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Optimal capital allocation ‒ a generalization of the optimization 
problem 
Abstract 

Some recent papers, e.g. Zaks et al.(2006), Frostig et al. (2007) and Dhaene et al. (2012), deal with capital allocation 
and premium pricing as optimization problems. In these papers, the authors consider some constraints on the convex 
function and find an explicit solution in each case. In this paper we prove the existence of a unique solution where each 
class has a different convex function. Moreover, it gives an explicit solution in case the convex functions have first 
order derivatives. 
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Introduction1 

A fundamental question in actuarial science is how 
much money to ask from a policyholder in a 
heterogeneous portfolio? A closely related question 
is how to allocate a given amount of capital between 
the different classes in a portfolio. The first question 
is called the premium calculation problem; the 
second is the capital allocation problem. These 
problems are well known in the literature. Goovaerts 
et al. (1984) present in their book the main premium 
principles and their properties. Deprez and Gerber 
(1985) studied the convexity property of several 
common premium principles. In addition, they study 
the problem of optimal reinsurance contract and the 
problem of splitting the portfolio between several 
insurers in order to reduce the total premium. Many 
papers deal with the capital allocation problem, e.g., 
Cummins (2000) who discussed the advantages and 
disadvantages of some methods of capital 
allocation, such as the marginal capital allocation. 
Denault (2001) and Tsanakas (2009) considered a 
capital allocation based on methods of game theory. 
Another approach is to consider some optimization 
problem as in Zaks et al. (2006) and Frostig et al. 
(2007) who studied the premium calculation 
problem, and one of the models of capital allocation 
that is presented in Dhaene et al. [2012, Section 
3.2]. The objective function in these optimization 
problems is to minimize the expected difference 
between the premium (or capital) and the loss. The 
objective function assumes the same convex 
function for each class. In Dhaene et al. (2012) and 
Zaks et al. (2006) different weights are allowed, 
while in Frostig et al. (2007) no weights are 
allowed. The constraint in these optimization 
problems is a predetermined level of insolvency or 
an aggregate capital. 

In this paper we generalize the results of these three 
papers, in the sense of allowing to measure the 
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deference between the allocated capital and the loss 
by a different convex function for each class. It 
gives the insurer the flexability to implement its 
policy in regards of the preferred risks in the 
portfolio. 

Throughout the paper, we refer to two settings of the 
objective function: the random setting and the 
deterministic setting. In the random setting, the 
random variable (r.v.) S, that describes the claims, 
appears in the objective function, while in the 
deterministic setting we consider some real function 
of the r.v., such as its expectation or its variance. 
Zaks et al. (2006) and Dhaene et al. (2012) showed 
the equivalence of the two settings in case of the 
quadratic function. In these papers, the authors 
showed that different settings of the weights lead to 
different common premium principles and capital 
allocation. Frostig et al. (2007) dealt with the 
deterministic setting. In this paper, we show the 
existence of a unique solution considering the 
random setting. Thereafter, we analyze the case of 
the deterministic setting in order to obtain an 
analytical solution. 

The rest of the paper is organized as follow. section 
1 presents the main notations of this paper. In 
section 2, we present the main results of the paper 
follow by some examples in section 3 to illustrate 
the required calculations. In addition, we show the 
relations between this paper to the results in Dhaene 
et al. (2012), Frostig et al. (2007) and Zaks et al. 
(2006). Brief conclusions are given in the final 
section. 

1. Preliminaries 

In this paper, we follow the notations as in Frostig et 
al. (2007) and Zaks et al. (2006). We consider a 
heterogeneous portfolio consisting of k classes. Let 
X1,…, Xk be k random risks with means µ1,…,µk 
respectively, and let πi be the premium for a risk in 
class i, i = 1,...,k. Consider a portfolio consisting of 
ni random risks Xi,1,...,Xi,ni, distributed as Xi, i = 
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In addition, let q1-α represent the 1 ‒ α percentile of  
S ‒ µ that is,  

P(S ‒ µ ≤ q1-α) = 1 ‒ α. 

When pricing insurance policies, it is common to 
ask that the premium will fulfill the following 
principles: 

1. Each policyholder pays at least a premium equal 
to his risk’s expectation, i.e. πi ≥ µi 
2. Each policyholder pays no more than the 
maximum loss.  
3. The probability that the total claims (S) exceed 
the total premiums paid (π) is less than or equal to a 
predetermined α, where 0 < α < 1, i.e. P (S > π) ≤ α 
4. The premium (πi) is a non-decreasing function of 
the expected claim (µi). 
In Frostig et al. (2007), the authors found an explicit 
solution for the primal optimization problem. In the 
primal optimization problem, the authors considered 
a single convex function in order to measure the 
difference between the premium and the expected 
claims in each class. This difference is also known 
as the residual risk. They found premiums that 
minimize the aggregate residual risk of the portfolio 
and they verified that principles 1, 3 and 4 hold. In 
mathematical notations, in Frostig et al. (2007), the 
following optimization problem is studied: 
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where the function f: (‒∞, ∞) → [0, ∞) is strictly 
convex. 

In (1), there is a consideration of the expected 
claims without any consideration of the r.v. itself. 
Therefore, this is a deterministic setting of the 
objective function, which is common practice. We 
can rewrite the objective function in (1) as

  i if E S . On the other hand, the real life 

situation is the random setting, i.e.,    iiE f S . 
It appears that in some cases (see Dhaene et al. 
(2012), Zaks et al. (2006)), these two settings lead to 
the same optimal solution. Note that in case of 
expectations, the deterministic setting is a special 
case of the random setting. The two settings 
coincide in case we set Si to be a constant equal to 

i since           i i i iE f f    . 

2. The optimal solution  

In this section we bring the main results of the 
paper. In section 2.1, we show the existence of a 
unique solution for the random setting. Section 2.2 
considers the deterministic setting, for which we 
find an analytic solution.  

2.1. The existence of a unique solution. A 
common way to solve this type of optimization 
problem is by Lagrange multipliers. Sometimes it is 
possible to solve the first order condition and to 
obtain an explicit solution. Frostig et al. (2007) 
found an explicit solution following Majorization’s 
considerations for the case of the same convex 
function for each class without any weights. Here 
we allow a different convex function for each class. 
We prove the existence of a unique solution without 
the need for derivatives. In proposition 2.1., we 
consider the case of the random setting.  

Proposition 2.1. Let g: (‒∞, ∞) → [0, ∞) be a 
strictly convex function. Then the following 
minimization problem has a unique solution 
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for any constant C > 0. 

Proof. First we show that h (x) = E [g (S ‒ x)] is a 
strictly convex function. Let ,x y R and let  
0 < α < 1. Hence,  

 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 4, Issue 2, 2013 

 31

h (αx + (1 ‒ α)y) = E [g (S ‒ αx ‒ (1 ‒ α)y)] 

= E [g (α(S ‒ x) + (1 ‒ α)(S ‒ y)] <  

< E [αg ((S ‒ x) + (1 ‒ α) g(S ‒ y)] = 

= αh (x) + (1 ‒ α) h(y),  

where the inequality holds by the convexity of g 

Therefore, we obtain that 
1
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   is a 

strictly convex function. The constraints create a 
closed set, thus there is a unique minimum.  

2.2. An analytical solution. In the previous section, 
we proved the existence and the uniqueness of a 
solution in a framework of the random setting. This 
section is devoted to finding an expression for the 
optimal solution in case of the deterministic setting. 

In Proposition 2.2., we consider the deterministic 
setting and obtain the optimal premium 1  as a 

fixed point. Based on this optimal 1 , we express 
the optimal premiums for the other classes. First, we 
analyze the optimization problem without the set of 
constraints πi ≥ µi i = 1,…,k. Thereafter, we 
conclude in Corollary 2.3 that the obtained optimal 
solution satisfies these constraints as well.  

Proposition 2.2. Let g1,…gk: (‒∞, ∞) → [0, ∞) be 
continuous and strictly convex functions such that 
݃ has a first order derivative, denoted by ρi, for  

i = 1,…,k, and let C > 0. Hence, the solution to the 
optimization problem 
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satisfies the following conditions 
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Proof. Note that since gi is strictly convex, then its 
first derivative i  is a strictly increasing function 
and its inverse function 1

i
 exists for every  

i = 1,…,k. 

Denote i i ix     , and consider the following 
equivalent problem: 
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Substitute 
1

1

 
k

k i
i

x C x




   in the objective function 

to obtain 
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Thus, we analyze G (·) in order to find its minimum. 
The i ‒ th element of the gradient of G is thus 
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  for every i = 1,…,k ‒ 1. 

In order to find the critical points we compare 
( ) 0G x , and we obtain the relation 
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In particular, we obtain 1 1 =( ) ( )i ix x  for every  
i = 1,…,k ‒ 1. Hence the following holds: 

  1
1 1i ix x  .                                                  (9) 

Substituting the last equality in (8), we attain the 
following condition on x1: 
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We denote by *
1x the solution of (10). Following (9), 

(10) and by the relation 
1
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 * * *
1 , , kx x x is the only point that satisfies the 

Lagrange first order condition. By Proposition 2.1 
we know that there is a unique minimum, hence x* 
is the optimal solution.  

In Corollary 2.3 we state a condition for which x* is 
strictly positive, i.e. the optimal solution we have 
found for (3) satisfies πi ≥ µi for every i = 1,…,k., as 
required in (2).  
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Corollary 2.3. Let g1,…,gk  be as in Proposition 2.2. 
In addition, Let gi be an increasing function for non-
negative values for every i = 1,…,k. If 
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  then *

jx  in (11) 

satisfies * 0jx   for every i = 1,…,k. 

Proof. By assumption, gi is convex and it is 
increasing for non-negative values, thus ρi and ρi

-1 
are positive and increasing functions for non-
negative values. 

Let *
1x  be the solution to equation (10). If *
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Therefore, according to (10), *
1x  is strictly positive. 

This is a contradiction to *
1x = 0. 

For any *
1x < 0 by the increasing property of the 

derivatives we conclude that  
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Again, we obtain from (10) that *

1x > 0, a 
contradiction. Therefore *

1x > 0 for every i = 1,…,k 
Remark 1.4. If every gi is a decreasing function for 
negative values and an increasing function for 
positive values, i.e. ρi(0) = 0, then we obtain 
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  for every x ≤ 0. Hence, for every 

C > 0, the assumptions of Corollary 2.3 hold and 
therefore * 0ix   for every i = 1,…,k.  

Proposition 2.2 gives us a numerical method to find 
the optimal solution. Sometimes it is possible to 
solve equations (10) and (11) directly, as we show 
in the next section.  

3. Examples 

Example 3.1. Equation (10) can be rewritten as  

 1
1 1
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j
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It is straightforward that if gi (x) = gj (x) for every  

j, i = 1,…,k, then *
i

Cx
k

  for every i = 1,…,k. This 

is the case in Frostig et al. (2007).  

Example 3.2. Let g(x) be a strictly convex function 

and define gi (x) = 1

ir
g (x) for every i = 1,…,k. 

Denote ρ(x) = g'(x). It follows that ρi (x) = 1

ir
ρ (x) 

and ρi
-1(x) = ρ-1(rix), hence  
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In Dhaene et al. (2012) (section 3.2, eq. (35)) and 
Zaks et al. (2006), the authors consider g(x) to be 
the quadratic function, hence its first order 
derivative is homogeneous of order 1.  

The last two examples show the relationships 
between the optimal solutions of previous works 
and the optimal solution presented in this paper. In 
the following example, we demonstrate the 
advantage of Proposition 2.2 by considering the 
exponential function αe βx in the objective function, 
where α, β > 0. Moreover, we allow different 
parameters α, β for different classes.  

Example 3.3. Let gi (x) = i x
ie

 , i = 1,…,k, where 
αi, βi > 0 Following the notations in Proposition 2.2, 
we obtain  

  i x
i i ix e    

   1 1 1 1
i i i

i i i i i

xx ln lnx ln  
    

    . 

In particular,   1 1
1 1 1 1

xx e   . We will calculate 
the solution of (10) in steps. First, for every i = 
1,…,k ‒ 1, we obtain  



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 4, Issue 2, 2013 

 33

  
*

1 1
1 * 1 1

1 1
1 x

i
i i i

ex ln
 

 
  

  = 

    *
1 1 1 1

1 .i i
i

x ln ln    


    

It follows that  

  
1

1 *
1 1

1

 
k

j
j

x 








    
1

*
1 1 1 1

1

1 
k

j j
j j

x ln ln    






   

   1 1 1
*

1 1 1 1
1 1 1

1 1    .
k k k

j j

j j jj j j

ln
x ln

 
  

  

  

  

      

Denote by 
1

1
1

1  
k

k
j j

A







  and 
 1

1
1
 

k
j j

k
j j

ln
B

 








 . 

Hence,  

    
1

1 * *
1 1 1 1 1 1 1 1 1

1

 .
k

j k k k
j

x x A A ln B    



  



  
Substituting *

1x  by 0 in the last equality leads to the 
restriction on C according to Corollary 2.3. That is,  

 1 1 1 1   .k kC A ln B     

We continue with the calculation of (10)  
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To simplify the notations, let  
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The last expression is equal to 
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Note the changes of the indexes from k ‒ 1 to k. 
Finally, we find *

1x  from (10): 
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and by (11) we obtain the optimal solution for every 
class i = 2,…, k ‒ 1: 
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and  

 * *
1 1 1 1 1 1 1   .k k k kx C x A A ln B         

Conclusions 

In this paper, we generalized the results of optimal 
capital allocation as in Dhaene et al. (2012), Frostig 
et al. (2007) and Zaks et al. (2006) by allowing to 
measure the difference between the allocated capital 
and the loss with an arbitrary convex function for 
each class. It gives the insurer the flexability to 
implement its policy in regard to the preferred risks 
in the portfolio. We studied the random setting and 
showed the existence of a solution to the 
optimization problem. Moreover, we proved that 
there is a unique solution. To prove the existence of 
a unique solution, there were no requirement for the 
convex functions to have any derivatives. An 
explicit analytic solution was obtained for the 
deterministic setting under the assumption that any 
convex function has a first derivative. Finally, we 
demonstrated the advantage of our results by 
considering the exponential function with different 
parameters for each class. 
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