891 0.364648  
120.385 0.738564 0.639614 0.592108 0.536993 0.472942  

146.8429 0.808623 0.705003 0.666137 0.621050 0.568661  
200 0.853887 0.784079 0.755662 0.722704 0.684415  

261.0556 0.964803 0.835169 0.813502 0.788379 0.7592 0 
1036.4132 1 0.960357 0.955228 0.949299 0.942436 0.768067 

20,000  1 1 1 1 1 
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2. A fair premium 

In the following, we want to take into account the 
satisfaction level of the customer (the owner of the 
risk X) assuming that he has preferences according 
to the expected utility principle. Given a utility 
function u and an asset w, the equivalent risk premi-
um PC (u, w, X) is defined as the unique solution of 
the following equation  

    .u w P E u w- X            (4)  

As done previously for the insurer, we introduce the 
“customer’s satisfaction level function”, VC. Let for 
each P, XP sup ess0  : 

      

          
.,,,
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P

P
XX

C

XwuExdFPwuxdFxwu

w-XuEPwuXwPuV  

VC (u, P, w, X) compares the increment in the 
utility u(w – P) – E [u(w – X)] that the customer 
with asset w obtains paying the premium P to 
insure against the risk X, with the increment 

      .XwuEXPPwuE    The latter is the 
increment in the expected utility that the customer, 
paying the premium P, could obtain if the contract 
covered the total claim amount only if it was larger 
than P, refunding the difference between the premi-
um and the losses otherwise. 

Following ideas discussed in section 1, we can prove  
that the function      XXwuVC supess,0:,,,  is 
strictly decreasing. 

Furthermore it results that Pc (u,·,X) is a [strictly] 
decreasing function if and only if VC (u, P,·,X) is a 
[strictly] decreasing function, for each risk X and for 
each  XP supess,0 . 

Moreover, given two utility functions u1 and u2, the 
following conditions are equivalent: 

(a) u1 is a [strictly] concave transformation of u2; 
(b)      1 2, , , , , , , , , withC CV u P w X V u P w X P w X                    

 XP supess,0 . 

In the following the question we address is what is a 
reasonable premium for the risk, as the premium 
should be acceptable with respect to the opposite 
interests of both the insurer and the customer.  

We consider an insurer with utility function uI and 
asset wI, and a customer with utility function uC 
and asset wC. The customer is willing to insure the 
risk X. We suppose that both the agents have de-
creasing absolute risk aversion, rs,s = I,C, with  
rC > rI, and wC < wI. It can be easily shown that 

    XXwuPXwuP CCCIII supess,,,,  . 

Let PI = PI (uI, wI, X), PC = PC (uC, wC, X),  
VI (P) = VI (uI, P, wI, X) and VC (P) = VC (uC, P, wC, X) 
it results that, for each  CI PPPP ,,  , the following 
inequalities are fulfilled: 

    -XwuEPwu CCCC   

and 

    IIII wuP-XwuE  . 

What should be a “fair” price for the contract? We 
tackle the problem considering the satisfaction lev-
els of the insurer and the customer, i.e. we want  
to determine a pair in the set γ, being 

    CICI PPPPVPV ,,)(),(  . 

For example, we refer to the situation described in 
Example 1. We consider the risk X, consisting in 
loosing $20,000 with 0.001% probability, an In-
surer I and a customer C having utility  
functions uI (x) = (1‒ exp (‒ 0.00006x))/0.00006 and 
uC (x) = (1‒ exp (‒ 0.0002x))/0.0002, respectively. It 
results that PI = 38.6238, PC = 261.0556 and for each 

 CI PPP , ,  

     
  P

PPVI 00006.0exp1999.0
2000000006.0exp1001.01




  

and 

    
   200000002.0exp1001.0
0002.0exp1999.01





P

PPVC . 

Now, our insurance problem can be analyzed in the 
framework of the bargaining theory. In this context, 
the concept of fairness involves comparison with all 
possible gains of the agents from their all possible 
agreements, taking into account what the agents 
would get without an agreement.  

In general (as it was introduced by Nash (1950), a 
two-person bargaining problem is a pair (F, v), 
where F is a closed convex subset of 2 , v = (v1, 
v2) is the disagreement point and the set  

 2211
2 ,:~ νxνxxFF   is nonempty and 

bounded. Many well known solutions have been 
proposed, with an axiomatic approach where desired 
properties of the solutions are satisfied; for a com-
plete survey we refer to Thomson (1994). In particu-
lar, we make use of the Nash solution and the Kalai-
Smorodinsky solution. 

The Nash solution (Nash, 1950) is the unique point 
FxN ~ such that 

   FxxxxN ~maxarg 2211   .    (5) 
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The Kalai-Smorodinsky solution (Kalai and 
Smorodinsky, 1975) is the unique point FxKS ~

  
such that 

 
  11

22

11

22

,~
,~














Fm
Fm

x
x

KS

KS

     (6)  

being   .2,1 ,max,~
,~ 


iyvFm ivyFyi  

We can state a bargaining problem for our situation 
as follows:  

Let    
   

















1

1
2

1
2

21

0

 ,0:,~
xVVx

PVxxx
F

IC

CI . 

The disagreement point is v = (0, 0); it represents 
the situation in which the two agents do not sub-
scribe the contract. The set 

   
  

       
      

,,,,

  ,0:,~

1
1

2

1
2

21

CICI

IC

CI

PPPPVPV
xVVx

PVxxx
F























       

represents the set of feasible pairs of payoffs if the 
contract is subscribed at the premium  CI PPP , . 

The set F~  can be justified assuming that the two 
agents can agree to jointly randomized strategies, i.e. 
planning to implement the contract at the premium P 
with probability θ, and not subscribe the contract oth-
erwise. 

According to (5) the Nash solution is xN  F~  such 
that xN = (VI (PN), VC (PN)), where xN = (VI (PN),  
VC (PN)) where PN = arg max       CICI PPPPVPV ,,  ; 
according to (6) the Kalai-Smorodinsky solution is  
xKS = (VI(PKS), VC (PKS)), where VC (PKS)/ VC (PI) =  
= VI (PKS) / VI (PC). For our example, it results VI (PC) = 
= 0.8539 and VC (PI) = 0.8554. Both the Nash and the 
Kalai-Smorodinsky solutions give the satisfaction 
levels higher than 61% corresponding to a premium  
P ~ 100.93. 
Concluding remarks 

Several premium calculation principles have been 
proposed in actuarial sciences. Clearly, the pre-
mium should not only be high enough to compen-
sate the insurer for bearing the risk, it should be 
also low enough so that the customer accepts the 
policy. In this context, actuaries apply utility the-
ory to the risk evaluation. Referring to their re-
sults, we argue that the premium has to be set 
higher than the compensating risk premium (de-
fined by (1)) being the customer more risk averse 
than the insurer. In this note, we introduced two 
measurements called “satisfaction levels” that 

quantify the agent's satisfaction level with respect 
to the chosen price, basing on the comparison 
between increments in the expected utility. Keep-
ing in mind the theorem in section 1 and the con-
siderations made in section 2, we deduce that the 
agent a1 with utility function u1 is more risk averse 
than the agent 2a  with utility function u2 (in the 
Arrow-Pratt sense, i.e. r1 (x) ≥ r2 (x), for each x ) 
iff VI (u1, P, w, X) ≤ VI (u2, P, w, X) or, equivalently, 
iff VC (u1, P, w, X) ≥ VC (u2, P, w, X) for each pre-
mium P, for each asset w, for each risk X, with 

 XessP sup,0 . 

Moreover, in this note, we shown that the satis-
faction levels are useful instruments for the 
choice of “fair” insurance premium. 

Some authors argue that the Arrow-Pratt coeffi-
cients of risk aversion are generally too weak for 
making comparison between risky situations 
(Ross, 1981; Modica and Scarsini, 2005; Denuit 
and Eeckhoudt, 2010). In fact, Ross (1981), ob-
served that the above result does not extend to the 
case in which the risk X is added to a random as-
set w~ . Therefore, new stronger measures of risk 
aversion were proposed, for example, by Ross 
(1981) and, more recently, by Modica and 
Scarsini (2005) and Denuit and Eeckhoudt (2010). 
In particular, Ross (1981) defined a1 strongly 
more risk averse than a2 if there exists λ such that 
inf  u"1/u"2 ≥ λ ≥ sup u'1/u'2. This ordering is 
stronger than the Arrow-Pratt ordering: choose  
u1(x)=  exp( ax) and u2(x)=  exp( bx), with 

x  and a>b>0, it results that r1 (x) > r2 (x), for 
each x , but there exist x1 and x2 such that  
u'1' (x1) / u'1' (x1) < u'1(x2) / u'2(x2). The new measure of 
risk aversion “provides necessary and sufficient 
conditions for more risk averse agents to have high-
er insurance premia”. 

Despite these considerations, in this note we have 
considered the Arrow-Pratt measure of absolute risk 
aversion, that continues to be used in the literature by 
several authors (we just recall the paper of Aumann 
and Serrano (2008), where the riskiness of a gamble is 
defined as the reciprocal of the absolute risk aver-
sion of an individual with exponential utility 
function). 

Finally, another remark considers the possibility that 
the insurer (as he has a portfolio of policies), could 
reduce the risk associated transferring all or part of 
his risk to a second (or more) insurance carrier(s). 
There are several applications of game theory to 
solve these insurance problems; in fact, it is possible 
to analyze the situation as an n-person game. We 
just recall Borch (1974), Lemaire (1991) and, more 
recently, Suijs et al. (1998) and Ambrosino et al. 
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(2006). A possible development of our paper is to 
perform an analysis of the satisfaction of the agents 
in this reinsurance problem. 
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