УДК 582.26/27:574.65(621.311.22)(621.311.25)

Т. Н. Новоселова, А. А. Протасов

Институт гидробиологии НАН Украины, г. Киев

ФИТОПЛАНКТОН ВОДОЕМОВ ТЕХНО-ЭКОСИСТЕМЫ ХМЕЛЬНИЦКОЙ АЭС И ЕЕ ФОНОВЫХ ВОДОЕМОВ

Представлены результаты исследований фитопланктона фоновых водных объектов техно-экосистемы Хмельницкой АЭС. Показано, что исследование фоновых водоемов является важным разделом гидробиологического и экологического мониторинга. В данном случае показано, что взаимного негативного влияния между техно-экосистемоой АЭС и фоновыми водоемами не наблюдается.

Ключевые слова: фитопланктон, техно-экосистема АЭС, водоем-охладитель, фоновые водные объекты.

Гидробиологический и экологический мониторинг экосистем, непосредственно связанных с производственным циклом АЭС, является основой для выводов о возможном или реальном негативном влиянии АЭС на окружающую среду. Однако и внешние экосистемы могут быть причиной возникновения различных биологических помех в работе станции. Согласно "Регламенту гидробиологического мониторинга..." [1], в системе гидробиологических наблюдений и более общего экологического мониторинга техно-экосистем АЭС выделены наблюдения за фоновыми водными объектами и их экосистемами. Это водоемы или водотоки, расположенные на прилегающей к АЭС территории, гидравлически связанные с водной частью техно-экосистемы АЭС, и не испытывающие прямого влияния системы технического водоснабжения АЭС.

Некоторые фоновые водоемы служат внешними водоисточниками для водоема-охладителя АЭС и, соответственно, являются источниками поступающих в водоем биофондов. Из водоисточника могут привноситься виды-вселенцы, которые не оказывают явно отрицательного воздействия в пределах естественного ареала или в естественных водоемах, однако могут причинить серьезный экологический и экономический ущерб в условиях техно-экосистемы АЭС [2]. Возможно и влияние водоемаохладителя на биоту фоновых водоемов. В этом случае именно контроль фоновых водоемов дает информацию о влиянии техно-экосистемы АЭС на окружающую среду.

Фитопланктон (совокупность водорослей, обитающих в толще воды) обладает высокой чувствительностью к условиям среды и динамично реагирует на их изменения. Смена сообщества водорослей может произойти в течение короткого времени при смене условий. Таким образом, по состоянию водорослей планктона можно оценивать состояние основных параметров биотической составляющей водной экосистемы. В связи с необходимостью получения информации о популяциях видов, нежелательных для работы АЭС, рекомендовано

мониторинг фитопланктона проводить в фоновых водоемах как при текущем, так и при экстремальном и развернутом мониторингах [1].

Настоящие исследования проводились для изучения возможного взаимного влияния техно-экосистемы АЭС и фоновых водоемов на примере техно-экосистемы и фоновых водных объектов Хмельницкой АЭС (ХАЭС).

Объекты и методика исследований. В производственном цикле ХАЭС из рассмотренных далее водных объектов задействованы водоемохладитель и шламонакопитель. Все остальные водные объекты относительно техно-экосистемы ХАЭС являются фоновыми. В их число входили:

река Горынь (бассейн р. Припять) относится к водотокам равнинного типа, в пределах 30-километровой зоны ХАЭС отрезок русла составляет 157 км. На исследованном участке река имеет ширину 30—40 м, глубину 0,6—2,5 м с резким увеличением от берега, скорость течения 0,45—0,60 м/с. Для водоема-охладителя является водоисточником подпитки добавочной воды;

река Гнилой Рог (левобережный приток второго порядка р. Горынь) имеет длину 28 км, весь водосборный бассейн находится в 30-километровой зоне ХАЭС. Сток реки полностью аккумулируется в водоеме-охладителе. В нижнем течении часть реки искусственно спрямлена (канализирована). Устьевой участок реки представляет собой залив, который образовался благодаря подпору дамбы перед впадением реки в водохранилище. Залив отгорожен от водоема-охладителя дамбой;

дренажный канал, предназначенный для перехвата дренажного стока воды и подвода его к насосной станции перекачки фильтрационных вод, с помощью которой дренажная вода возвращается в водоем-охладитель. Питание дренажного канала обеспечивается за счет атмосферных осадков и дренирования грунтовых вод, в том числе и из водоемаохладителя, через тело плотины. За счет этого температура воды в дренажном канале в летне-осенний период в среднем на 5° С ниже, чем в других

фоновых водоемах, и на 13° С, чем в водоемеохладителе (табл. 1);

карьер проточный, расположенный на р. Горынь в 5,4 км по руслу реки (с учетом меандров) от места впадения в нее канала, связывающего водоемохладитель с р. Горынь;

карьер добавочной воды, связанный каналами с р. Горынь и водоемом-охладителем;

канал, по которому дополнительная вода из р. Горынь через карьер поступает в водоем. Длина канала — 2,4 км.

Как отмечалось выше, в состав техноэкосистемы ХАЭС входят водоем-охладитель и шламонакопитель. Водоем-охладитель представляет собой водохранилище на р. Гнилой Рог площадью $\sim 20~{\rm km}^2$ и объемом более $100~{\rm млн}~{\rm m}^3$. Шламонакопитель предназначен для приема продувочных вод осветлителей химводоочистки. Излишек воды из шламонакопителя может сбрасываться в водоем-охладитель.

Исследования фитопланктона проводились в летнеосенний период 2012 и 2013 гг. На р. Горынь пробы отбирали на участке в пределах 30-километровой зоны ХАЭС, на р. Гнилой Рог — на природном участке в нижнем течении, канализированном участке и в устьевой части перед впадением в водоемохладитель. Отбор проб фитопланктона производился на чистоводье из поверхностного горизонта. Сбор, консервацию и обработку материала осуществляли по общепринятым в гидробиологии методикам [3]. Видовой состав планктонных водорослей разных водных объектов сравнивали, вычисляя коэффициент флористической общности Серенсена [4]. При описании таксономического состава использовали термин НОТ — низший определяемый таксон.

Результаты исследований. В 2012 и 2013 гг. в фитопланктоне р. Горынь обнаружено 16 и 39 НОТ водорослей, соответственно. Таксономический

состав был довольно различным (47% по Серенсену). В оба года в флористическом отношении и количественно доминировали зеленые водоросли. В основном это были *Pseudodidymocystis planctonica* (Korsch.) Hegew. et Deason, виды рода Crucigenia, *Kirchneriella lunaris* (Kirchn.) Möb., по биомассе в качестве субдоминантов выступали диатомовые *Cyclotella* sp., *Aulacoseira granulata* (Ehrenb.) Sim. Высокие значения индекса Шеннона (табл. 1) и выравненности свидетельствуют об отсутствии одного ярко выраженного доминанта.

Фитопланктон р. Гнилой Рог (43 НОТ в 2012 г. и 75 НОТ в 2013 г.) формировался преимущественно за счет диатомовых водорослей. На разных участках реки к ним в качестве субдоминантов присоединялись зеленые, криптофитовые и эвгленовые водоросли. Следует отметить, что здесь синезеленые, в частности виды рода Microcystis, были представлены более широко как в видовом составе, так и в доминантных комплексах по численности, чем в фитопланктоне р. Горынь. Из зеленых хлорококковых основу численности формировали те же виды, что и на Горыни, а также Monoraphidium contortum (Thur.) Kom.-Legn., Coelastrum microporum Näggeli. Диатомовые Cocconeis placentula Ehrenb. входили в состав ведущих комплексов по биомассе. Показатели таксономического разнообразия (по индексу Шеннона) и выравненность были сходными с показателями для фитопланктона р. Горынь.

Видовой состав фитопланктона дренажного канала был крайне бедным (7 НОТ, из них 6 — диатомовые, 1 — криптофитовые). Численность и биомасса образовывались преимущественно за счет крупноклеточной диатомовой водоросли *Synedra ulna* (Nitz.) Ehrenb, с чем связаны низкие значения разнообразия и выравненности.

Карьер проточный на р. Горынь характеризовался богатым в качественном отношении фитопланктоном.

<i>Таблица 1.</i> Структурные показатели фитопланктона (средние значения) фоновых водое	иов,
шламонакопителя и водоема-охладителя ХАЭС (2012—2013 гг.)	

Название водоема	Температура	Численность		Разнообразие (инд	екс Шеннона)	Выравне	нность
	t, °C	<i>N</i> , млн кл./дм ³	B, мг/дм ³	по численности	по биомассе	по численности	по биомассе
				H_N , бит/экз	H_B , бит/мг	J_N	J_{B}
Р. Горынь	20,3	10,70	1,29	3,50	3,50	0,80	0,80
Р. Гнилой Рог	19,5	14,16	1,87	3,00	3,14	0,74	0,77
Дренажный канал	15,8	1,03	4,25	2,08	0,50	0,74	0,20
Карьер проточный	20,8	6,76	1,36	3,78	3,87	0,72	0,74
на р. Горынь							
Карьер добавочной	21,0	356,24	41,29	1,24	2,01	0,26	0,43
воды							
Канал карьера	20,8	4,95	63,71	2,64	0,35	0,68	0,09
добавочной воды							
Шламонакопитель	21,0	4,51	0,68	3,21	3,05	0,87	0,82
Водоем-охладитель	28,6	12,37	3,67	2,42	2,58	0,57	0,61

Здесь зарегистрировано 38 НОТ водорослей из 7 отделов. В флористическом спектре преобладали зеленые (57,9 % от общего числа видов) и диатомовые (23,7 %). В состав доминирующего комплекса по численности входили синезеленые *Hydrococcus rivularis* Kütz., зеленые *Ps. planctonica*, криптофитовые *Rhodomonas pusilla* (Bachm.) Javorn. Биомасса формировалась в основном за счет диатомовых *A. granulata*, *Cyclotella meneghiniana* Kütz., и *Ps. planctonica*. Высокие значения индекса Шеннона и выравненности свидетельствуют о равномерном распределении видов в сообществе.

В флористическом спектре фитопланктона карьера добавочной воды насчитывалось 26 НОТ водорослей из 6 отделов. Преобладали зеленые (30,8 %), синезеленые (26,9 %) и диатомовые (23,1 %) водоросли. Высокие значения численности (356,24 млн кл./дм³) обусловлены массовым развитием синезеленых, в частности *Aphanizomenon isatchenkoi* (Ussatsch.) Pr.-Lavr. Основу биомассы (41,29 мг/дм³) образовывала крупноклеточная динофитовая водоросль *Ceratium hirundinella* (О. Müll.) Schrank и *Aph. isatchenkoi* в качестве субдоминанта. Монодоминирование *Aph. isatchenkoi* по численности (78,9 % общих показателей) определило невысокие значения индекса Шеннона и выравненности.

В фитопланктоне канала, соединяющего карьер добавочной воды и водоем-охладитель, зарегистрировано 15 НОТ водорослей, принадлежащих к 6 отделам. Здесь снижение численности синезеленых повлекло за собой снижение общей численности до 4,95 млн кл./дм³, что, тем не менее, не сказалось на уровне биомассы (63,71 мг/дм³). По численности преобладали *Aphanizomenon flos-aquae* (L.) Ralfs., по биомассе — *C. hirundinella*, доминирование которого обеспечило чрезвычайно низкие значения индекса Шеннона и выравненности.

Фитопланктон шламонакопителя составляли преимущественно зеленые водоросли: 10 НОТ из 13, 82,1 % общей численности, 86,8 % общей биомассы. В доминантный комплекс по численности входили Ps. planctonica, Tetraedron caudatum (Corda) Hansg., K. lunaris, по биомассе — Ps. planctonica, Cosmarium sp., Pediastrum boryanum (Turp.) Menegh. Значения индекса Шеннона и выравненности характерны для полидоминантного сообщества.

В 2012 и 2013 гг. в фитопланктоне водоемаохладителя обнаружено 84 и 59 НОТ водорослей, соответственно. В целом соотношение систематических групп в оба года было подобным, однако в 2013 г. практически в каждой группе уменьшилось количество составляющих ее видов. Таксономический состав по годам был довольно различным (50 % сходства по индексу Серенсена). В оба года в флористическом отношении преобладали зеленые (58,3 % и 55,9 % общих значений, соответственно). Уровень численности определялся преимущественно развитием *M. aeruginosa*, в 2012 г. субдоминантами были *Binuclearia lauterbornii* (Schmidle) Pr.-Lavr., *Rh. pusilla*, *Cryptomonas* sp. По биомассе в оба года доминировали *A. granulata* и *Cryptomonas* sp. Средние значения индекса Шеннона и выравненности в 2013 г. были ниже из-за массового развития *M. aeruginosa*.

Рассчитанные по Серенсену значения коэффициента сходства НОТ состава фитопланктона фоновых водных объектов, водоема-охладителя и шламонакопителя колебались в широком диапазоне: от полного отсутствия сходства до величины 0,47. В дренажном канале из 7 НОТ фитопланктона только 3 встречались в других водоемах, что и обусловило низкую величину среднего значения коэффициента сходства с другими списками (0,08). Из всех исследованных нами водоемов средние показатели попарного сходства были наибольшими у фитопланктона водоема-охладителя (0,28) в связи с его большим видовым богатством. Максимальным значением сходства видового состава (0,47), а также сходным уровнем количественного развития фитопланктона характеризовались имеющие постоянную гидравлическую связь водоем-охладитель и река Гнилой Рог. Следует отметить, что карьеры, один из которых непосредственно расположен на р. Горынь, а другой имеет с ней постоянную связь, по составу фитопланктона имели несколько большее сходство с водоемом-охладителем (0,32 и 0,27, соответственно), чем с рекой (0,23 и 0,24). Таким образом, на развитие фитопланктона карьеров большее влияние, вероятно, оказывал гидродинамический, а не термический режим.

Каких либо видов, которые могут быть потенциально опасными при их попадании в техно-экосистему ХАЭС в плане создания биологических помех в фоновых водоемах выявлено не было.

Обсуждение результатов исследований. Планктонные водоросли являются одним из важных биологических элементов определения экологического статуса водных объектов согласно Водной Рамочной Директивы ЕС [5]. Фитопланктон также входит в список рекомендуемых биологических объектов при проведении гидробиологического мониторинга водоема-охладителя, систем охлаждения и системы технического водоснабжения АЭС [1]. Важность характеристик состояния фитопланктона при изучении водных экосистем определяется его высокими продукционными характеристиками и скоростью отклика на изменение параметров среды. Фоновые водоемы либо спорадически, либо постоянно имеют гидравлическую связь с водоемом-охладителем и, следовательно, как было указано выше, могут представлять угрозу в качестве источника биоты, вызывающей биологические помехи в работе электростанции, а также существенно влияющей на состояние водоемаохладителя.

Так, например, во время наших исследований в карьере добавочной воды биомасса синезеленых водорослей (19,3 мг/дм³) соответствовала четвертой степени "цветения" воды (сильное). Это экологически опасные концентрации, вызывающие значительное биологическое загрязнение и заморные явления. В то же время непосредственно в водоемеохладителе регистрируемая биомасса синезеленых не достигала опасных величин (максимум 1,71 мг/дм³) и преимущественно была обусловлена развитием M. aeruginosa. Также вместе с водой из этого карьера в водоем-охладитель поступала динофитовая водоросль С. hirundinella, которая значительную индивидуальную и, следовательно, даже при небольших количествах существенно влияет на величину общей биомассы фитопланктона и тем самым на качество воды. В фитопланктоне карьера добавочной воды при численности 0,18 млн кл./дм³, что составляло 0,1 % общих показателей, С. hirundinella образовывал 44,0% биомассы или 18,16 мг/дм³. По этому показателю качество воды в карьере соответствовало 6 категории 4 класса качества или "грязные". В фитопланктоне канала, соединяющего карьер добавочной воды и водоем-охладитель,

С. hirundinella образовывал биомассу, которая соответствовала 7 категории 5 класса качества — "очень грязные". В 2012 и 2013 гг. качество воды водоема-охладителя по биомассе фитопланктона относилось к 4 категории 3 класса — "слабо загрязненные" воды.

Заключение

Таким образом, негативного влияния техноэкосистемы АЭС на фоновые водоемы не отмечено,
а их биофонды в настоящее время не оказывают
значительного влияния на гидробиологическое
состояние водоема-охладителя. Тем не менее, некоторые виды водорослей, поступающие из карьера
добавочной воды, например, С. hirundinella, могут
создавать значительную биомассу фитопланктона
в водоеме-охладителе. Проведенные исследования
показали безусловную целесообразность проведения
мониторинговых исследований фоновых водных
объектов, в частности по фитопланктону, однако
в ходе мониторинга необходимо постоянно корректировать выбор водных объектов и объём исследований в каждом из них.

Список использованной литературы

- 1. СТП 0.03.088-2010 Порядок розробки регламенту гідробіологічного моніторингу водойми-охолоджувача, систем охолодження і системи технічного водопостачання АЕС з реакторами типу ВВЕР. Методичні вказівки. Київ, 2010. 48 с.
- 2. Салахутдинов А. Н. Возможные последствия от вселения чужеродных видов в Куйбышевское водохранилище / А. Н. Салахутдинов, Ф. М. Шакирова // Чужеродные виды в Голарктике (Борок-2). Тез. докл. Второго межд. симпоз. по изучению инвазийных видов. Борок (Россия), 27 сент. 1 окт. 2005 г. С. 26—27.
- 3. Методи гідроекологічних досліджень поверхневих вод/ за ред. В. Д. Романенка. — К.: Логос, 2006. — 408 с.
- 4. *Василевич В. И.* Статистические методы в геоботанике / В. И. Василевич. Л. : Наука, 1969. 232 с.
- 5. 2000/60/ЄС Водна Рамкова Директива ЄС. Основні терміни та їх визначення. К., 2006. 240 с.

Получено 12.05.2015