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Abstract

The pipelines, the working conditions of which aignificantly different from the contibns of the majority of the existil
systems are considered in this article. In thiglartthe gas pipelines with large difference ievation that operate at hi
(5-15 MPa) and ultrahigh pressures (up to3bMPa) are taken into the account. First of aflem and gas pipelines t
overcome the high mountain passes are considehedthiBory and algorithm for calculating the steathte opert#gons of suc
pipelines are presented.
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Up to now, various methods for calculating gas  the continuity equation:

pipelines of high pressure are known and tested][1— d ( S)-O

However, many of those methods contain simplifying gy PRI T

assumptions, which in most cases, is justified, and fom which we receive the following equation:
presents quite significant results. Moreover, icerg Q=poS=idem (1)

years, gas pipelines, working conditions, which\aeey -
different from many existing pipelines. In this easve that implies constant mass flowQ along the
deal with gas pipelines with large difference ievaltion ~ pipeline. Since the density of the gas decreases as the
fans that operate at high (5-15 MPa) and ultrahigbressure drop, then from the equation (1) we can
pressures (up to 25-35 MPa) in a wide temperatus®nclude that in the case of constant cross-seadtamea
range and complexity of the heat transfer. Theepde S=idem the gas velocity of the gas from the start to
water gas pipelines are of the following pipeligpes:  the end increases;
“Blue Stream”, “South Stream”, “The North European equation of motion:
Gas Pipeline” etc., as well as gas pipelines that do_ dp 4 dz
overcome high mountain passes. In extreme condition pvd—= T T T w T PIT 2)

. S i X dx d dx
under which these pipelines are being operated, the 5 . .
factors, which in ordinary cases are small or g whereasz,, :(/1/8)pu is the shear stress on the inner
can not be neglected. In this paper, the theory affiiction surface of the conduitd is the diameter of
algorithm of termo-hydraulic calculating of steatgpde pipeline; g is the gravity accelerationz(x) is the
pipelines, and in particular, the use of numerical.

methods are methodologically and consistentl?'pe"ne profile; dz/ dx= sina(x) is the sine of the

presented. angle to the horizontal axis of the conduit.
the total energy balance equation:
1. Basic Equations for Steady Pipeline Gas Flow d ak02 dz
Q& 5 +J =7fd0n‘Q9&, €)
To calculate the steady flow of compressible gas

pipeline in the area, the following equations asedi whereasq, is the heat of the flow per unit of surface of

the conduit. If the dependence of the enthalpyhef t
pressure and the temperature T is used in thistiegua

*  Corresponding author: putting J = J(p,T), and also if to assume that the gas
lurie254@gubkin.ru heat exchange with the environment follows Newton’s
mikhail.lurie@mail.ru heat transferq, = K, (T —T,,), Where K. is the heat

© 2013, lvano-Frankivsk National Technical transfer coefficient and T,,, is the ambient
University of Oil and Gas. temperature, we will receive the following exation:
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Table 1 — Values of the rati(iCp -Cy )/R

Pressure, Temperaturd, K
P, MPa 270 280 290 300 310 320 330 34(
1.00 1.14 1.13 1.11 1.10 1.09 1.09 1.08 1.07
3.00 1.48 1.42 1.38 1.34 1.30 1.2y 1.26 1.22
5.00 1.94 1.81 1.70 1.61 1.55 1.49 1.44 1.40
9.00 3.22 2.80 2.50 2.28 2.11 1.97 1.86 1.97
12.00 4.04 3.50 3.08 2.78 2.53 2.34 2.17 2.05
16.00 4.28 3.89 3.54 3.21 2.9 2.70 2.53 2.36
20.00 3.99 3.79 3.57 3.33 3.11 291 2.72 2.57
24.00 3.64 3.56 3.41 3.26 3.14 2.95 2.79 2.66
30.00 3.22 3.19 3.13 3.05 2.96 2.85 2.76 2.66
Table 2 — The Values of the coefficienDD(p,T) the Joule-Thomson, K/MPa
Pressure, Temperaturd, K
p, MPa 270 280 290 300 310 320 330 34(
1.00 5.39 5.13 4.60 4.53 4.01 4.0%5 3.60 3.32
3.00 5.36 4.98 4.64 4.32 4.04 3.75 3.6Q2 3.29
5.00 5.18 4.82 4.47 4.15 3.91 3.64 3.4 3.23
9.00 4.39 4.13 3.89 3.66 3.43 3.28 3.05 2.87
12.00 3.45 3.37 3.25 3.11 2.97 2.8p 2.7 2.55
16.00 2.25 2.33 2.36 2.34 2.24 2.2p 2.16 2.07
20.00 1.40 1.53 1.61 1.66 1.6 1.68 1.66 1.63
24.00 0.86 0.98 1.08 1.14 1.2( 1.29 1.23 1.23
30.00 0.39 0.48 0.56 0.62 0.64 0.7p 0.75 0.77
d (a0 8J) dT (93] dp_ Expressing the derivatives in .this expression,
P +(Ej E(+ a_p Tdx through pressure and temperature vv_|th the_ helghef t
P T equation of statep = Z(p,T) pRT, we will obtain:
'_ndQKT (1) 0 [Z T(azj ]
+ -
i =C.- - oT
Denoting (aJ/aT)p =Cp; (03/ap); = CpDp Cp(p,T)=CV +R Pl ©)
and accepting the Coriolis coefficieaf which equals 1, 7 - p(aZJ
we represent the equation (3) in the following way: op )+
u@+c [d—T—D ﬂ)j _ where G, is the heat capacity of gas at the constant
dx  Pldx " dx volume. For the perfect gasZ=1, there-fore
@ c,-c,=R. F | diff i
_ mdK, (T— )—gd—z p~Cv . or a rea ifference in gas
Q aml Fdx Cp—Cy >R. Ratio valuesZ(p,T) are calculated by

In this case, the heat capacity at constant press
DD(p,T)— a Joule-Thomson coefficient:

the equation of state of a real gas:

UYormula (6) using the functiorZ(p,T) for the natural
gas; they are presented in Table 1.

The Joule-Thomson coefficientDD(p,T) is
p=2(pT) pRT, (5)

) I i represented by the formula, where héail;(p,T) is
where Z is the compressibility factorR is the gas ] ) )
constant. given by the equeation (6) [3]. Using the equatidn

With the help of the equation of the state of d reaP = Z(p,T)pRTas the state of gas, we obtain the
gas, the main thermodynamic coefficients can bfellowing expression:

expressed in terms of the function‘:(p,T). In D ( T)— 1 T (oz %
particular, the expression for that connection efth P )= Cp(p,T) pZ \ 0T )’
capacity at the constant pressure and volume feah _ _
gas acquires the following look [5]: For the perfect gaZ =1, thus Dy =0.
T (ap) (9 The values of the coefficientDD(p,T) are
Cp—-Cv Z_F(E] (Ejp' calculated by the formula (7) usin@(p,T) of natural
p

gas and are presented in Table 2.
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It should be noted that the Joule-Thomson effect ~Whereas the coefficienZ(p,T) of compressibility
canchange its direction of actioto reversed when the s -gnsidered to be a known function of its arguisien
derivative (0Z/3T),, changes the sign from positive to | the main determinantA of the system of

negative. Based upon the known chaﬂ£p,T) of €quations (9) is different from zero, e,

natural gas, we deal with the pressure of 35-4@.MP 4 : aib? ~agy #0, it can be umguely solved for the
Equations (1)—(7) are the basis for calculation oferivatives dp/dx and dT/dx using the well-known
the steady non-isothermal gas in the pipeline with Cramer’s rule:

arbitrary profile. dp _ 4
2. Method of Calculating the Established Gas SX 4 (10)
Pipelines Modes ar = ﬁ
dx 4

If in the equation (2) of the gas movement tavhere 4 =cib, —cob and 4y, =ac, —axc;. Here, the
express the shear stresg on the inner surface of the right sides of equations (8) are unknown functiofis
pipe according to the formularW:(/l/S)pvz, the P.T and x, and the mass flow of ga is included

system of equations for the calculation of the dyea N0 them as a constant parameter. _ _
state regimes of gas pipelines can be represested a The system of equations (10) can be integrated into
any of the standard methods, for example, by a

p0@+d_ :_ilp_uz_ d_z numerical method of Runge—Kutta method or by a
dx dx d 2 dx simpler Euler lines method . Both of these methams
d (2 7d Ky dz included in practically almost any mathematical
dx 7*’3 _‘T(T _Tamb)_g&v (8) application package of computer programs.
The greatest practical interest are the solutidns o
p=Z(p.T) pRT. the following two tasks.
Task 1.Find the distribution of pressura(x) and

Since the mass flow rate i® =idem, the the temperatureT(x) along the participating pipeline if the
velocity » is not an independent variable and ignitial section of a predetermined pressupg = p(O)
determined by v =Q/(pS). If from the second and temperaturdy =T(0), and the mass flow of the

2-system of ordinary differential equations end of pipeline part

d dT i i
al(p,T)—p+bl(p,T)—=ol(p,T,x), N Task 2..F|nd the mass flgw pf the g.a(@ if the
dx dx (9) initial and final part of the pipeline section hatfe
d dT = =
az(p,T)—p +by(p, T — = Cy(p,T) pressure set agg p(O) and p_ p(L), anq the set
dx dx temperature of the gas & =T(0) at the beginning of
for 2 unknowns — pressurg(x) and temperaturd(x). e plot. Find the gas temperatufg at the gas-end of
Here, the pipeline.
( T) _ 1 RT 7 0z The first task solution, which is in accordancehwit
a\p. )= (Q/S)2 _F ~ R p ). | the mathematical terminologpf the initial Cauchy
T problemis constructed by numerical methods, which are
o (1 R oz mentioned above. The second task is not the primary
b.L(p:T):E > = o z +T[ﬁj ; because its conditions are set on the edges dieldeof
P P integration ofxD[O,L], i.e. and in sectionsx=0 and
1 2 s)? dz x =L such tasks are calldsbundary
O.l.(plT'X):_( /S)2|:2d (Q/p ) +pg&‘|1
Q 3. lterative  Algorithm  of  Numerical
Calculations
az(p,T)z(a_Jj _1=_ﬂlz+T(a_z] ]
o)r »p P oT p The solution of the second task (the boundary one)
dJ can be reduced to the solution of the first (ihi@auchy
b,(p,T)= a_j =C,(pT)= problem) if to waive the conditiorp(L)= p, in time,
p2 however, instead of that, it is significant to cidies, in
—C,+R z+ T(azj s_ 492 , th|s case,.knowrQ as a mass flow rate. Then, in the
aT J, ap ), initial section x=0 of the conduit portion, the pressure
_ 2dK 1 (Q/S)Z po and temperatur-é'o of the gas will be known, ar.1d
co(p.T)=~ o (T ‘Tamb)*'ET- the mass flowQ will not be as an unknown quantity

anymore. Consequently, it is possible to use thtéhodke
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gas pipelines with high and ultrahigh pressures

of integration that was used to soltlee task 1 Of
course, within such an approach the pressp(‘b) at

The diameter of the pipeline 82-33" (inner diameter
is 735-758 mm, and the wall thickness~s #Aln),

the design capacity of the 4-trunk pipeline is equoal

the end of pipeline section, generally speakindj, mat
63 billion nt per year.

be equal to the predetermined valyg , so it is
necessary to vary the flow ra€@ to achieve the desired 0
equality.

The essence of the iterative algorithm, calle
zeroing algorithmeconsists in the following. First, the =
interval of (0,Q) values is designated, which can have &

massive gas consumptio< Q < Qax- As the first

-500

-1000 -

-1500 +

Depth of the

approximation, flow rate Q(l) =Qmax/2 is selected
with the corresponding calculations conductethsk 1

p(0)= o, T(0)=Tp.@=QW.  The
determines the meaning qii(l)(L) of the pressure at the

end of the pipelinex=L. There are two options
possible:

if it turns out that p(l)(L)< p_ . it means that the

-2000 +

AV

0 100 200 300 400 500 600 700 &00 900

calculation

-2500

Horisontal distance, km
Figure 1 — Profile of the Underwater Section of the
Pipeline “South Stream” from the compressor
station “Coast” to “Varna” compressor station

mass flow of gasQ(l) in the first approximation was set Fig. 2 shows the distribution of gas presspipe)
too low, and should be increased; andtles second and temperaturé'(x), resulting from the calculation by

approximation Q(2)= (Qmax"'Q(l))/z should be the method described above.
applied; U W S O AU O 0 S A

if it turns out thatp(l)(L)< p_ . it means that the =

310

mass flow of gasQ(l) in a first approximation has beeném

£300

selected too large, however, it should be reducetl az N 7 7 7 P
Q(Z) :(O+Q(1)) 2 should be taken aghe SECONd Tasf N

approximation. After the selection of the mass flow of
the second approximation, the calculation by th
solution method ofhe taskl is repeated again, and the 7
new value p(z)(L) at the end of the gas pipeline is 6\
determined. g

The algorithm, described above, where choicsZ
Q(J) is determined by dividing the iterations of ar« | \\ —
interval in half, converges quickly and allows todfa = P f \
value Q for which the pressurepD(L) at the end of the ¢ >
gas pipeline will be very close to the pressupg

presented in the task, i.e. different from it batmore
than in predetermined error value.

Temy

SO 100 150 200 250 300 350 400 450 SO0 S50 600 650 700 750 800 850 900
Coordinate, km

S0 100 452 200 280 320 350 40C 450 SO0 S50 600

Coordinate, km

Figure 2 — The pressure distribution p(x) (top),

650 700 750 800 80 800

temperature T(x) (bottom) along the length

of the underwater section of the pipeline

4. Example of Numerical Calculation: the

“South Stream” Gas Pipeline The figure shows that the pressure in the pipeline
on the land areaQ< x < 30km) due to frictional forces
As an example, we present the results of the reduced, and then the descent below sea level
calculation of thermal-hydraulic conditions of wook (30< x<60km) from zero to the depth of 2000 m
one of the embodiment of a deep pipeline “Southhcreases almost in 1.5 MPa. Such increase is unusual
Stream”, which is designed to ensure the supplgasf for flat gas pipelines, in this case it is due to thefifer
to European countries via the Black Sea and thkaBal of pipeline, i.e. caused by the weight force of
(Fig. 1). compressed gas. If the gas density is low, then as a rule
The peculiarity of this pipeline is that aboutthe plain gas pipelines are characterized by equation
960 km of pipe is on the bottom of the sea, of Whic X,
600 km — at a depth of2000m. In addition, the
pipeline is characterized by high and and ultrahigh
pressure (the pressure at the beginning of thdipies

31.5 MPa, and at the end of the pipelinesig.5 MPa). i.e. the geometric difference of pressures is nedégib

compared with the difference between the piezometri
33
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head, so the Bernoulli equation, is written for C ZRT
compressible medium, g = | — . (11)
2 d 2 d Xa CV 1_p(aZJ
(agv +.[_P+ZJ _(0‘5_”+I_p+z] :J'idx z\op );
g #d 1 g ~d 2 % Expression (11) is a so-calledliabatic speed of

wherei is the hydraulic gradient, the elevations can bgound in real gas.

neglected. However, it is not so in the case. Ifi yo
not take into account the change of velocity head a
the losses of friction head, then the value shddd
maintained.

I

dp

pg

+z=idem.

Since the slope of the gas pipeline in the are

under the waterz(x) decreases, the pressurp(x)

increases. It can be seen from the graph of thespre

distribution betweerb00< x < 650km of the pipeline.
On a relatively horizontalbottom section of

In a perfect ga¥Z =1, so
(0z/ap); =0, Cp=G,+R, C,/Cy =y is the
adiabatic index (for methane ig=131) and the
velocity of the sound is determined more simply and

depends only on temperaturée):cr )perf = \/yR_T . Let
suppose, for example, G, =1900 J/(kdK),
&, = 2450 J/(kgK); R =500 J/(kgK), then
(vr ) pert 435S,

Using the equation of the staje= Z(p,T)pRT of
real gas, the formula (11) can calculate the spafed

us

60<x<500km, the pressure in the gas pipelinesound in a real gas. Table 3 shows the speedsuofiso

monotonically decreases due to the friction foréas.a
plot of lifting of 500<x<650km, the pressure
decreases even faster, as elevatz'()() increases.

The distribution of the gas temperatuTtéx) has

in the gas,R=500 J/(kgK) at a temperatur@d = 293K
for different pressures.

Table 3 — The Dependence of Sound velocity
from the Pressure [ = 293 K)

the following characteristics:
for the first 150 km, where the pipeline is lowereq

to the sea surface, the gas due to the strong h

exchange with the environment is quenched to

temperature close to the temperature of the wateth¢

| b MPa | 01 5,0 10,0 15,0
Latver, M/s | 435 | 384 435 470
ap,,MPa | 200 | 250 30,0 35,0

v, Mis | 525 | 570 630 700

bottom of the Black Sea, the water temperaturenduri

the whole year is around %Q);

on the flat bottom, the cooling gas becomes less ~With increase of the pressurge, at first it
intense because of the heat exchange with tlecreases, passes through a minimum, then at large
environmentKy = 20W/(m?[K), gas continues to cool; Pressures is steadily increasing and may exceed the

on the upstream portion (500-650 km), the ga\éalue of 700 m/s.. L o
temperature decreases sharply to B7@nd becomes Thus, 4=0 if the gas flow velocity in the pipeline
lower than the temperature of the sea water dubeo "€aches the local speed of sound. Typically, thecity
gravity forces: of the gas in the pipeline is 5-15 m/s, which is

at the last shallow waters plot (650-940 km) théignificantly less than the critical velocity, . It can be
gas transported is heated a bit due to the he&ibere possible only if the pipeline ruptures or dischar g
with the environment, so the temperature at the &nd gas fall into the atmosphere through the so-calketlle
the plotis= 280K (= +7°C). speeds may reach the local speed of sound. Iadriti

sectionsdp/dx - 0, so they develop the discontinuity

pressure, or as they are callsipcks generating shock
waves.

5. Condition for
Existence

the Stationary Solutions

Let us consider the case when the main  Conclusions

determinant4 of the system of equations (9) is equal

to 0, i.ed=ab, —ady =0. In this case, the solution 1. Calculation of steady-state operation of the gas

either does not exist, or is not the only one. pipeline with an arbitrary prqfile is rgduceq tdvéog a
Equating the determinant to zero, we obtain the system of two coupled ordinary differential equasio

equation for determining the critical mass flowerat explic_:itly solved for the first derivatives of themknown
Q., , or the critical velocityo,, . We have: functions — pressure and temperature that are depén
Cr» cr- .

on coordinate along the axis of the pipeline. Tigtr

1 RT 0Z sides of these equations can be expressed astderiva
4=C, {W‘?{Z‘ p[a_pj }}“L of the compressibility of gas pressure, and tempega
PPer T can be explicitly represented by the equation efdtate
RZT{ 97 2 of natural gas (including high and ultra-high press).
+ Z+T(—J } =0, Information on the coefficients of heat transferdan
p

p2

oT
where we find the value of the critical velocity:

hydraulic resistance, as well as the external teatpee
and environmental properties is also required.
34
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Po3paxyHok npodiniB razonpoBoAiB 3 BUCOKMM ab0 HaABUCOKMM TUCKOM
y CTauioHapHOMY peXumi

M.B.Jlyp' e

Pociticoxuii deporcasnuii ynisepcumem naghmu i easy imeni .M. I'ybkina;
Jlenincoxutl npocnexm, 65, Mockea, 119991 Pociticbxa @edepayis

Po3risigatoThest ra3o0npoBoAN, YMOBY POOOTH SIKUX 3HAYHO BiJIPI3HSIOTHCS BiJl YMOB O1NIBIIICTG iCHYIOUHX cHcTeM. bpammcs
JO yBarM Ta30NpPOBOAM 3 BEJIMKOK PI3HUICI Y BHCOTi, M0 MpamoiTh 3a BHcOKUX (5-15 MIla) i HaaBHCOKHX
(mo 25-35MITa) Tuckis. Ilepiu 3a Bce, pO3IIIsAAIOTHCS IIMOUHHI ra300POBO/IH, L0 A0JIAK0TH BUCOKI nepeBainy. HaBeneHo Teopito
1 aJITOPUTM PO3PaXYHKY CTAIllOHAPHUX PEKHUMIB TAKUX ra30MPOBOIIB.

KutouoBi cioBa: eucokutl i naosucokuil muck, eazonpogio “ Iliedennuii nomix”, ougpepenyianvie piensnis, Koegiyienm
Lcoyna-Tomcona, npoghine 2azonposody, Pi6HAHHA CMAHY, YUCETbHULL AT2OPUMM.
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