Abraham Zaks (Israel)

Premiums are not necessarily monotonic with interest and age

Abstract

In a previous paper [7] the author studied the impact of changes in the force of mortality and the force of interest on life annuities, and estimated the change in annuities, reserves, liabilities, and premiums under change in the force of interest and the force of mortality.

Dynamical life tables (DLT) uses force of mortality that varies with time. Life insurance plans and pension schemes are recently considering DLT and variable rate of interest.

Evaluation of annuities subject to DLT is quite complex. We suggested in [8] some approximations based on the estmates that we achieved in [7].

The study of the impact of changes in the rate of interest and the rate of mortality is classical and is carried out formely using different methods, e.g. [4], [5] and [6].

In [9] we proved the conjecture that premium decreases when interest increases for whole life assurance for some ages, whenever the life table is of a standard population.

In this paper we present a life table for which the conjecture is false, and we study the conjecture for the cases of term assurance and a pension scheme. We consider a second conjecture that premium decreases when age increases, for some fixed interest.

We present a life table that contradicts these two conjectures. The life table is typical for a population that is subject to some high risk within a given range of ages, a risk that fades away with time as the survivors of the risky period are cured, healthy, and regular.

Keywords: rates of interest, force of mortality, expectancy of life, annuities, the classical values \overline{a}_x , \overline{A}_x , \overline{P}_x , $t\overline{V}_x$.

Introduction

It is general practice to assume that the two conjectures hold for whole life policies. The first, premium increases with increasing age, and the second, premium increases with interest decreasing. One may be tempted to argue that the conjectures hold, but these conjectures cannot be proved without reservations, as they may fail to hold.

In [9] we suggested that the second conjecture may fail to hold. It stems from our paper [7] where we studied changes in life annuities due to changes in the force of mortality and the force of interest, and where we proposed estimates for the change in annuities, liabilities of life assurance, premiums and reserves under change in the force of interest and the force of mortality.

Dynamical life tables (DLT) uses force of mortality that varies with time. Life insurance plans and pension schemes are recently considering DLT and variable rate of interest.

Evaluation of annuities subject to DLT is quite complex. We suggest approximations based on the estimates that we achieved in (7). We expanded the results in (8) to higher derivatives. This enabled us to achieve better estimates and to evaluate the size of the error of the estimated values.

In [9] we studied the first conjecture: premiums decreases when interest increases for whole life assurance and we proved that it is valid for a population that is subject to a life table that satisfies the weak decreasing assumption that is a life table for which the inequalities $p_x \ge p_{x+y} p_{x+y+t} = p_{t+1} p_t$ hold for all x, y and t, where p_x is the probability for a life aged t to survive for at least t years.

We refer to a population as a standard population if it is subject to a life table that satisfies the weak decreasing assumption; otherwise it is a nonstandard population.

We intend to discuss the first conjecture: premiums decreases when interest increases for whole life assurance as well as for term assurance and pension schemes.

We observe a second conjecture: premiums increases with age for whole life assurance as well as for term assurance and pension schemes.

In this paper we suggest a life table that does not satisfy the weak decreasing assumption, that is the population that is subject to this life table is a non-standard population and we will investigate the conjectures on the premiums behavior under change of interest and age for the whole life assurance, for the term assurance and for the pension scheme.

This life table suggests that both conjectures may fail for non-standard population.

© Abraham Zaks, 2013.

A non-standard population may arise when the population includes a range of age of high risk that fades away over some given period that is the survivors of the high risk period become "healthy". Our table contains a young range of age under high risk, a risk that reduces over a decade to "normal" risk. The high risk fades away over a decade and the survivors are then subject to normal risk. For a life table in which the high risk occurs at a higher age range or occurs for several ranges of age the behavior of the premiums may be expected to behave "strangely" over large ranges of age.

In general life tables represent a standard population. A non-standard population occurs when the population includes a large group of high risk within a standard population.

Table 1 is a life table of a non-standard population that includes a group of a high rate of mortality in the range of ages of 35 to 45 and the rest fits to a standard population.

1. A non-standard life table

In [9] we studied the first conjecture: *premium increase when interest decrease*, and we established that the conjecture holds for a standard population that is a population that is subject to the inequality $p_x \ge p_{x+y}$ for all non-negative values of x, y and t.

We also observed in [9] that the inequality ${}_{m}p_{x \, n-m} \, p_{x} \ge {}_{n}p_{x}$ holds if the inequality ${}_{t}p_{x} \ge {}_{t}p_{x+y}$ holds for all non-negative values of x, y, and t.

Recall that a life table satisfies the weak decreasing assumption if $p_x \ge p_{x+y} p_{x+y+t} = p_{x+y} p_{x+y}$ for all x, y, and t.

We proved in [9] that the first conjecture holds for a whole life assurance provided the underlying life table satisfies the weak decreasing assumption that seems to hold in most life tables

The natural question is: Do all life tables satisfy the weak decreasing assumption?

The life table in Table 1 (see Appendix) describes a population with high rates of mortality within the age range 35-45, and the survivors to age 45 are subject to "normal mortality".

In Table 2 (see Appendix) we have the yearly premiums due for a whole life assurance for various ages.

In Table 3 (see Appendix) we have the yearly premiums due for a term assurance for various ages.

In Table 4 (see Appendix) we have the yearly premiums due for some pension scheme for various ages.

We proceed to verify the two conjectures for the various assurance cases.

2. A whole life assurance in a case of nonstandard life table

Consider the life table in Table 1 that describes a population that is subject to high rates of mortality within the 35-45 age range, and for the survivors to age 45 are subject to "normal mortality". We will see that this life table describes a non-standard population

Table 2 provides the yearly premiums due for a whole life assurance for various ages.

From Table 2 for the range of ages 35-45 it follows that for this non-standard population and for the case of whole life assurance the following hold.

Proposition 2.1: For a whole life assurance for non-standard population premiums may increase when interest increase, e.g. consider the range of ages 35-45 in Table 2.

Proposition 2.2: For a whole life assurance for a non-standard population premiums may decrease when age increase, e.g. consider the range of ages 35-45 in Table 2.

These results "contradict" both conjectures, and one can easily explain these phenomema by the high risk in the 35-45 range of age in the life table.

We proved in [9. Theorem 2] that the first conjecture is valid for a standard population, therefore it follows that:

Lemma 2.1: Table 1 describes a non-standard population.

3. A term assurance in a case of non-standard life table

Consider the life table in Table 1 that describes a population that is affected due to some cause that results in high rates of mortality within the 35-45 age range, so that those surviving the age of 45 overcame the cause and are subject to "normal mortality".

In Table 3 we have the yearly premiums due for a term assurance for various ages.

From Table 3 for the range of ages 35-45 it follows that for this non-standard population and for the term assurance the following hold.

Proposition 3.1: For a term assurance for non-standard population premiums may increase when interest increase, e.g. consider the range of ages 35-45 in Table 3.

Proposition 3.2: For a term assurance for a non-standard population premiums may decrease when age increase, e.g. consider the range of ages 35-45 in Table 3.

These results "contradict" both fonjectures, and one can easily explain the behavior of premiums of the term assurance in the age range of 35-45 in case of a high risk in this age range as given in the life table.

4. A pension scheme in a case of non-standard life table

Consider the life table in Table 1 that describes a population that is affected due to some cause that results in high rates of mortality within the 35-45 age range, so that those surviving the age of 45 overcame the cause and are subject to "normal mortality".

In Table 4 (see Appendix) we have the yearly premiums due for some pension scheme for various ages.

From Table 4 for the range of ages 35-45 it follows that for this non-standard population and for the pension scheme the following hold.

Proposition 4.1: For a whole life assurance for non-standard population premiums increases when interest decreases, e.g. consider the range of ages 35-45 in Table 2.

Proposition 4.2: For a whole life assurance for a non-standard population premiums increases when

age increases, e.g. consider the range of ages 35-45 in Table 2.

These results are "as expected" due to the fact that the liabilities are far beyond the age "abnormality" and that the high rates of mortality decreases the value of the liabilities

These both conjectures are probably valid for the pension scheme as one can argue.

Conclusion

The results as obtained in sections 3-4 stem from the high rate of mortality in the 35-45 age range describing a highly non-standard population. Reducing the rates of mortality in the 35-45 age range affects the results in sections 3-4. This suggest the conjecture that there is no non-standard populations due to the young and young-adult mortality hump in a standard life tables, that is: the two conjectures on premiums monotonicity are valid for the population subject to a standard life table. The humps in the standard life tables are too small to create non-standard populations that are subject to the life table.

References

- 1. Bedard D., Dufresne D. (2001) Pension Funding with Moving Average Rates of Return, *Scandinavian Actirial Journal*, 1, pp. 1-17
- 2. Dufresne D. (1989). Stability of pension systems when rates of return are random, *IME*, 8, pp. 71-76.
- 3. Khalaf-Allah, M.S. Haberman, R. Verrall (2006). Measuring the effect of mortality improvements on the cost of annuities, *IME*, 39, pp. 231-249.
- 4. Lidstone G.J. (1905). Changes in pure premium policy-value consequent upon variation in the rate of interest or the rate of mortality, ot upon introduction of the rate of discontinuance (with discussion), *Journal of the Institute of Actuaries*, 39, pp. 209-252.
- 5. Macdonald A.S. (2004). Lindstone's Theorem, Encyclopedia of Acturial Science, 2, pp. 978-979.
- 6. Norberg R. (1985). Lidstone in the Continuous Case, Scandinavian Activial Journal, pp. 27-32
- 7. Zaks A. Annuities under changes in life tables and changes in the interest. Available at http://ssrn.com/abstract=1412223.
- 8. Zaks A. Annuities under changes in life tables and changes in the interest II. Available at http://ssrn.com/abstract=1430082.
- 9. Zaks A. Annuities under changes in life tables and changes in the interest III, or Premium increases when Interest decreases. Available at http://ssrn.com/abstract=1369157.

Appendix

Table 1. Life table final age 115

Age x	Lx		
35	9,940,000		
36	5,964,000		
37	3,757,320		
38	2,517,404		
39	1,762,183		
40	1,286,394		
41	964,795		
42	752,540		
43	639,659		
44	575,693		
45	520,750		
46	519,375		
47	517,825		
48	516,100		
49	514,200		
50	512,125		
51	509,875		
52	507,450		
53	504,850		
54	502,075		
55	499,125		
56	496,000		
57	492,700		
58	489,225		
59	485,575		
60	481,750		
61	477,750		
62	473,575		
63	469,225		
64	464,700		
65	460,000		
66	455,125		
67	450,075		
68	444,850		
69	439,450		
70	433,875		
71	428,125		
72	422,200		
73	416,100		
74	409,825		
·	•		

Age x	Lx
75	403,375
76	396,750
77	389,950
78	382,975
79	375,825
80	368,500
81	361,000
82	353,325
83	345,475
84	337,450
85	329,250
86	320,875
87	312,325
88	303,600
89	294,700
90	285,625
91	276,375
92	266,950
93	257,350
94	247,575
95	237,625
96	227,500
97	217,200
98	206,725
99	196,075
100	185,250
101	174,250
102	163,075
103	151,725
104	140,200
105	128,500
106	116,625
107	104,575
108	92,350
109	79,950
110	67,375
111	54,625
112	41,700
113	28,600
114	15,325

Table 2. Whole life assurance (even premium due yearly for a whole life assurance for 1)

Age		Interest					
	1%	2%	3%	4%	5%		
35	0.214	0.233	0.248	0.260	0.270		
36	0.161	0.179	0.194	0.207	0.218		
37	0.119	0.133	0.147	0.159	0.169		
38	0.088	0.099	0.110	0.120	0.129		
39	0.066	0.073	0.080	0.088	0.096		
40	0.049	0.053	0.058	0.063	0.069		
41	0.037	0.038	0.040	0.043	0.046		
42	0.028	0.027	0.027	0.028	0.029		
43	0.023	0.021	0.020	0.020	0.020		
44	0.020	0.018	0.016	0.015	0.015		
45	0.018	0.015	0.013	0.011	0.009		
46	0.019	0.016	0.013	0.011	0.010		
47	0.019	0.016	0.014	0.012	0.010		
48	0.020	0.017	0.014	0.012	0.011		
49	0.020	0.017	0.015	0.013	0.011		
50	0.020	0.018	0.015	0.013	0.012		
51	0.021	0.018	0.016	0.014	0.012		
52	0.022	0.019	0.016	0.014	0.013		
53	0.022	0.019	0.017	0.015	0.013		
54	0.023	0.020	0.017	0.015	0.014		
55	0.023	0.020	0.018	0.016	0.014		
56	0.024	0.021	0.018	0.016	0.015		
57	0.024	0.021	0.019	0.017	0.015		
58	0.025	0.022	0.019	0.017	0.016		
59	0.026	0.023	0.020	0.018	0.016		
60	0.026	0.023	0.021	0.019	0.017		
61	0.027	0.024	0.021	0.019	0.018		
62	0.028	0.025	0.022	0.020	0.018		
63	0.028	0.025	0.023	0.021	0.019		
64	0.029	0.026	0.024	0.021	0.020		
65	0.030	0.027	0.024	0.022	0.020		
66	0.031	0.028	0.025	0.023	0.021		
67	0.032	0.029	0.026	0.024	0.022		
68	0.033	0.029	0.027	0.025	0.023		
69	0.033	0.030	0.028	0.025	0.024		
70	0.034	0.031	0.029	0.026	0.024		

Table 3. Term assurance (even premium due yearly for a term assurance to the age of 70 for 1)

Age	Interest					
	1%	2%	3%	4%	5%	
35	0.2531	0.2616	0.2689	0.2751	0.2804	
36	0.2021	0.2105	0.2182	0.2251	0.2313	
37	0.1580	0.1650	0.1718	0.1783	0.1844	
38	0.1239	0.1291	0.1345	0.1399	0.1452	
39	0.0972	0.1003	0.1038	0.1076	0.1116	
40	0.0768	0.0779	0.0795	0.0816	0.0841	
41	0.0606	0.0598	0.0596	0.0600	0.0607	
42	0.0486	0.0464	0.0446	0.0434	0.0426	
43	0.0424	0.0393	0.0366	0.0344	0.0327	
44	0.0393	0.0356	0.0323	0.0296	0.0272	
45	0.0364	0.0322	0.0284	0.0250	0.0221	
46	0.0381	0.0338	0.0300	0.0266	0.0235	
47	0.0399	0.0355	0.0317	0.0282	0.0251	
48	0.0418	0.0374	0.0335	0.0300	0.0268	
49	0.0439	0.0395	0.0355	0.0319	0.0287	
50	0.0461	0.0417	0.0377	0.0341	0.0308	
51	0.0486	0.0442	0.0401	0.0364	0.0330	
52	0.0513	0.0468	0.0427	0.0390	0.0355	
53	0.0543	0.0498	0.0456	0.0418	0.0383	
54	0.0577	0.0531	0.0489	0.0450	0.0414	
55	0.0615	0.0568	0.0526	0.0486	0.0449	
56	0.0657	0.0610	0.0567	0.0526	0.0489	
57	0.0706	0.0658	0.0614	0.0573	0.0534	
58	0.0761	0.0713	0.0668	0.0626	0.0587	
59	0.0826	0.0777	0.0732	0.0689	0.0648	
60	0.0902	0.0853	0.0806	0.0762	0.0721	
61	0.0993	0.0943	0.0896	0.0851	0.0808	
62	0.1104	0.1054	0.1005	0.0959	0.0915	
63	0.1243	0.1191	0.1142	0.1094	0.1049	
64	0.1421	0.1368	0.1317	0.1268	0.1221	
65	0.1658	0.1603	0.1550	0.1499	0.1451	
66	0.1988	0.1932	0.1877	0.1824	0.1773	
67	0.2484	0.2425	0.2367	0.2311	0.2256	
68	0.3309	0.3245	0.3183	0.3122	0.3063	
69	0.4958	0.4885	0.4815	0.4745	0.4678	
70	0.9901	0.9804	0.9709	0.9615	0.9524	

Table 4. Pension scheme (even premium due yearly for a pension of 1 p.a. due starting at age 70)

Age	Interest					
	1%	2%	3%	4%	5%	
35	0.192	0.128	0.085	0.057	0.039	
36	0.262	0.178	0.122	0.084	0.058	
37	0.333	0.232	0.162	0.114	0.080	
38	0.402	0.285	0.203	0.146	0.105	
39	0.465	0.335	0.243	0.178	0.130	
40	0.522	0.382	0.281	0.208	0.155	
41	0.573	0.424	0.316	0.237	0.179	
42	0.617	0.462	0.348	0.264	0.201	
43	0.657	0.495	0.376	0.288	0.221	
44	0.694	0.527	0.403	0.311	0.241	
45	0.731	0.558	0.430	0.334	0.261	
46	0.768	0.590	0.457	0.357	0.281	
47	0.808	0.624	0.486	0.382	0.303	
48	0.851	0.661	0.519	0.410	0.327	
49	0.900	0.703	0.554	0.441	0.354	
50	0.953	0.749	0.594	0.475	0.384	
51	1.012	0.799	0.638	0.514	0.417	
52	1.078	0.856	0.687	0.557	0.455	
53	1.151	0.920	0.743	0.605	0.498	
54	1.234	0.992	0.805	0.660	0.546	
55	1.329	1.073	0.877	0.723	0.602	
56	1.437	1.167	0.959	0.795	0.666	
57	1.563	1.276	1.054	0.879	0.740	
58	1.709	1.403	1.165	0.978	0.828	
59	1.883	1.554	1.298	1.095	0.933	
60	2.092	1.736	1.457	1.237	1.059	
61	2.348	1.959	1.653	1.410	1.215	
62	2.669	2.238	1.899	1.629	1.411	
63	3.081	2.598	2.216	1.911	1.664	
64	3.633	3.078	2.640	2.289	2.004	
65	4.406	3.753	3.235	2.819	2.481	
66	5.566	4.766	4.130	3.617	3.200	
67	7.503	6.456	5.623	4.951	4.402	
68	11.379	9.841	8.614	7.622	6.812	
69	23.013	20.003	17.595	15.647	14.052	