УДК 502.5+614.7:0.49.3

## Г. Д. Коваленко, А. В. Хабарова

Научно-исследовательское учреждение "Украинский научно-исследовательский институт экологических проблем" (НИУ "УКРНИИЭП"), г. Харьков

## ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА ПРИ СЖИГАНИИ КАМЕННОГО УГЛЯ НА ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЯХ УКРАИНЫ

В статье использован комплексный подход оценки экологических рисков для населения от химических и радиоактивных веществ при нормальной эксплуатации тепловых электростанций (ТЭС) Украины. Проведен анализ данных о количестве неканцерогенных, канцерогенных и радиоактивных веществ в выбросах в атмосферный воздух ТЭС. Приведена комплексная оценка экологического риска для населения от выбросов химических и радиоактивных веществ в атмосферный воздух при сжигании угля на ТЭС.

**Ключевые слова**: тепловая электростанция; неканцерогенные, канцерогенные и радиоактивные вещества; экологический риск.

Воздействие ТЭС на население обусловлено выбросами в атмосферу на этапе сжигания каменного угля, и зависит от типа и объемов потребляемого топлива, способов его использования и эффективности очистки выбросов [1, 2].

ТЭС выбрасывают в окружающую среду летучую золу, бенз(а)пирен (наиболее токсичный среди полициклических ароматических углеводородов), а также газообразные вещества (сернистый ангидрид, оксиды азота и оксид углерода) [3]. Летучая зола содержит тяжелые металлы (ванадий, цинк, свинец, медь, ртуть, кадмий, хром, никель, мышьяк) [4], а также естественные радионуклиды (ЕРН) семейства урана и тория [5].

Особую опасность для здоровья представляют тяжелые металлы и ЕРН, обладающие канцерогенными свойствами и способные вызывать онкологические заболевания, и газообразные вещества, оказывающие токсичное воздействие на организм человека [6].

Для оценки экологического риска важно учесть вклад, обусловленный действием как канцерогенных, так и неканцерогенных веществ, которые обладают токсичностью.

Основной потенциал тепловой электроэнергетики Украины составляют крупные ТЭС Украины мощностью более 300 МВт: Углегорская, Старобешевская, Кураховская, Славянская, Зуевская (Донецкая обл.); Приднепровская, Криворожская (Днепропетровская обл.); Луганская (Луганская обл.), Добротворская (Львовская обл.), Бурштынская (Ивано-Франковская обл.), Запорожская (Запорожская обл.), Ладыжинская (Винницкая обл.), Трипольская (Киевская обл.) и Змиевская (Харьковская обл.), которые в качестве основного топлива используют каменный уголь.

Все ТЭС являются источниками загрязнения окружающей среды и объектами повышенного экологического риска [7, 8].

Оценка экологического риска для здоровья населения широко признана во всем мире. Следует отметить, что здоровье населения, рассматривается как системообразующий фактор социально-экономического развития общества, а показатель риска характеризует степень ущерба, наносимого окружающей среде и здоровью населения вредными факторами различной природы [9—13]. В статье рассматриваются экологические риски для населения при воздействии химических и радиоактивных выбросов ТЭС [14, 15].

Отсутствие исследований воздействия полного покомпонентного состава выбросов ТЭС в атмосферный воздух в процессе сжигания каменного угля обусловливает необходимость проведения оценки экологического риска.

В статье используется термин "экологический риск" как вероятность возникновения неблагоприятных эффектов для здоровья населения вследствие загрязнения окружающей природной среды химическими и радиоактивными веществами [14, 15].

Методологический подход к оценке экологического риска. В настоящее время в Украине не существует общепризнанного и утвержденного на законодательном уровне метода оценки экологического риска для населения при нормальном режиме эксплуатации тепловой электроэнергетики.

Концептуальный подход к оценке экологического риска включает в себя два элемента — оценку риска и управление риском [11, 13, 16, 17].

Основными этапами процедуры оценки экологического риска для населения при нормальной эксплуатации ТЭС являются [14—18]:

первый этап — идентификация опасности — подразумевает выявление опасности, установление источников и факторов экологического риска (химических и радиационных), а также зон распространения риска;

второй этап — оценка экспозиции — заключается в оценивании реального влияния факторов экологического риска на население;

третий этап — оценка зависимости "доза— эффект" — связан с анализом влияния факторов риска и определением устойчивости окружающей среды относительно воздействия химических и радиационных факторов;

четвертый, заключительный этап — характеристика риска — включает анализ и обобщение информации о качественных и количественных параметрах, использованных на предыдущих этапах, а также устанавливаются источники возникновения и степени выраженности рисков при конкретных сценариях и маршрутах воздействия факторов экологического риска.

Основной целью управления экологическим риском для здоровья населения при нормальной эксплуатации ТЭС является выявление путей снижения риска при заданных ограничениях на ресурсы и время.

В основе подхода комплексной оценки экологического риска для здоровья населения, предлагаемого авторами в статье, используется вероятностный подход для определения ожидаемого числа дополнительных случаев возникновения стохастических эффектов при фактических выбросах химических и радиоактивных веществ ТЭС, взятых из [19, 20].

Согласно закону Габера [21], вероятность возникновения отдаленных последствий для здоровья человека, т. е. серьезность возникшего заболевания, пропорциональна концентрации химического вещества c и времени воздействия химического вещества t.

В соответствие с данным законом, концентрации химических веществ, рассчитанные за определенный промежуток времени могут быть использованы для воздействия химических веществ [22].

Считается, что экологический риск r, обусловленный воздействием на население неканцерогенных, канцерогенных и радиоактивных веществ, находящихся в окружающей природной среде, зависит от их количества, поступившего в организм человека:

$$r = f(D), \tag{1}$$

где f(D) — функция от дозы вещества, поступившего в организм человека.

Предполагается, что в области малых доз соотношение между дозой химического вещества  $D_{\rm ch}$  и реакцией на нее является линейным [22], а действие неканцерогенных и канцерогенных химических веществ не имеет порога. Тогда дополнительный риск, устанавливаемый для всей продолжительности жизни индивидуума, или количество дополнительных случаев заболеваний, ведущих к смерти населения, может быть рассчитан с учетом коэффициентов

неканцерогенного риска на единицу дозы для населения, постоянно проживающего в районе эксплуатации ТЭС.

Принимая гипотезу о линейном беспороговом характере зависимости "доза—эффект" в области малых доз, формула (1) для оценивания дополнительного риска [21] принимает следующий вид:

$$r(D_{\rm ch}) = F_{D_{\rm ch}} \cdot c \cdot v \cdot t \,, \tag{2}$$

где  $D_{\rm ch}$  — доза химического вещества, мг;  $F_{D_{\rm ch}}$  — коэффициент риска, пропорциональный наклону кривой "доза—эффект", как показано в [14, 15, 21, 22], отражающий степень нарастания риска с увеличением воздействующей дозы химического вещества на одну единицу дозы, мг $^{-1}$ ; c — концентрация химического вещества, мг $^{-1}$ ; v=8,10 $\cdot$ 10 $^3$  — интенсивность поступления вдыхаемого человеком воздуха, содержащего неканцерогенные вещества, м $^3$ /год; t — время, в течение которого неканцерогенные и канцерогенные химические вещества поступали в организм человека, годы.

В [11, 13, 16, 21] установлено и авторами принимается уровень приемлемого риска для неканцерогенных химических веществ —  $10^{-6}$  за год, для канцерогенных химических веществ и ЕРН —  $10^{-5}$  за год [17, 24—27].

Исходя из предположения о том, что в отношении к среднесуточным предельно-допустимым концентрациям (ПД $K_{cc}$ ) [23] годовое поступление вещества в организм дает определенный прирост дополнительных случаев тяжелых последствий для здоровья населения [22], формула для расчета коэффициента

Таблица 1. Коэффициенты экологического риска при воздействии химических веществ

Для неканцерогенных веществ Вещество 1,54.10-9 SO<sub>2</sub> 3,09.10-9 NO, CO  $4,11\cdot10^{-11}$  $8,23\cdot10^{-10}$ Твердые частицы  $4,11\cdot10^{-8}$ Hg Zn  $1,37.10^{-6}$ Cu  $6,17\cdot10^{-6}$  $1,76\cdot10^{-6}$  $8,23\cdot10^{-7}$ 

Для канцерогенных веществ

| ды кандерегенных веществ |                                                   |  |  |  |  |  |
|--------------------------|---------------------------------------------------|--|--|--|--|--|
| Вещество                 | $F_{D_{ m ch}}^{ m canc}$ , м $\Gamma^{	ext{-}1}$ |  |  |  |  |  |
| Ni                       | 5,09·10 <sup>-7</sup>                             |  |  |  |  |  |
| As                       | 8,39·10 <sup>-6</sup>                             |  |  |  |  |  |
| Бенз(а)пирен             | 1,73·10 <sup>-6</sup>                             |  |  |  |  |  |
| Cr                       | 2,35·10 <sup>-5</sup>                             |  |  |  |  |  |
| Cd                       | 3,52·10 <sup>-6</sup>                             |  |  |  |  |  |

риска  $F_{D_{\mathrm{ch}}}^{\,\mathrm{ncanc}}$  для неканцерогенных химических веществ на единицу дозы принимает вид

$$F_{D_{\rm ch}}^{\rm ncanc} = \frac{10^{-6}}{\Pi \text{ДK}_{\rm cc} \cdot \nu}, \tag{3}$$

где  $\Pi \coprod K_{cc}$  — среднесуточная предельнодопустимая концентрация, мг/м<sup>3</sup>.

Коэффициенты экологического риска для исследуемых неканцерогенных химических веществ  $F_{D_{\rm ch}}^{\rm ncanc}$  рассчитаны авторами статьи по формуле (3). Коэффициенты риска для канцерогенных химических веществ  $F_{D_{\rm ch}}^{\rm canc}$  взяты из [16, 23] и пересчитаны для размерности [мг<sup>-1</sup>] (табл. 1).

Индивидуальная доза при воздействии химического вещества  $D_{\rm ch}^{\rm инд}$  определяется произведением концентрации химического вещества c, интенсивности поступления вдыхаемого человеком воздуха  $\nu$  и полным временем его поступления t. С учетом вышеизложенного, можно сказать, что формула (2) для расчета экологического риска принимает вид

$$r_{\rm ch} = F_{D_{\rm ch}} \cdot D_{\rm ch}^{\rm инд}, \tag{4}$$

где  $r_{\rm ch}$  — вероятность возникновения стохастических эффектов при воздействии неканцерогенных и канцерогенных химических веществ, приведенная к одному году экспозиции.

Ожидаемое количество дополнительных случаев возникновения стохастических эффектов для населения при воздействии химического вещества  $R_{\rm ch}$  определяетя как

$$R_{\rm ch} = F_{D_{\rm ch}} \cdot D_{\rm ch}^{\rm KOI}, \qquad (5)$$

где  $D_{\rm ch}^{\rm кол} = D_{\rm ch}^{\rm инд} \cdot \rho \cdot S$  — коллективная доза при воздействии химического вещества, чел.-мг;  $\rho$  — плотность населения, чел./км<sup>2</sup>; S — площадь заселения, км<sup>2</sup>.

МКРЗ [25] и НКДАР ООН [26], принимая во внимание концепцию линейной беспороговой модели, полагают, что любая доза, отличная от нуля, связана с риском.

Радиационный риск  $r_{\rm r}$ , как вероятность индуцирования стохастических эффектов (возникновения онкологических заболеваний и серьезных наследственных эффектов от радиационного облучения) на единицу дозы ЕРН, определяется по формуле [24—26]

$$r_{\rm r} = F_{D_{\rm r}} \cdot D_{\rm r}^{\rm инд}, \tag{6}$$

где  $D_{\rm r}^{\rm инд}$  — индивидуальная эффективная эквивалентная доза, Зв;  $F_{D_{\rm r}}$  — коэффициент пропорциональности, определяющий наклон кривой "доза—эффект"

от воздействия ионизирующего излучения, отражающий степень нарастания риска с увеличением воздействующей дозы на одну единицу, Зв<sup>-1</sup>.

Ожидаемое количество случаев стохастических эффектов от воздействия ионизирующего излучения в популяции определяется соотношением [24—26]

$$R_{\rm r} = F_{D_{\rm r}} \cdot D_{\rm r}^{\rm KO\Pi} \,, \tag{7}$$

где  $D_{\rm r}^{\rm кол} = D_{\rm r}^{\rm инд} \cdot \rho \cdot S$  — коллективная эффективная эквивалентная доза, чел.-Зв.

В соответствии с публикацией МКРЗ [25] общий ущерб является комплексной величиной, которая отображает вероятность развития онкологических заболеваний и серьезных наследственных эффектов во всей популяции.

Коэффициент риска возникновения стохастических эффектов для населения  $F_{D_{\rm r}}$  равен  $5.7\cdot10^{-2}~{\rm 3B^{-1}}$  (для онкологических заболеваний —  $5.5\cdot10^{-2}~{\rm 3B^{-1}}$ , для серьезных наследственных эффектов —  $0.2\cdot10^{-2}~{\rm 3B^{-1}}$ ) [25].

Приведенный подход оценки экологического риска позволит в комплексе оценить радиационную и химическую составляющую в реализации экологического риска в единых показателях вероятности стохастических эффектов на единицу индивидуальной дозы и количество случаев стохастических эффектов для населения на единицу коллективной дозы с использованием коэффициентов для химических веществ (см. табл. 1) и радиоактивных веществ [25].

Показатели экологического риска для населения при воздействии выбросов ТЭС. На основании данных о количестве неканцерогенных химических веществ в выбросах ТЭС Украины за 2004—2012 гг. [19] определено, что выбросы твердых частиц находятся в диапазоне от 1,22 по Углегорской ТЭС до 157 тыс. т/(ГВт (эл.)·год) по Кураховской ТЭС;  $NO_x$  — от 1,97 по Углегорской до 226 по Криворожской ТЭС;  $SO_2$  — от 13,3 по Криворожской ТЭС до 1130 по Ладыжинской ТЭС;  $SO_2$  — от 0,41 по Добротворской ТЭС до 5,55 по Криворожской ТЭС (рис. 1).

Усредненные среднегодовые выбросы газов составляют:  $SO_2$  — 95,4;  $NO_x$  — 14,18; CO — 0,96 тыс.  $T/(\Gamma BT (эл.) \cdot \Gamma OJ)$ ; твердых частиц — 33,7 тыс.  $T/(\Gamma BT (эл.) \cdot \Gamma OJ)$ .

Усредненные среднегодовые концентрации газообразных выбросов на расстоянии 1 км (минимальное расстояние до ближайшего населенного пункта) на 1 ГВт (эл.) ТЭС составляют:  $SO_2 — 6,23\cdot10^1$  мг/м³,  $NO_x — 9,69\cdot10^{-2}$  мг/м³,  $CO — 6,24\cdot10^{-3}$  мг/м³; твердых частиц —  $2,20\cdot10^{-1}$  мг/м³. Индивидуальные дозы при воздействии химического вещества за семидесятилетний период составляют: для твердых частиц —  $1,25\cdot10^5$ ; для  $SO_2 — 3,53\cdot10^5$ ,  $NO_x — 5,49\cdot10^4$ ,  $CO — 3,54\cdot10^3$  мг/(ГВт (эл.)·год).

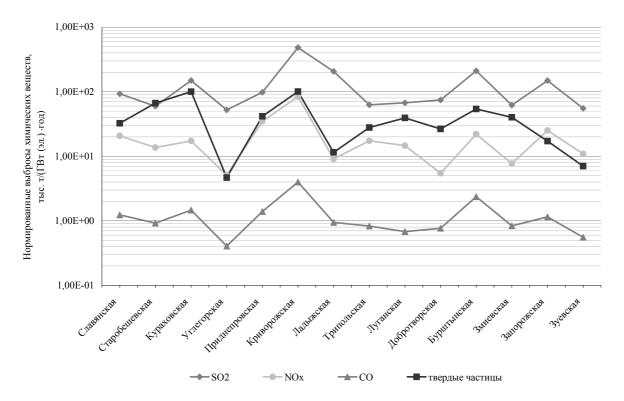



Рис. 1. Среднегодовые выбросы газов и твердых частиц ТЭС Украины

Вероятность стохастических эффектов для населения, обусловленных выбросами неканцерогенных химических веществ на 1 ГВт (эл.) год произведенной энергии указанных ТЭС Украины, составляет за счет:  $SO_2 - 5,44\cdot10^4$ ,  $NO_x - 1,70\cdot10^4$ ,  $CO - 1,45\cdot10^{-7}$ ; твердых частиц  $- 1,03\cdot10^{-4}$ .

Количество случаев стохастических эффектов для населения за счет воздействия выбросов неканцерогенных химических веществ на 1 ГВт (эл.)·год указанных ТЭС Украины составляет: для  $SO_2$  — 6,78;  $NO_x$  — 2,11; CO — 1,81· $10^{-3}$ ; твердых частиц — 1,28.

Таблица 2. Показатели экологического риска для населения при воздействии химических веществ в летучей золе выбросов ТЭС на 1 ГВт (эл.) год

| Вещество        | Вещество Выброс, |                         | $r_{ m ch}$           | $R_{\mathrm{ch}}$     |  |  |  |  |
|-----------------|------------------|-------------------------|-----------------------|-----------------------|--|--|--|--|
|                 | тыс. т           | на расстоянии           |                       |                       |  |  |  |  |
|                 |                  | 1 км, мг/м <sup>3</sup> |                       |                       |  |  |  |  |
| Неканцерогенные |                  |                         |                       |                       |  |  |  |  |
| Pb              | 4,12             | 2,85·10 <sup>-5</sup>   | 1,33.10-5             | 3,29.10-1             |  |  |  |  |
| V               | 3,91             | 2,70·10 <sup>-5</sup>   | 1,37·10 <sup>-6</sup> | $3,39\cdot10^{-2}$    |  |  |  |  |
| Hg              | 13,58            | 9,39·10 <sup>-5</sup>   | 6,03.10-8             | 1,49·10 <sup>-3</sup> |  |  |  |  |
| Cu              | 0,37             | $2,59\cdot10^{-6}$      | 9,46·10 <sup>-5</sup> | 2,34                  |  |  |  |  |
| Zn              | 0,20             | 1,37·10 <sup>-6</sup>   | 7,30·10 <sup>-5</sup> | 1,81                  |  |  |  |  |
| Канцерогенные   |                  |                         |                       |                       |  |  |  |  |
| Ni              | 4,45             | 3,08·10 <sup>-5</sup>   | 8,88.10-6             | 2,20.10-1             |  |  |  |  |
| Cr              | 5,86             | 4,06·10 <sup>-5</sup>   | 5,41·10 <sup>-4</sup> | 13,4                  |  |  |  |  |
| As              | 0,16             | 1,07·10 <sup>-6</sup>   | $5,11\cdot10^{-6}$    | 1,27·10 <sup>-1</sup> |  |  |  |  |
| Cd              | 2,20             | 1,52·10 <sup>-5</sup>   | $3,04\cdot10^{-5}$    | 7,52·10 <sup>-1</sup> |  |  |  |  |
| Бенз(а)пирен    | 0,01             | 4,45·10 <sup>-8</sup>   | $4,37\cdot10^{-8}$    | $1,08\cdot10^{-3}$    |  |  |  |  |

На основании данных, взятых из [20], в работе определено содержание выбросов бенз(а)пирена и тяжелых металлов (канцерогенов — Cd, Cr, Ni, As; неканцерогенов — Pb, Cu, V, Zn, Hg) в летучей золе выбросов ТЭС на 1 ГВт (эл.) год (табл. 2).

Индивидуальные и коллективные эффективные дозы облучения населения при воздействии выбросов ЕРН в составе летучей золы (см. рис. 1, *твердые частицы*) рассчитаны с учетом данных, приведенных в [27], и применением программного комплекса CAP-88, разработанного US Environmental Protection Agency [28].

Ожидаемые индивидуальные эффективные дозы облучения населения на расстоянии 1 км составляют: максимальные значения — для районов размещения Змиевской (83,6 мкЗв/год), Добротворской (51,5 мкЗв/год), Луганской (49,9 мкЗв/год) и Бурштынской ТЭС (48,3 мкЗв/год); минимальные значения — для Ладыжинской (4,10 мкЗв/год) и Углегорской ТЭС (4,54 мкЗв/год). Величины индивидуальных доз облучения населения от воздействия ЕРН выбросов ТЭС Украины разнятся более чем в десять раз.

Величина суммарной коллективной эффективной дозы облучения населения за год составляет 26,3 чел.-Зв. За исследуемый период на ТЭС Украины выработано 9,12 ГВт (эл.)-год, что привело к средней коллективной эффективной дозе облучения населения 2,92 чел.-Зв на 1 ГВт (эл.)-год.

Вероятность и количество случаев стохастических эффектов для населения при воздействии

| ТЭС            | $r_{ m ch}$           |                       |                       |                       |                       | $r_{\rm r}$           | $R_{ m ch}$ |           |                       |                    | $R_{\rm r}$ |      |
|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------|-----------|-----------------------|--------------------|-------------|------|
|                | $SO_2$                | $NO_x$                | CO                    | Твердые               | Σ                     | EPH                   | $SO_2$      | $NO_x$    | CO                    | Твердые            | Σ           | EPH  |
|                |                       |                       |                       | частицы               |                       |                       |             |           |                       | частицы            |             |      |
| Бурштынская    | $6,20\cdot10^{-4}$    | 1,18.10-4             | 1,70.10-8             | $8,01\cdot10^{-5}$    | $8,18\cdot10^{-4}$    | 1,54.10-4             | 15,2        | 2,88      | $4,16\cdot10^{-3}$    | 1,96               | 20,0        | 10,1 |
| Добротворская  | $2,35\cdot10^{-4}$    | $3,45\cdot10^{-5}$    | $6,48 \cdot 10^{-8}$  | $4,46\cdot10^{-5}$    | $3,15\cdot10^{-4}$    | $5,58\cdot10^{-4}$    | 5,75        | 8,44.10-1 | $1,58\cdot10^{-3}$    | 1,09               | 7,68        | 79,1 |
| Запорожская    | $2,99 \cdot 10^{-4}$  | 9,83·10 <sup>-5</sup> | $8,00\cdot10^{-8}$    | $2,05\cdot10^{-5}$    | $4,18\cdot10^{-4}$    | $2,39\cdot10^{-5}$    | 7,3         | 2,40      | $1,96\cdot10^{-3}$    | $5,01\cdot10^{-1}$ | 10,2        | 2,46 |
| Змиевская      | $3,16\cdot10^{-4}$    | $7,75\cdot10^{-5}$    | 1,12·10 <sup>-7</sup> | 1,06.10-4             | 4,99.10-4             | $2,64\cdot10^{-4}$    | 7,7         | 1,89      | $2,74\cdot10^{-3}$    | 2,58               | 12,2        | 19,4 |
| Зуевская       | $3,74\cdot10^{-4}$    | 1,48·10 <sup>-4</sup> | 8,17.10-8             | $2,54\cdot10^{-5}$    | 5,47·10 <sup>-4</sup> | $2,01\cdot10^{-4}$    | 9,1         | 3,62      | $2,74\cdot10^{-3}$    | 6,21.10-1          | 13,1        | 15,7 |
| Криворожская   | $5,11\cdot10^{-4}$    | 1,86.10-4             | 1,21·10 <sup>-7</sup> | 5,92·10 <sup>-5</sup> | $7,56\cdot10^{-4}$    | $7,53\cdot10^{-5}$    | 12,5        | 4,55      | $2,00\cdot10^{-3}$    | 1,45               | 18,5        | 6,51 |
| Кураховская    | $4,38 \cdot 10^{-4}$  | 1,01·10 <sup>-4</sup> | $1,13\cdot10^{-7}$    | $1,48 \cdot 10^{-4}$  | $6,86\cdot10^{-4}$    | $2,60\cdot10^{-4}$    | 10,7        | 2,46      | $2,75\cdot10^{-3}$    | 3,62               | 16,8        | 20,6 |
| Ладыжинская    | $4,53 \cdot 10^{-4}$  | 5,81·10 <sup>-5</sup> | $7,71\cdot10^{-8}$    | $2,11\cdot10^{-5}$    | $5,32\cdot10^{-4}$    | 8,99.10-5             | 11,1        | 1,42      | $1,88\cdot10^{-3}$    | $5,16\cdot10^{-1}$ | 13,0        | 9,34 |
| Луганская      | $4,14\cdot10^{-4}$    | 1,77·10 <sup>-4</sup> | 1,09·10 <sup>-7</sup> | 1,24·10 <sup>-4</sup> | $7,15\cdot10^{-4}$    | 3,03·10 <sup>-4</sup> | 10,1        | 4,32      | $2,68\cdot10^{-3}$    | 3,03               | 17,5        | 23,8 |
| Приднепровская |                       |                       | $8,56\cdot10^{-8}$    | $5,00\cdot10^{-5}$    | $4,54\cdot10^{-4}$    | $9,20\cdot10^{-5}$    | 5,9         | 3,94      | $2,09\cdot10^{-3}$    | 1,22               | 11,1        | 20,9 |
| Славянская     | 1,61·10 <sup>-4</sup> | 7,07·10 <sup>-5</sup> | $5,65\cdot10^{-8}$    | 3,00.10-5             | 2,61·10 <sup>-4</sup> | 1,58·10 <sup>-4</sup> | 3,9         | 1,73      | $1,38\cdot10^{-3}$    | $7,33\cdot10^{-1}$ | 6,39        | 12,6 |
| Старобешевская | $2,40\cdot10^{-4}$    | 1,06.10-4             | $9,53 \cdot 10^{-8}$  | 1,37·10 <sup>-4</sup> | 4,83·10 <sup>-4</sup> | 1,92·10 <sup>-4</sup> | 5,9         | 2,59      | $2,33\cdot10^{-3}$    | 3,34               | 11,8        | 15,2 |
| Трипольская    | $2,76\cdot10^{-4}$    | 1,36·10 <sup>-4</sup> | 7,77·10 <sup>-8</sup> | 5,79·10 <sup>-5</sup> | 4,70.10-4             | 9,76·10 <sup>-5</sup> | 6,75        | 3,32      | 1,90·10 <sup>-3</sup> | 1,41               | 11,5        | 13,2 |
| Углегорская    | $3.85 \cdot 10^{-4}$  | $7.56 \cdot 10^{-5}$  | $8,17\cdot10^{-8}$    | 1.81·10 <sup>-5</sup> | $4,79 \cdot 10^{-4}$  | $2,01\cdot10^{-5}$    | 9.4         | 1,85      | $2.00 \cdot 10^{-3}$  | $4,41\cdot10^{-1}$ | 11.7        | 1.62 |

*Таблица 3*. Вероятность и количество случаев стохастических эффектов для населения при воздействии химических и радиоактивных веществ выбросов ТЭС Украины на 1 ГВт (эл.) год

газов и твердых веществ за семидесятилетний период для указанных ТЭС Украины приведены в табл. 3.

По нашим оценкам количество случаев стохастических эффектов, обусловленных среднегодовыми выбросами газообразных и твердых веществ, на 1 ГВт (эл.) год составит 10,2 (усредненное значение для ТЭС).

Также были рассчитаны показатели вероятности и количества случаев стохастических эффектов для населения при воздействии канцерогенных и неканцерогенных веществ, содержащихся в летучей золе выбросов ТЭС, за семидесятилетний период (см. табл. 2).

Следует подчеркнуть, что количество случаев стохастических эффектов на 1 ГВт (эл.) год, обусловленных среднегодовыми выбросами ЕРН, канцерогенных и неканцерогенных веществ, содержащихся в летучей золе выбросов ТЭС Украины, составит 32,2 (усредненное значение для ТЭС).

## Выводы

Применение метода комплексной оценки экологического риска для населения позволило оценить вклад как отдельных, так и в комплексе, факторов риска, включая неканцерогенные и канцерогенные химические вещества, а также радиоактивные вещества, при воздействии выбросов ТЭС в прогнозируемую величину индивидуального риска и количество случаев стохастических эффектов.

Необходимо отметить, что вклад в экологический риск для здоровья населения за счет радиоактивных выбросов ТЭС Украины почти в десять раз меньше, чем вклад, обусловленный газообразными и твердыми канцерогенными и неканцерогенными веществами.

Подводя итог, прогноз по общему количеству стохастических эффектов для населения за семи-десятилетний период при воздействии химических и радиоактивных веществ выбросов ТЭС Украины составит 387 случаев.

## Список использованной литературы

- 1. Національна доповідь про стан навколишнього природного середовища в Україні в 2010 році. К.: Центр екологічної освіти та інформації, 2011. 254 с.
- 2. Бабаев Н. С. Ядерная энергетика, человек и окружающая среда / Н. С. Бабаев, В. Ф. Демин, Л. А. Ильин; под. ред. А. П. Александрова. М.: Энергоатомиздат, 1984. 35 с.
- 3. Варламов Г. Б. Теплоенергетичні установки та екологічні аспекти виробництва енергії : Підручник / Г. Б. Варламов, Г. М. Любчик, В. А. Маляренко. К. : ІВЦ "Видавництво "Політехніка", 2003. 232 с. : іл.
- Беренгартен М. Г. Международное сотрудничество по созданию экологически чистых технологий добычи и использования угля/ М. Г. Беренгартен, А. Г. Евстафьев // Открытые горные работы. — 2000. — № 2. — С. 4—5.
- 5. *Книжсников В. А.* Сравнительная оценка радиационной опасности для населения от выбросов в атмосферу тепловых и атомных электростанций / В. А. Книжников, Р. М. Бархударов // Атомная энергия. 1977. Т. 43, № 3. С.191—195.
- 6. Носков А. С. Воздействие ТЭС на окружающую среду и способы снижения наносимого ущерба (технологические аспекты): Аналитический обзор / А. С. Носков, М. А. Савинкина, Л. Я. Анищенко. Новосибирск: Изд. ГПНТБ СО АН СССР, 1990. 178 с.
- Оновлення Енергетичної стратегії України на період до 2030 року: Проект. [Електронний ресурс]. — Режим доступу: http://mpe.kmu.gov.ua/minugol/ doccatalog/document?id=222032.
- 8. *Коваленко Г. Д.* Экологический риск нарушения состояния атмосферного воздуха при воздействии выбросов

- тепловых электростанций Украины / Г. Д. Коваленко, А. В. Пивень // Мат. 5-ої Всеукр. наук.-практ. конф. "Охорона навколишнього середовища промислових регіонів як умова сталого розвитку України", Запоріжжя (Україна), 10—11 грудня 2009 р. Запоріжжя, 2009. С. 203—205.
- 9. Жаворонкова Н. Г. Эколого-правовые проблемы обеспечения безопасности при чрезвычайных ситуациях природного и техногенного характера / Н. Г. Жаворонкова. М.: Юриспруденция, 2007. 43 с.
- 10. *Theodore M. K.* Introduction to Environmental Management / M. K. Theodore, L. M. Theodore. NY: CRC Press, 2010. 266 p.
- Environmental health Criteria 210: Principles for the Assessment of Risk to Human Health from Exposure to Chemicals // WHO / IPCS. — Geneva, 1999. — 322 p.
- 12. Екологічний ризик: методологія оцінюванням та управління: навч. посібник. / Г. В. Лисиченко, Г. В. Хміль, С. В. Барбашов, Ю. Л. Забулонов, Ю. Є. Тищенко. К.: Наук. думка, 2014. 328 с.
- 13. Environmental health Criteria 214: Human Exposure Assessment // WHO / IPCS. Geneva, 2000. 422 p.
- 14. Коваленко Г. Д. Экологический риск для здоровья населения при воздействии выбросов ТЭС и АЭС Украины / Г. Д. Коваленко, А. В. Пивень // Ядерная и радиационная безопасность. 2010. Вып. 4 (48). С. 50—56.
- 15. Коваленко Г. Д. Комплексный подход к оценке экологического риска для здоровья населения при воздействии выбросов топливно-энергетического комплекса Украины / Г. Д. Коваленко, А. В. Хабарова // Вісник НТУ ХПІ. 2012. Вып. 1. С. 71—79.
- 16. Integrated Risk Information System (IRIS). [Електронний ресурс]. Режим доступу: http://www.epa.gov/iris
- 17. Киселев А. Ф. Оценка риска здоров'ю / А. Ф. Киселев, К. Б. Фридман. — Санкт-Петербург, 1997. — 100 с.
- К. Б. Фридман. Санкт-Петербург, 1997. 100 с. 18. Порфирьев Б. Н. Экологическая экспертиза и риск технологий / Б. Н. Порфирьев // Итоги науки и техники. Серия: Охрана природы и воспроизводство природных ресурсов. Т. 27. М.: ВИНИТИ, 1990. 204 с.
- 19. Экологические паспорта регионов. [Электронный ресурс]. Режим доступа: http://www.menr.gov.ua/protection/protection1
- Порівняльний аналіз щодо ступеню екологічного ризику при проживанні населення в зонах впливу АЕС та ТЕС. Т. 12. "Про ступінь екологічної небезпеки для проживання населення в зонах впливу АЕС

- і ТЕС": Звіт про НДР "Розробка державних науковотехнічних програм для забезпечення екологічної безпеки у сфері паливно-енергетичного комплексу" / Л. М. Бойко, О. В. Горішна, Ю. Л. Забулонов, Г. В. Лисиченко. К.: ІГНС НАН та МНС України, 2006. 129 с.
- 21. *Ваганов П. А.* Экологические риски: учеб. пособие. Изд-е 2-е / П. А. Ваганов, Им. Ман-Сунг. СПб.: Изд-во СПбГУ, 2001. 152 с.
- 22. О нормировании и сравнении риска от разных источников вреда здоровью человека / В. Ф. Демин, В. Я. Голиков, Е. В. Иванов и др. М.: Международный центр по экологической безопасности Минатома России, 2001.
- 23. Про затвердження Методичних рекомендацій "Оцінка ризику для здоров'я населення від забруднення атмосферного повітря": Наказ Міністерства охорони здоровя України від 13.04.2007, № 184.
- 24. ДГН 6.6.1-6.5.061-2000. Державні гігієнічні нормативи. Норми радіаційної безпеки України, доповнення: Радіаційний захист від джерел потенційного опромінення (НРБУ-97/Д-2000). [Электронный ресурс]. Режим доступу: http://zakon.nau.ua/doc/?unid=1039.8664.0
- 25. Radiation protection. ICRP Publication 103: Recommendations of the International Commission on Radioecological Protection (ICRP). [Електронний ресурс]. Режим доступу: http://www.icrp.org/docs/ICRP\_Publication 103-Annals of the ICRP 37(2-4)-Free extract.pdf
- 26. Sources and effects of ionizing radiation // Scientific Annexes of United Nations Scientific Committee on the Effects of Atomic Radiation 2000 Report to the General Assambly. — New York, 2000. — 195 p.
- 27. *Коваленко Г. Д.* Радиоэкология Украины : монография. 3-е изд., доп. и перераб / Г. Д. Коваленко. X. : ИД "ИНЖЕК", 2013. 344 с.
- 28. Rosnick R. CAP88-PC Version 3.0 User Guide / R. Rosnick. USA: Environmental Protection Agency, 2007. 210 р. [Электронный ресурс]. Режим доступу: http://www.epa.gov/radiation/assessment/ CAP88/aboutcap88.html

Получено 03.08.2015