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Abstract 

The continuous improvements in mortality rates and life expectancy of the last century have been given a great deal of 
attention by academics, life insurers, financial engineers, and pension planners, particularly in developed countries. 
Mortality-linked securities such as longevity bonds (EIB & BNP as well as the Swiss Re bond), survivor swaps, and 
mortality forward (q-forward) have appeared recently in the industry to help operators hedge such risks. A classic sur-
vivor bond has been proposed in the literature with coupon payment linked to the life time of the last survivor in an 
insurance reference portfolio. It appears therefore to be crucial to improve the accuracy of future life expectancy fore-
casts. In this paper, the authors investigate time-varying dependency associated with common trends that drive regional 
life expectancy within Canada. The aim is to compare three major models that have recently appeared in the literature, 
the autoregressive integrated moving average (ARIMA), the vector autoregressive model (VAR) and the vector error 
correction model (VECM), to analyze the common factors that have determined a progressive shift of life expectancy 
in specific Canadian regions. Results show that VECM performs better than VAR and ARIMA in terms of backtesting 
and its ability to capture the dynamics of common life expectancy. Findings from these analyses are useful for local 
insurers and demographers in their goal to project life expectancy improvements and also to forecast future trends. 

Keywords: life expectancy at birth, VECM, VAR, ARIMA, confidence interval. 
 

Introduction 1 

The improvements in life expectancy and mortality 
rates have been investigated in many studies across 
the 20th century, especially in developed countries 
[(see Lee and Carter, 1992), (Russolillo and Haber-
man, 2005), (Tuljapurkar, 2007) and (Oeppen and 
Vaupel, 2002)]. These progressions in human life have 
been induced by higher life quality, typically asso-
ciated with structural improvements of medical health-
care systems (Shaw et al., 2005), social advancements 
and economic development (Chen and Ching, 2000). 
Due to increasing levels of life expectancy, longevity 
risk is borne by insurance companies, pension funds, 
and social security. Furthermore, young active taxpay-
ers are facing issues about their future pension payouts 
after retirement. Researchers are working to improve 
the accuracy of life expectancy computations with the 
goal of reducing the incidence of policy payouts as 
pension liability amounts are increasing. Two main 
methods of quantifying future life expectancy have 
been identified in the literature: the biological tech-
niques and extrapolative methods (Whiteford, 2006). 
As for the first group, calculations are based on medi-
cal scenarios (Oeppen and Vaupel, 2002) to project 
life expectancy. However, these results are in underes-
timation of future life expectancy. Olshansky et al. 
(2005) explained that diseases such as obesity slow 
down human longevity especially in developed 
countries, and that this is one of the reasons for the 
underestimation of future life expectancy. 

The main example of the extrapolative method is the 
Lee Carter model (1992), that forecasts life expec-
tancy and mortality rates. It is based on the extrapo-
lation of past mortality trends. This method has been 
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adopted by the US Social Security. Another extra-
polative method (Whitehouse, 2007) is based on three 
steps to generate a 50 year forecast. (Rusolillo and 
Haberman, 2005) improved the life expectancy fore-
casts by using ARIMA (see also (Torri, 2011)) which 
presents better results over the Lee Carter model. Sev-
eral other papers, including (De Beer and Alders, 
1999), (Keilman et al. 2001), (Maarten, 2007), (Booth, 
2006), (Alho and Spencer, 2005) and (Denton, 2005) 
and (Torri, 2012) have explored this approach. In addi-
tion (Adekola, 2002) used a generalized model to ex-
plain life expectancy while (Raftery et al., 2013) pro-
jected life expectancy at birth for all the countries in 
the world using the Bayesian probabilistic model. 
Other forecasting approaches, including (Andreev and 
Vaupel, 2006) and (Lee, 2006) have explored methods 
based on the hypothesis of a non-stochastic component 
of the life expectancy variable. 

In an international context, (Torri, 2011) used the 
cointegration approach methodology to examine 
future life expectancy in several countries. The re-
sults showed that the VAR model increases the ac-
curacy of life expectancy predictions over ARIMA 
and VECM models for four countries, France, Italy, 
Norway and Sweden. Other research led by (Babel, 
2007) has investigated life improvements in Austral-
ia, Europe, Japan and North America. In this paper, 
we implement the cointegration analysis, which 
takes into account the long run historical relation-
ships across groups. This method examines the po-
tential dependency between regions within a country 
with the aim of extrapolating their future life expec-
tancies. We examine male life expectancy, but simi-
lar analysis can be conducted on females groups. 
We apply the cointegration method, which has 
proved to be successful in modeling time series (see 
commitee Nobel prize, 2003), to life expectancy 
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data from six heavily populated Canadian provinces 
by taking into account their correlation structure. In 
the literature some models, including VAR (Torri, 
2011) and ARIMA have shown improvements in 
explaining the dynamics of life expectancy. The 
purpose of this paper is to explore how VECM per-
forms on data. In addition, the use of the VAR mod-
el is related to previous literature, which has shown 
strong performance in explaining multiple time se-
ries. We will not a priori eliminate one model, but 
compare different models in order to show which is 
suitable to explain life expectancy time series 
among the Canadian provinces. 
Life expectancy data were provided by the Canadian 
Human Mortality Database (CHMD) through the 
website www.bdlc.umontreal.ca/chmd, which is 
managed by the Department of Demography of the 
Université de Montréal in collaboration with the 
Max Planck Institute for Demographic Research and 
the Department of Demography at the University of 
California in Berkeley (CHMD). This database was 
created to provide information on human longevity 
in Canada to researchers, students, journalists and 
policy makers. It supplies the data used here, which 
has a frequency of 1 year spanning of 1921-2009, 
and covers the six Canadian provinces of Nova Sco-
tia, New Brunswick, Quebec, Ontario, Alberta, and 
British Columbia. It also provides detailed informa-
tion regarding births, population size, exposure-to-
risk, death rates, and life expectancy at birth. 

Life expectancy (Figure 1) shows an increasing 
trend for all of the provinces analyzed from 1921 to 
2009. The historical pattern of life expectancy can 
be subdivided into two main periods. From 1921 to 
1960 we observe a divergence in provincial life 
expectancy. However, after 1960, we can clearly 
 

observe a convergence as the six canadian provinces 
show common trends, as seen in Figure 1. British 
Columbia shows the highest life expectancy level 
for the sample period of 1960-2009, followed by 
Ontario. Quebec recovers from its low level during 
the period of 1921-1960 to become one of the prov-
inces where residents live longest. New Brunswick, 
in contrast, is the province where people have lower 
life expectancy. We observe the common trends 
across the provinces to increase over the years. Ac-
cordingly, it can be deduced that life expectancy is 
converging to the same level in all parts of Canada. 
In the rest of this paper, we present the features of 
the three models (ARIMA, VAR and VECM) used 
in the analysis. The methodology of cointegration 
applied here includes several steps: 

♦ the computation of the optimal value of lag of 
the vector autoregressive model; 

♦ the Johansen cointegration test, which estimates 
the dynamic relationship among the regional life 
expectancies; 

♦ the estimation of the VAR and VECM models 
and the forecasting of the derived model; 

♦ we also present the backtesting output from the 
different models, and finally we generate the 
values of future life expectancy 50 years ahead, 
using VECM. 

The procedure for VECM also involves determin-
ing the order of integration for each of the six life 
expectancy data sets by using the Augmented 
Dickey Fuller, Phillips-Perron, and KPSS tests. 
The steps of cointegration analysis are described 
by (Hamilton, 1994), (Juselius, 2007) and (Harris 
and Sollis, 2002). The empirical analysis will be 
done using R statistical software package devel-
oped by (Pfaff, 2008). 

 
Fig. 1. Male Life expectancy in the six Canadian provinces 

1. Explanation of various models  
1.1. ARIMA model: description and fit. In the 
ARIMA model, life expectancy is modeled as a 
stochastic process. The methodology consists of 
 

three phases: identification, estimation, and diagnos-
tics. These three steps are all described in Box and 
Jenkins (1976) and Hyndman and Athanasopoulos 
(2013) who explain that the process involves choosing 
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an appropriate ARIMA (p, d, q) when modeling a 
variable. The goal is to identify the correct model 
that will best fit the time series under study. Two 
options outlined by the literature may help to select 
the most appropriate model: selection of the model 
by the user, or the automatic ARIMA that will be 
used from here. In general, ARIMA is described as:  

0 1 1 ,t t tL a a L ε= + − +                                           (1) 

where a0 is the drift term, a1 is a coefficient, Lt-1 is 
the time series, and et is the error term distributed 
with ε ~ (0, σ2). The principal steps in selecting the 
best model as follows: 

Identification of the model: consists of plotting data 
and identifying the pattern of the time series. As we 
can observe in Figure 1, life expectancy presents an 
increasing trend, with drift, for all the six provinces. 
The basic analysis also consists of differencing the 
data until they appear to be stationary. The unit root 
tests, including Augmented Dickey Fuller (ADF), 
Phillips-Perron (PP) and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) are useful in determining the 
level of stationarity. Results obtained from the three 
unit root tests are used to determine the order of 
integration which corresponds to the value of the 
parameter d. The best model corresponds to the 
lowest Akaike Information criterion (AIC). 

The first visualization of life expectancy from the 
six provinces (Figure 1) indicates that the variables 
are non-stationary. In order to confirm this, we 
compute the unit root test for life expectancy 
through the Augmented Dickey Fuller (see Dickey 
and Fuller, 1979), the Phillips Perron (see Phillips 
and Perron, 1988) and KPSS tests (Kwiatkowski et. 
al., 1992). The values for the KPSS are greater than 
the critical value of the test and KPSS also confirms 
the hypothesis of non stationarity. The order of inte-
gration analyzed through the ADF test (Table 10), 
PP test (Table 11), and KPSS test (see Table 12) 
shows that life expectancy time series are non-
stationary at 5%. Under the criterion of constant, all 
the p-values are greater than the critical values. 
However, the analysis under the criterion of trend 
and constant, shows significance only for New 
Brunswick, Nova Scotia, Ontario, and Quebec, 
where the p-values are greater than the critical val-
ues (see the ADF results from the Table 10). Under 
the PP test (see Table 11) only Quebec, Ontario and 
Nova Scotia are significant. Last, the analysis of 
Alberta, New Brunswick, Nova Scotia, Ontario and 
Quebec with the KPSS shows that life expectancy 
are non-stationary (see results in Table 12 and the 
relative critical values in Table 13). Furthermore, 
the p-values from the three models measured on first 
 

difference data from each life expectancy are less 
than the critical values. Overall, the three tests ac-
cept the null hypothesis that life expectancy for each 
province is integrated of order 1 under the constant 
criterion and the criterion of trend. 

Estimation of the order of the model: after deriva-
tion of the order of stationarity, it is necessary to 
experiment with various combinations of p, d, and q 
where p is the number of autoregressive parameters 
d is the drift, and q is the moving average parameter. 
A Box-Cox transformation may also be necessary to 
stabilize the variance. 
It is recommended at this stage to examine the auto-
correlation (ACF), the partial autocorrelation (PACF), 
and the diagnostics of residuals graph to choose the 
appropriate model. (Hyndman and Athanasopoulos, 
2013) developed an automated algorithm which con-
sists of the inclusion of a constant. (Box and Jenkins, 
1976) advised relying on the AIC (Akaike) and SIC 
(Schwarz criterion) to choose the best model. 
Model validation checks the diagnostics of residuals 
from the chosen models by plotting and conducting 
a Portmanteau test of the residuals. The residuals 
diagnostics are investigated to see whether there is 
white noise. The procedure is completed by compu-
ting the forecasts through the choice of the best fit-
ting model. The best numerical results of the ARI-
MA are described in Table 1. The Portmanteau test 
(see Table 2) indicates non autocorrelation of resi-
duals with 4, 10, 15, or 20 lags for each of the prov-
inces life expectancy. These results suggest that 
ARIMA appears to behave well with white noise 
disturbances. 
Table 1. The best ARIMA models from the analysis 

of life expectancy 
models Alberta Columbia Brunwick Scotia Ontaio Qubec 
ARIMA 
(p,d,q) (1,1,1) (0,1,2) (0,1,1) (1,1,2) (0,1,0) (0,1,1) 

ar1 0.44 -0.35 - -0.83 - - 
(se) (0.14) (0.11) - (0.10) - - 
ma1 -0.79 -0.46 -0.42 0.58 - -0.34 
(se) (0.09) (0.14) (0.10) (0.16) (0.10)  
ma2 - - - - -0.38 - 
(se) - - - - (0.12) - 
drift 0.22 0.23 0.25 0.22 0.24 0.31 
(se) (0.02) (0.01) (0.04) (0.04) (0.045) (0.04) 

Table 2. The p-values of the Portmanteau test from 
ARIMA models over the period of 1921-2009 

lags Alberta Columbia Brunwick Scotia Ontaio Qubec 
4 0.83 0.57 0.63 0.23 0.19 0.91 

10 0.55 0.54 0.39 0.092 0.55 0.91 
15 0.67 0.52 0.57 0.11 0.67 0.26 
20 0.83 0.67 0.76 0.83 0.83 0.35 
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1.2. The vector autoregressive model theory. To 
forecast and explain the historical pattern and forecast 
of each variable as a function of others in the system, 
the vector autoregressive model of order p is used. The 
optimal lag length of the variables in the VAR model 
is derived by choosing the lag of order p that minimiz-
es the value of information criteria models such as 
Akaike (AIC), HQ (Hannan-Quinn), Schwarz (SC), 
and the Final Prediction criteria (FPE). When these 
information criteria choose different values of p, 
(Lutkepohl, 2005) recommends considering only the 
lag chosen by the SC criterion. The VAR (p) models 
behave well with white noise in forecasting whether 
the residuals are normally distributed and non-
autocorrelated. We start by determining whether they 
are non stationary (see results from the previous 
sections). We then derive the optimal lag order of 
these variables. 

1.2.1. Optimal lag length. We analyze the optimal 
lag length of the VAR model. The information crite 

ria shows contradictory results: AIC and FPE indi-
cate three optimal lags while HQ indicates a lag order 
of two and finally SC indicates a lag order of only one. 
Since they differ, following Lutkepohl (2005), prefe-
rence will be given to SC. Consequently, the lag 
length is 1. 

1.2.2. Estimation of the VAR model. The VAR model 
is derived in (2): 

0 1 1 2 2 ... ,t t t p t p tL b b L b L b L ε− − −= + − + +               (2) 

where Lt = (Llt, L2t, ................ , Lkt) for k = 1,……, К 
time series, (b0…..bi) are the coefficients and εt is the 
error term distributed with ε ~ (0,σ2). 

The following equations describe the VAR (p) of each 
of the variables included in the model (A = ALBER-
TA; BC = BRITISH COLUMBIA; NB = NEW 
BRUNSWCIK; NS = NOVA SCOTIA; O = ONTAR-
IO; Q = QUEBEC): 

21.98 .54 .16. .07 0.6 .13 .12
9.80 .53 .13 .22 0.1 .29
10.16 .58 .13 .36 .36 .40

0.73 .16 .05 .22 .45 .29
4.43 .27 05 .03 0.8 .80

4 .49 .19 .13 0.14 0.15
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Diagnostic tests of residuals are computed for both 
Portmanteau and Normality. The results in Table 1 
show remaining autocorrelation (p = 0.0009), but 
normality on the residuals, as the p-value is equal to 
0.23. These results can be expected since we use 
only a few parameters. However, for the purpose of 

forecasting, it is better to use as few lags as possible. 
The autocorrelation(ACF) and partial autocorrela-
tion functions (PACF) are performed on residuals 
as shown in (Figure 2) which shows that the resi-
duals for life expectancy in Alberta are an appro-
priate fit and do not present autocorrelation. 

 

Table 3. The diagnostics tests of residuals under the VAR model 
Type of test Specific name p-values 

Autocorrelation Portmanteau (4 lags) 0.0009 

Normality 
Both 0.23 

Kurtosis 0.195 
Skewness 0.36 

 
Fig. 2. Diagnostics of residuals with reference to Alberta 
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1.3. The vector error correction model. Once the test 
of unit root and the optimal lag are determined, the 
VECM is determined by conversion of the VAR (p). It 
can be described in two versions of this model: the 
short run and the long run version, where each varia-
ble in the vector system is explained by its own past 
values, lagged changes in other variables, and resi-
duals. Each lagged difference of the Lt-1 variable in-
cluded must be stationary. The long version of 
VECM, which will be used here, is defined in (4) as 
follows: 

1 1 2 2 1 1

0

...

,
t t t p t p t p

t

L L L L L

A e
− − − − + −Δ = Γ Δ +Γ Δ + + Γ Δ +∏ +

+ +
(4) 

where 1( ..... ), 1, ..., ( 1)iL I A Ai i p= − − − − = − Π =  

( , ... )i pI A A= − − − − is N− dimensional time series, A0 
is the intercept term, and et is white noise.  

The vector error correction model is used for fore-
casting and estimations, performed with the Johansen 
maximum likelihood methodology. It is used to de-
termine the number of common trends (or cointegrated 
equations) derived from multiple data. The presence of 
cointegrated equations between variables is determined 
according to the three following hypotheses. 

If r = K, the number of cointegrated variables, r, 
which is stationary, equals the rank (K) of Π, then the 
model will be estimated by using the standard statis-
tical model. 

If r = 0, this means that there are no cointegrated rela-
tionships between the variables. The variables are 
stationary if we take the differences of variables 
above. 

If 0 < r < К there are two matrices, α and β, such that 
Γ = αβ`, and there will be r cointegrating relation-
ships or n – r common trends. The test of cointegra-
tion is reduced to the two following hypotheses: 

The rank test is specified in the following form  
as in (5): 

0

1

: ( ) ,
: ( ) ,

∏

∏ >

H rank = r
H rank r

                                                (5) 

and the likelihood ratio statistic is described  
in (6) as: 

( ) ( ) ln(1 ),= − − −∑ iLR r T p λ                           (6) 

where r represents the number of cointegrated rela-
tionships and A is the eigenvalue associated with the 
linear relationship. 

The cointegration rank is determined in the trace 
test and the maximum eigenvalue test of (Johansen, 
1988 and 1991). In addition, the test on the maxi-
mum eigenvalue test is specified as follows in (7): 

0

1

: ( )
: ( ) 1, 0,1,...., 1.

H rank r
H rank m r n

∏ =

∏ = + = −
              (7) 

The statistic value is written here in (7): 

1( ) ( ) ln(1 ).+= − −∑ mLR r T - p λ                         (8) 

The eigenvalue statistic value tests the null hypothe-
sis of m cointegrated relations against the alternative 
m+1. For example, the null hypothesis of five coin-
tegrated relations is accepted against the alternative 
of six cointegrated relations. 

1.3.1. Model fitting. The eigenvalue and trace test 
results from Johansen’s procedure are reported in 
Tables 4 and 5. In the remaining sections of this 
paper, our computations will be given based on the 
trace test. Obviously, the same procedure can be 
accomplished with the eigenvalue test. But in order 
to save space we will illustrate the results obtained 
under the trace test. For any r, if the test value is 
less than the critical values then the corresponding r 
represents the number of cointegrated equations. For 
example, from r = 0 to r = 2 there are no cointe-
grated equations. 

Table 4. The cointegrating relationship under  
eigen test 

Cointegrating 
relationship critical values 5% 1% 

5 3.09 9.24 12.97 

4 7.20 15.67 20.20 

3 22.16 22.00 26.81 

2 38.87 28.14 33.24 

1 47.18 34.40 39.79 

0 74.58 40.30 46.82 

Table 5. The cointegrating relationship under  
trace test 

Cointegrating 
relationship critical values 5% 1% 

5 3.09 9.24 12.97 

4 10.29 19.96 24.60 

3 32.45 34.91 41.07 

2 71.31 53.12 60.16 

1 118.49 76.07 84.45 

0 193.08 102.14 111.01 

The r = 3 test value equals 32.45 which is less than the 
critical value (34.91), therefore the number of cointe-
grated equations is three at a 5% significance level. 
We can say that the null hypothesis of three cointe-
grating relations is accepted against the alternative of 
two, while the null hypothesis of zero cointegrated 
relations is rejected. Consequently, according to these 
two tests, there are three cointegrated relations under the 
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trace test and four for the eigen test among the six 
groups of regional life expectancy data used in this 

study. The results of the fitted VECM are presented 
below as:  

0.36 0.09 0.04 0.40 0.26 0.36
0.28 0.08 0.04 0.14 0.28 0.13
0.16 0.01 0.08 0.009 0.57 0.64
0.36 0.19 0.34 0.20 0.53 0.03
0.18 0.15 0.08 0.07 0.03 0.32
0.08 0.41 0.10 0.20 0.34 0.48

Δ − −⎡ ⎤ ⎡
⎢ ⎥ ⎢Δ − − −⎢ ⎥
⎢ ⎥Δ − − − −

=⎢ ⎥Δ − −⎢ ⎥
⎢ ⎥Δ − − −
⎢ ⎥
Δ − − −⎣ ⎦ ⎣

A
BC
NB
NS
ON
Q

( 1)
( 1)
( 1)
( 1)
( 1)

( 1)

0.84 0.21 0.11 0.11 0.13 0.34
0.21 0.43 0.14 0.06 0.30 0.22
0.27 0.13 0.54 0.25 0.27 0.16
0.27 0.23 0.43 0.46 0.53 0.05

0.05 0.13 0.02 0.10

Δ −⎤ ⎡ ⎤
⎥ ⎢ ⎥Δ −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥Δ −
+⎢ ⎥ ⎢ ⎥Δ −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥Δ −
⎢ ⎥ ⎢ ⎥

Δ −⎦ ⎣ ⎦
− −

− −
− −

+
− − − −

− − −

A
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NS
ON
Q

( 1) 12.10
( 1) 4.97
( 1) 1.12

.
( 1) 4.56

0.03 0.02 ( 1) 0.10
0.23 0.32 0.21 0.11 0.41 0.34 ( 1) 5.85

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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+⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A
BC
NB
NS
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Q

                                                       (9) 

 

These equations measure the long run relationship 
between the six times series throughout the period of 
1921 to 2009. Here Zi,t represents the stationary varia-
ble which quantifies the deviation from the equili-
brium of the various life expectancies analyzed. 
Changes in provincial life expectancy are reflected in 
these three equations, which also involves change in 
trends of life expectancy. 

The equation in matrix form for males representing the 
dynamic of life expectancy derived by the vector error 
correction model is given below. The equations ex-

plain the variations of the improvements in mortality 
by patterns observed from other provinces at the first 
lag level. The variation in Alberta is explained by the 
other provinces in their first lag (coefficients are -0.84, 
0.21, -0.11 -0.11, 0.13 and 0.34) and also by the first 
difference in the mortality of each, as can be observed 
from the coefficients of the matrices (coefficients are 
0.36, 0.09, 0.04, -0.40, 0.26 and -0.36). The same in-
terpretation can be applied to the other provinces. 

The three cointegrating relations with the criteria of the 
trace test are: 

1 1 1 1 2 1 3 1 4 1 5 1 6 112.21 13.74 6.08 12.97 92.72 8.19t t t t t t tZ A BC NB NS O Q− − − − − − −= − + − + − −  
2 1 1 1 2 1 3 1 4 1 5 1 6 112.43 0.72 1.20 3.16 163.05 4.25 .− − − − − − −= − + + + + + −t t t t t t tZ A BC NB NS O Q                                (10) 

3 1 1 1 2 1 3 1 4 1 5 1 6 10.17 0.14 1.08 1.013 0.07 0.61t t t t t t tZ A BC NB NS O Q− − − − − − −= − − + + + + −  
 
 

Diagnostic tests of residuals are conducted for both 
Portmanteau and Normality tests. The results pro-
vided by Table 6 show remaining autocorrelation 
as the p-value is equal to 0.0018. However, they 
show evidence of normality on the residuals as  
p-value is equal to 0.0675. These results can be 
expected since we use only a few paramaters. 
Increasing the number of lags could improve the 
significance of autocorrelation test. However, for 
the purpose of forecasting, it is better to use as 
little lag as possible. 

Table 6. The diagnostics tests of residuals of VECM 

Type of test Specific name p-values 
Autocorrelation Portmanteau (4 lags) 0.0018 

Normality 
Both 0.0675 
Kurtosis 0.07 
Skewness 0.195 

2. Forecasting procedure and backtesting of the 
various models 

In this section, we fit data from six samples periods 
including 1921-2000, 1921-2001, 1921-2002, 1921-
2003, 1921-2004, and 1921-2005 with the three 
models analyzed and forecast life expectancy for the 
remaining part of each sample up to 2009. In this 
backtesting phase, we compute the Mean Absolute 
Percentage Error (MAPE) of the three models in six 
different sample periods 2001-2009, 2002-2009, 
2003-2009, 2004-2009, 2005-2009 and 2006-2009. 
The results are presented in Table 5 and show that 
VAR (0.31%, 0.40%, 0.26% and so on) and VECM 
(0.29%, 0.27%,0.24% and so on) are reliable in 
being a good fit for the data as the errors are low for 
each sample. The ARIMA model presents poor re-
sults with the highest error performance (35.73%, 
35.92%, 36.28% and so on). This illustrates the fact 
that forecasts from VECM and VAR are much closer 
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to the historical data. In addition, we deduce that the 
VECM performed better than the VAR model in the 
quantification of residuals. This contrasts with the 
overall results obtained by Torri (2011). In the six 
regions as we can see (see Figures 3 to 8), the confi-
dence intervals from the VECM performed better than 
the VAR and ARIMA models as we can see in Table 
7. It allows one to account for more risk than other 
models. Consequently the VECM produces better 
results than the VAR model in terms of backtesting 

out-of-sample and quantification of future. The addi-
tional variables (the first difference of mortality index 
with Γ coefficients) included in the VECM provide 
improvements over the VAR model in terms of confi-
dence interval as well as future life improvements 
since the VAR model only considers variables in terms 
of their levels. Accordingly, a new approach based on 
the VECM explains time varying long-run relationship 
dependence between the various life expectancies of 
the Canadian regions considered. 

Table 7. The average MAPE for the ARIMA VAR and VECM models for the six provinces 
Out-of-sample VECM VAR ARIMA 

h = 2001-2009 0.29% 0.31% 35.73% 
h = 2002-2009 0.27% 0.40% 35.92% 
h = 2003-2009 0.24% 0.26% 36.28% 
h = 2004-2009 0.28% 0.44% 33.73% 
h = 2005-2009 0.20% 0.23% 34.34% 
h = 2006-2009 0.28% 0.37% 35.24% 

 

Table 8. The confidence interval of the VAR, 
VECM and ARIMA models for the six provinces 

derived from predictions 50 years forecasts 

Provinces VECM VAR ARIMA 
Alberta (1.04-4.58) (1.19-1.73) (1.20-3.44) 
British  
Columbia (1.07-7.06) (1.04-1.49) 1.34-2.32 

New  
Brunswick (1.05-6.52) (1.18-2.20) (1.36-5.65) 

Nova Scotia (1.11-6.73) (1.27-2.09) (1.32-6.21) 
Ontario (0.65-6.40) (0.75-1.57) (0.83-5.88) 
Quebec (1.08-6.33) (1.24-2.64) (1.30-6.07) 

Table 8 reports the confidence intervals for each model 
presented in this work. Results from this analysis show 
that the VECM performs better than the other models. 
For example, Alberta’s confidence interval length is 
3.58, which is equal to six times that of VAR (0.54) 
and 1.5 times that of ARIMA (2.24). Observing, Brit-
ish Columbia province shows the greatest interval 
confidence length. However, the confidence interval 
associated with ARIMA is smaller for the provinces 
Nova Scotia, Ontario and Quebec. We observe overall 
that the VECM is better than the ARIMA and VAR 
models in capturing the increasing level of life expec-
tancy as well as in fitting historical data. 

 
Fig. 3. Life expectancy of Alberta under the three models: the red lines represents the lower and upper forecasting, the black line 

represents the point forecast 
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Fig. 4. Life expectancy of British Columbia under the three models: the red lines represent the lower and upper forecasting, the 

black line represents the point forecast 

 
Fig. 5: Life expectancy of New Brunswick under three models: the red lines represent the lower and upper forecasting, the 

black line represents the point forecast 

 
Fig. 6. Life expectancy of Nova Scotia under the three models: the red lines represent the lower and upper forecasting,  

the black line represents the point forecast 
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Fig. 7. Life expectancy of Ontario under the three models: the red lines represent the lower and upper forecasting, the black 

line represents the point forecast 

 
Fig. 8. Life expectancy of Quebec under the three models: the red lines represent the lower and upper forecasting, the black line 

represents the point forecast 

Here we show the computations of life expectancy at 
birth derived from the VECM which has proven to be 
the best model of the three models investigated. The 
results are exposed in this framework with a frequency 
of 10 years as in Table 9, where we can see future life 
expectancy from 2010, 2020, 2030, 2040 and 2059. 

Data from annual frequency results are also available 
on request. We observe that life expectancy at birth 
from 2010 to 2059 is close to 90 years particularly in 
Alberta, British Columbia, New Brunswick, Ontario, 
and Quebec. Only Nova Scotia shows a life expectan-
cy level below 90. 

Table 9. Mean forecast of life expectancy with the VECM for the six provinces 

Year Alberta British Columbia New Brunswick Nova Scotia Ontario Quebec 

2010 79.28 78.12 78.02 79.74 79.74 79.30 

2020 81.26 82.29 80.67 80.06 82.18 82.36 

2030 83.57 84.71 83.23 82.41 84.72 85.59 

2040 85.89 87.13 85.79 84.75 87.26 88.82 

2050 88.21 89.55 88.35 87.10 89.79 92.05 

2060 90.63 91.97 90.92 89.45 92.33 95.27 
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Conclusions 

In this paper we have investigated the forecasting sce-
nario of multi-population life expectancy for provinces 
in Canada. We have presented three principal econo-
metric models ARIMA, VAR and the VECM which 
have appeared recently in the literature. The VECM 
presents a better performance than ARIMA and VAR 
models in terms of backtesting, goodness of fit, and 
future trend uncertainty quantification as shown by the 
confidence interval measured here. Furthermore, 
VECM highlights improvements in understanding the 
dynamics of life expectancy patterns over time as it 

captures common trends and also the correlation struc-
ture from the provinces monitored. We also illustrate 
the values of forecasts of life expectancy in the six 
provinces and found that it will surpass 90 years in the 
next 50 years except in Nova Scotia. The results from 
these analyses aim to help social security and insur-
ance companies improve the quantification of future 
life expectancy and thus price pensions fairly. 

Acknowledgement 

The authors acknowledge financial support from the 
Fondazione Cariplo. 

References 

1. Adekola, O.A. (2002). A generalised life-expectancy model for a population, Journal of the Operational Research 
Society, vol. 53, pp. 919-921. 

2. Alho, J.M. and Spencer, B.D. (2005). Statistical demography and forecasting. Springer. 
3. Andreev, K.F., and Vaupel, J.W. (2006). Forecasts of cohort mortality after age 50, Working paper, Max Planck 

Institute for Demographic Research, Rostock, Germany. 
4. De Beer, J. and Alders, M. (1999). Probabilistic population and household forecasts for the Netherland, Working 

paper European Population Conference, EPC99.  
5. Babel, B., Bomsdorf, E., Schmidt, R. (2007). Future life expectancy in Australia, Europe, Japan and North Ameri-

ca, Journal of Population Research, vol. 24(1), pp. 119-131. 
6. Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review, International Journal of Forecasting, vol. 22, 

pp. 547-581. 
7. Box, G.E.P. and Jenkins, G.M. (1976) Time Series Analysis for Forecasting and Control. San Francisco: Holden-Day. 
8. Canadian Human Mortality Database (2013). University of Montreal, available at: 

http://www.bdlc.umontreal.ca/chmd/. 
9. Chen, Miranda and Ching, Michael (2000). A statistical analysis of life expectancy across countries using multiple 

regressions, Sys 302 Project. 
10. Committee, Nobel Prize (2003). Time-series Econometrics: Cointegra-tion and Autoregressive Conditional Hete-

roskedasticity. 
11. Denton T. Frank, C.H. Feaver, B.G. Spencer (2005). Time series analysis and stochastic forecasting: An econome-

tric study of mortality and life expectancy, Journal of Population Economics, vol. 18, pp. 203-227 
12. Dickey, D.A. and Fuller, W.A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit 

Root, Journal of the American Statistical Association, vol. 74 (366): pp. 427-431. 
13. Hamilton, J.D. (1994). Time Series Analysis Princeton University Press. 
14. Harris, R. and Solis, D. (2002). Applied Time Series Modelling and Forecasting. 
15. Hyndman, R.J. and Athanasopoulos, G. (2013). Forecasting: principles and practice, available at: http: 

otexts.com/fpp/ . Accessed on 05 September. 
16. Juselius, K. (2007). The Integrated VAR Model: Methodology and Applications. Advanced Texts in Econometrics, 

New York: Oxford University Press. 
17. Keilman, N., Pham, D.Q, and Hetland, A. (2001). Norways Uncertain Demographic future. Social and Economic 

Studies 105. Statistics Norway. 
18. Maarten, A., Keilman, N. and Cruijsen, H. (2007). Assumptions for long-term stochastic population forecast in 18 

European countries, European Journal of Population, 23: pp. 33-69 
19. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y. (1992). Testing the null hypothesis of stationarity against 

the alternative of a unit root, Journal of Econometrics, vol 54, pp. 159-178. 
20. Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, Springer 2005, XXI. 
21. Lee, R.D. and Carter, L.R. (1992). Modeling and Forecasting U.S. mortality, Journal of the American Statistical 

Association, vol. 87, pp. 659-675. 
22. Lee, R. (2006). Mortality forecasts and linear life expectancy trends. In T. Bengtsson (Ed.), Perspectives on mor-

tality forecasting. III. The linear rise in life expectancy: history and prospects. National Social Insurance Board, 
pp. 1940. 

23. Maarten Alders, Nico Keilman and Harri Cruijsen (2007). Assumptions for long-term stochastic population fore-
cast in 18 European countries, European Journal of Population, 23(1), pp. 33-69. 

24. Oeppen, J. and Vaupel, J.W. (2002). Enhanced: Broken Limits to Life Expectancy. Science vol. 296 (4), pp. 1029-1031. 
25. Olshansky, S.J., Passaro, D., Hershow, R., Layden, J., Carnes, B.A., Brody, J., Hayflick, L., Butler, R.N.; Allison, 

D.B., Ludwig, D.S. (2005). A Possible Decline in Life Expectancy in the United States in the 21st century, New 
England Journal of Medicine, vol. 352., pp. 1103-1110. 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 5, Issue 2, 2014 

 22

26. Pfaff, B. (2008). Var, SVAR and SVEC models: Implementation within R package vars, Journal of Statistical 
Software, Vol. 27 (4) p. 132. 

27. Phillips, P.C.B., Perron, P. (1988). Testing for a unit root in time series regression, Biometrika, vol. 75, pp. 335-346. 
28. Raftery, A.E, Chuun, J.L, Gerland, P., Sevcikva, H. (2013). Bayesian Probabilistic Projections of Life Expectancy 

for all Countries., Demography Research, vol. 30 (27), pp. 795-822, doi 10.1007/s13524-012-0193-x. 
29. Russolillo, M. and Haberman, S. (2005). Lee-Carter mortality forecasting: application to the Italian population. 

London. Faculty of Actuarial Science and Statistics. Cass Business School. 
30. Shaw, J.W., Horrace, C.W. and Vogel, R. (2005). The Determinants of Life Expectancy: An Analysis of the 

OECD Health Data, Southern Economic Journal, vol. 71 (4), pp. 768-783. 
31. Torri, T. (2012). Building blocks for a mortality index: an international context, European Actuarial Journal,  

1, pp. 127-141. 
32. Tuljapurkar, S., Puleston, C.O., Gurven, M.D. (2007). Why Men Matter: Mating Patterns Drive Evolution of Hu-

man Lifespan. PLoS ONE 2 (8): e785. doi:10.1371.  
33. Torri, T. and Vaupel, J.W. (2012). Forecasting life expectancy in an international context, International Journal of 

Forecasting, 28, pp. 519-531. 
34. Whiteford, P. and Whitehouse, E.R. (2006). Pension Challenges and Pension Reforms in OECD Countries, Oxford 

Review of Economic Policy, 22 (1), pp. 78-94. 

Appendix 

Table 10. Unit root (Augmented Dickey Fuller) testing for nine Canadian provinces 

Life expectancy Constant Lags Dw stat Constant and trend Lags Dw stat 
Alberta 0.62 1 2.06 0.027 0 2.05 
∆Alberta 0 0 1.94 0 0 2.06 
British Columbia 0.91 2 2.03 0 0 1.56 
∆British Columbia 0 0 1.87 0 1 2.04 
New Brunswick 0.64 1 2.08 0.42 1 2.08 
∆New Brunswick 0.0063 4 1.94 0 0 2.08 
Nova Scotia 0.83 0 2.42 0.07 0 2.18 
∆Nova Scotia 0 0 2 0 0 2.08 
Ontario 0.67 0 2.11 0.1 0 2 
∆Ontario 0 0 1.93 0 0 1.93 
Quebec 0.6 1 2.08 0.47 1 2.07 
∆Quebec 0 0 2.08 0 0 2.09 

Table 11. Unit root (Phillips Perron) testing for nine Canadian provinces 

Life expectancy Constant Lags Dw stat Constant and trend Lags Dw stat 
Alberta 0.72 13 2.32 0.027 0 2.05 
∆Alberta 0 9 2.05 0 10 2.06 
British Columbia 0.99 11 2.02 0 2 1.56 
∆British Columbia 0 7 2.05 0 7 2.05 
New Brunswick 0.35 17 2.71 0.03 0 2.45 
∆New Brunswick 0 8 2.08 0 8 2.06 
Nova Scotia 0.85 3 2.42 0.098 3 2.18 
∆Nova Scotia 0 3 2.08 0 3 2.08 
Ontario 0.66 1 2.11 0.1 2 2 
∆Ontario 0 2 1.93 0 2 1.93 
Quebec 0.53 10 2.52 0.44 2 2.38 
∆Quebec 0 5 2.08 0 6 2.09 

Table 12. Unit root (KPSS) testing for nine Canadian provinces 

Life expectancy Constant Lags Dw stat Constant and trend Lags Dw stat 
Alberta 1.19 7 0.01 0.21 6 0.52 
∆Alberta 0.15 13 2.32 0.1 14 2.33 
British Columbia 1.2 7 6.43 0.09 5 0.94 
∆British Columbia 0.16 11 2.02 0.07 11 2.03 
New Brunswick 1.18 7 0.01 0.21 6 0.41 
∆New Brunswick 0.27 19 2.69 0.11 22 2.72 
Nova Scotia 1.18 7 0.006 0.15 6 0.44 
∆Nova Scotia 0.059 4 2.43 0.053 4 2.43 
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Table 12 (cont.). Unit root (KPSS) testing for nine Canadian provinces 

Life expectancy Constant Lags Dw stat Constant and trend Lags Dw stat 
Ontario 1.19 7 0.006 0.15 6 0.25 
∆Ontario 0.12 0 2.1 0.08 1 2.11 
Quebec 1.18 7 0.025 0.18 6 2.52 
∆Quebec 0.23 9 2.51 0.11 10 2.52 

Table 13. Table of unit root (KPSS) of critical values at 5% 
Critical values Constant Constant-trend 

Levels 0.463 0.146 
Different variable 0.463 0.146 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


