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Abstract  

More than 95% use of derivatives by insurance companies is empirically dedicated to hedge risks embedded within 
their long-dated liability financial guarantees that are characterized by their long term duration, large volumes and 
significant market risk exposure, with growing appetite (1885bn notional in 2014) given current persistent low interest 
rates and tail equity risks environment. As a matter of fact there has been significant evidence of illiquidity cost 
stemming from supply/demand imbalance for downside protection equity options, which Solvency II is expected to 
further strengthen, as insurers will be forced to hold sufficient capital to remain solvent during periods of market stress. 
As a result optimal put options buying strategies including explicit market impact of their transaction size are being 
devised, which are strongly dependent on the specific risk appetite of the insurance company, as illustrated through the 
use of a mean or a mean-variance P&L objective to maximize. 
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Introduction  

Life insurance liabilities are characterized by three 
main features: long term duration, large volumes and 
significant market risk exposure. Given the persistent 
low interest rates environment across the curve since 
the 2008 financial crisis, the use of derivatives has 
enabled to hedge financial risks embedded within 
insurance liability guarantees, as illustrated by the 
significant recent increase in notionals from 786bn as 
of FY 2010 to 1885bn as of FY 2014.  

As the guarantees embedded within the insurance 
liability hold a convex risk profile with respect to 
the underlying stock (the blue line in the chart 
below), insurance companies need to buy some 
convex  hedge assets such as downside protection 
put options (in contrast with Futures which are 
linear hedge instruments and do not hold 
 

convexity) in order to match the liability risk 
profile thus improve hedge effectiveness 
(translating into reducing the mismatch between 
the blue and red lines in the chart below). 

However there has been already significant 
evidence of illiquidity cost stemming from 
supply/demand imbalance for options, which 
Solvency II is expected to further strengthen, as 
insurers will be forced to hold sufficient capital to 
remain solvent during periods of market stress 
consistent with the economic risks embedded 
within the long-dated liability guarantees. As a 
result, modeling the transaction of large hedge 
portfolios requires taking into account transaction 
size explicitly accounting for their market impact, 
in particular regarding equity derivatives that are 
highly sensitive to supply/demand balance.  

 

 
Fig. 1. Hedging liabilities with hedging assets principle 1 
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Fig. 2. Liability vs. hedging assets potential mismatch as market moves 

 

Actually the primary tools used by insurers in 2014 
were buying put options (44%, vs. 24% for calls), 
90% of which were purchased, implying growing 
cost of hedging. As insurance companies have 
developed risk appetite framework since the 2008 
risk crisis, we will devise optimal put options 
buying strategies including market impact with 
various risk appetite approaches: 

A mean approach focusing on minimizing the 
expected cost of the buying strategy which 
results in a stable quantity. 

A risk/reward approach more in line with a long 
term view consistent with the insurance industry 
time horizon, which adds the variance of the 
P&L into account to end up with a mean-
variance like approach. This results in a more 
sensitive strategy to market conditions. 

Our contribution is twofold: 

First, tailoring optimal trading strategies 
including market impact to concrete risk 
appetite framework. 
Second, illustrating significant differences in the 
corresponding optimal trading quantity, 
depending on the specific risk appetite, whether 
the agent maximizes the mean P&L only or also 
minimizes the dispersion of the P&L into 
consideration (mean-variance framework): 

a. The optimal trading strategy with the objective 
to maximize the mean P&L is linear, translating 
into a rather static pace of trading and more 
trading activity as maturity gets closer, while 
minimizing the dispersion of the P&L in 
addition requires to trade more in the beginning 
of the trading program. 

b. The mean approach is sensitive to significant 
single market events, while the optimal strategy 
in the mean-variance framework depends on the 
whole path, translating into more actively traded 
ITM options than ATM and OTM options. 

The modeling framework is addressed in Section 1. 
The optimal transaction strategy is presented and 
illustrated in Section 2 where the objective is to 

maximize the mean P&L, thereafter extended to a 
mean-variance P&L approach. We conclude in Final 
Section. 

1. Integrating market impact into hedging 
modeling framework 

As a result, an explicit modeling of such increasing 
cost of options is made through a market impact 
function, the influence of which the insurance 
company will try its best to minimize. In this context, 
best execution cannot be defined as a single number 
within a single trade. The market impact on the option 
price depends on a “temporary impact strength” that is 
proportional to the main empirically observed drivers: 
the speed of option trading (i.e. “number of options per 
unit of time”), the equity stock level, the option 
sensitivity to the equity stock.  

Here the market impact on the option price is defined 
as follows:  

( , , ) = ( , ) ( , ),t t t t t tP t S x P t S x S t S                    (1) 

where: 

 is in $  hour / Nshares controls the temporary 
impact strength.  

tx  is the speed of trading is in number of options 
per time unit.  

 is the put option sensitivity w.r.t the underlying 
asset. (t, St) < 0 for put options, therefore selling 
the option will tend to decrease its price.  
S is the underlying stock assumed here to have 
lognormal distribution: dSt = StdWt, S0 = s0. 
P is the unaffected put price at time t equal to the 
corresponding to the replicating cost from Black & 
Scholes.  

We consider the problem of buying European put 
options over a finite time horizon [0, T], where T is the 
end time and is greater than the option expiration date. 
The option position of the agent is described by a 
continuous and adapted curve xt satisfying the 
boundary condition x0 = X and xT = 0. 
The cost arising from the strategy x including 
market impact is as follows: 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 6, Issue 2, 2015 

60 

2
00 0 0 0 0

( ) = = ( ( , )) = ( ( , ))
T T T T T

t t t t t t t t t t t tx Px dt Px dt x S t S dt XP x dP x S t S dt
                                       

(2)

2. Optimal hedging transactions significantly 
depend on risk appetite 

Here we consider a life insurance company 
minimizing the cost of buying a given large quantity 
of put options dedicated to hedge its liabilities. Such 
strategy will also depend on its specific risk 
appetite, such as a maximization of the mean P&L 
objective (or minimization of the mean cost of 
buying options), or a risk-reward objective 
including the minimization of the dispersion of the 
P&L. The standard procedure of the Hamilton-
Jacobi-Bellman (HJB) framework in stochastic 
control problems is then applied, coupled with 
numerical schemes.  

2.1. Mean P&L risk appetite. Under maximizing 
mean P&L, the insurance company needs to 
minimize the expected cost E[C(x)]. This is 

equivalent to minimizing the last term on the right 
hand side of  

2
0 0

[ ( )] = ( , )min min
T

t t t
x x

x XP x S t S dt
  

(3)
 

One optimal strategy is characterized by the 
following trading rate: 

= ,t
Xx
T

 

which provides a rather stable pace of trading as 
illustrated below, depending only mildly on the 
stock price path as illustrated by the figure below 
right. This pace is rather constant at the beginning 
and increases as we get close to maturity, which is 
intuitive given the fixed quantity to buy within the 
fixed time period, implying the insurer must acquire 
faster as time passes (see figure below left). 

 

 
Fig. 3. Trading pace as a function of the stock level and time passing under maximizing mean P&L 

 

Fig. 4. The traded quantity x increases as time passes 
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It is important to mention that the last trade is the 
residual quantity and doesn’t come out of our optimal 
control: the more penalty is given to the objective 
function at maturity, the less the agent would trade in 
this date.  
2.1. Mean-variance P&L risk appetite. If the 
dispersion of the P&L is now added to the risk appetite 
framework, within the “Mean-variance” P&L 
approach, we are then interested in the variance of the 
P&L of the position. For each time t we define the 
P&L of the currently held option position xt after an 
infinitesimal time span dt corresponding to xtdPt. 
Using Ito’s formula and the PDE verified by the put 
option we have: 

= ( , ) ,t t t t tx dP S t S dW  

where W is the brownian motion leading the 
underlying asset SDE. 
When taking the variance of the P&L between 0 and T 
we have: 

2 2 2 2

0 0
= ( ) ( , )

T T

t t t t t S tx dP S x S P t S dt
         

(4) 

As a result we aim at minimizing the following 
objective function: 

2 2 2 2
00

( ) ( ) ( , ) =
T

t t t tx x S S t S dt XP

2 2 2 2 2

0 0
( , ) ( , )

T T

t t adj t t t tx S t S dt x S t S dt        (5) 

In contrast with the mean approach, this minimization 
problem doesn’t have an explicit solution. We will 
reformulate our problem within the framework of 
stochastic control. 

Such problems usually parameterize the strategies x by 
their speed of trading and define the control  such 
that :=t tx . The parameterized strategy x  is 
defined by: 

0
:= , 0 ,

t

t sx X ds t T
                                

(6)

where the control variable  is a function of the 
current time t, the current stock price St and the 
position xt. We define our value function U(t,S,x):  

2 2 2 2( , , ) = ( ( , )) ( , ) ) ,inf
T

t u u u u ut
U t S x S u S x S u S du

                                                              
(7) 

 

where the initial conditions are S0 = s0 and x0 = X. 
The constraint 

0
=

T

tdt X  suggests that the value 

function U should satisfy a singular condition of the 
form 

0 0
( , , ) =lim 0t T

if x
U t S x

if x
                          

(8) 

The intuition for this terminal condition is that a 
state with a non zero asset position with no time left 
for its liquidation means that the liquidation task has 
not been performed, so that this state should receive 
an infinite penalty. 

Now using the standard procedure of deriving the 
Hamilton-Jacobi-Bellman (HJB) equation in 
stochastic control problems, provides a non linear 
partial differential equation (PDE) with terminal 
conditions, specifically taking into account the 
constraint 

0
=

T

tdt X . The governing equation 

satisfies the following dynamic programming 
equation (DPE): 

2 2 2( , ) ( ) = 0inftU U x S t S h          (9) 

where  

2 21=
2 SSU S U and 2( ) = ( ( , )).xh U S t S  

The function h( ) is a quadratic function with a 
second degree positive coefficient (since  (t,S) < 0 
for a put option). It is a convex function and attains 
its minimum for ( ) = 0h . This gives: 

*( , , ) = .
2 ( ( , ))

xUt S x
S t S                                

(10) 

and 
2

* ( )( ) = .
4 ( ( , ))

xUh
S t S

 

and upon substituting back into Eq. (6), the value 
function U then solves the non-linear partial 
differential equation (PDE): 

2
2 2 2 ( )( , ) = 0

4 ( ( , ))
x

t
UU U x S t S

S t S  
(11) 

Since no closed solution can be found, the 
resolution is purely numerical using the separation 
of variables and dimension reduction methods then 
the implicit finite differences scheme. In order to 
prevent instability of the solution. Since S doesn’t 
depend on the control, the problem will be 
simplified by giving a more convenient form for U 
by choosing a more convenient parameterization for 
the state variable x. That is, a multiplicative 
parameterization allows to write =t t tdx x dt  and 
the value function U as: 
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( ( , ))inf

T

t u u u adj u u u u ut
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dsT s

t
t t u u adj u u u ut

u
dsT s

t
t u u adj ut

U t S x x S u S x S S u S du

x e S u S S S u S du

x e S u S 2 2 2 2( ) ( , ) = ( , ).u u uS S u S du x u t S

                         (12) 

The constraint 
0

=
T

tdt X  becomes 
0

= 0
T dtte . We can therefore solve the reduced value function u: 

( )

u
- 2 dsT s 2 2 2 2t

t u u adj u u u utÎK
u t,S = E e S (- (u,S ))+ (S )S (u,S ) duinf

                                                

(13) 

 

This leads to the the following non-linear PDE for u 

2 2 2 21( ) ( , ) = 0,
( ( , ))tu u S S t S u

S t S  
(14) 

where 

2 21
2 SSLu = S u.

                                              
(15) 

With the boundary conditions:  

( ) ,u T,S = +  

0( ,0) ( ),u t u t  

1( ) ( ),maxu t,s u t                                               (16) 

where u0 and u1 has the following singular PDEs: 

0 02 = 0.tu - uinf  

1 1 12 = 0.tu Lu uinf  

We solve this problem numerically using the 
implicit finite differences scheme. 

As a result the optimal execution strategy under 
the mean-variance P&L approach is more 
dependent on the stock price, as illustrated in the 
figure below left by faster traded when the stock 
level is low than when the stock level is high: as 
the stock decreases, the put option value increases 
and the impact arising from trading it too (more 
“In-The-Money”), which puts further pressure to 
trade as soon as possible to prevent from growing 
market impact thus cost of the put option; the 
opposite as the stock market rises. The mean-
variance P&L framework also prevents the 
insurance company from waiting too long, but 
instead favors a decreasing trading pace. 

 
Fig. 5. Trading pace as a function of the stock level and time passing under maximizing mean-variance P&L 
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Fig. 6. Traded quantity strongly decreases as time passes under maximizing mean-variance P&L 

 

Conclusion 

Within the context of Solvency II mostly characterized 
by a Mark-to-Market valuation framework, the size of 
such transactions may put significant constraints on the 
insurance company through higher cost of hedging 
liabilities stemming from their market impact. 
Introducing a market impact function and using 
 

stochastic optimal control theory with respect to a 
specific criterion (mean P&L or mean-variance P&L) 
we have devised an optimal path for the subsequent 
expected transaction size, where the Risk Appetite of 
the insurance company has significant influence on the 
optimal transaction execution path, not only in terms 
of pattern of the pace of trading over the period but 
also with respect to the tock level and path. 
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