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The practice of drilling in Ukraine and abroad 
shows that many wells have places where inclination 
and horizontal angles change; specialists call them 
“abrupt bend” or “dog-legs” [1–5]. The tendency and 
intensity of angles change at these places do not 
represent intermediate tendency and intensity of change 
of well angles. Therefore “dog-legs” can be at 
rectilinear and curvilinear places of wells. 

A. Lubinskyi and H. Woods were the first to 
research this effect [6]. The scientists described the 
reasons of “dog-legs” formation. A. Lubinskyi and H. 
Woods specified the basic reasons. They are an abrupt 
change of bit load and characteristics of geological 
materials, esp. the change of inclination angle of 
adjacent stratums (Fig. 1). 

The authors of a research paper [7] write that the 
basic reason of “dog-legs” forming is also rotation of 
stem assembly around its rotation axis. 

But “dog-legs” provoke additional deformation of 
a drill string, indentation of box-and-pin joints and pipes 
body to the side of a hole [6]. This effect results in 
increase of normal stresses of arch in cross sections of 
drill pipes; fast deterioration of box-and-pin joints and 
pipes body; formation of a ditch on side of a hole; 
deterioration of boring casin, which leads to 
deformation in operation period [6]. Besides, “dog-legs” 
provoke complications at extraction of oil and gas [6]. 

The authors of the research paper [6] recommend 
to avoid the presence of “dog-legs” with the maximal 

degree of crookedness 1.65 grad/10 m in vertical and 
directionally drilled wells for the “abrupt bend” control. 
But A. Lubinskyi and H. Woods point out that 
admissible degree of crookedness of “abrupt bend” 
depends on the distance between “dog-legs” and the 
hole bottom, diameters of a well, drill pipes, case pipes, 
oil-well tubing and rods. The influence of these factors 
on the maximal degree of crookedness will be clearer 
after additional theoretical researches and accumulation 
of industrial data. 

Therefore, the aim of the work is to define the 
stress-strain state of a drill, which is in a “dog-leg”, 
when inclination and horizontal angles change, using 
analytical method.  

We study a 3D axis of a wellbore, which is set 
discretely during the drillhole survey. Usually we get m 
points in this case. For each point, there are set the 
depth al і, an inclination angle αі and a horizontal angle γі  
(і = 1…m). After the processing of final results we get 
the absolute depth – h1i, horizontal displacement along 
“South – North” axes – h2i and horizontal displacement 
along “West – East” axes – h3i. 

We also define coordinates of the points for 
accounting the movement restrictions between drill 
string axis and well axis. We call these points as the 
“ top side” and the “lower side” of the hole. 

Let’s assume that Y is any point of а drillhole 
survey (Fig. 2). We draw a tangent to the well axis in 
this point. The angle between the tangential and vertical 
lines is marked as α. The angle between the plan of the 
tangent and X2 axis is marked as γ. 

Consequently, the angles between the vertical and 
projection of the tangential line on plans Х10Х2 and 
Х10Х3 and are equal to 

( ),costanarctan12 γαα =  

( ).sintanarctan13 γαα =  
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We also define non-dimensional coordinates of 
points at the “top side” and the “lower side” of a hole in 
a plane Х1OХ2 (Fig. 3). 

The result is the following: 
,sin 121 αadmr=∆  

.cos 122 αadmr=∆  

The variable admr  is a non-dimensional value of a 

radial clearance and it is defined by the formula 

,
2 b

adm l

dD
r

−=
 

where D and d are external and internal diameters of a 
drill string (availability of box-and-pin joint isn’t taken 
into consideration in this formula and the following 
calculations, that is why the value of d equals the 
external diameter of a drill pipe body). 

The length of an elastic beam lb for modeling a 
hole interval with a “dog-leg” is 

,12 kakab lll −=
 

where alk1, alk2, k1, k2 are the depths and the order 
numbers of drillhole survey points, which correspond to 
the beginning and the ending of a hole interval under 
investigation. 
  Therefore, we can write down the coordinates 
of the points  

[ ]2211 , ∆+∆− xx  – top side, 

[ ]2211 , ∆−∆+ xx  – lower side. 

Here 
( ) ,1111 bk lhhx −=  

( ) ,1222 bk lhhx −=
 

where h1k1, h2k1 are the absolute depth and horizontal 
displacement along “South – North” axes for the  point 
at the beginning of  a hole interval under investigation. 

We can apply an analogical idea for the plane 
X1OX3. As a result 

.cos 133 αadmr=∆
 

Coordinates of the point of “top side” and “lower 
side” are 

 

Figure 1 –  “Dog-leg” of a well 
 

  

Figure 2 – An inclination angle αі and  
a horizontal angle γі for point Y  

Figure 3 – Geometrical plotting for defining the coordinates 
of points at the “top side” and the “ lower side” of a hole  
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[ ]3311 , ∆+∆− xx  – top side, 

[ ]3311 , ∆−∆+ xx  – lower side. 

As in the previous case 
( ) ,1333 bk lhhx −=  

where h3k1 is a horizontal displacement along  
“West – East” axes for the point at the beginning of a 
hole interval, which is examined. 

Now we define coordinates of points of hole sides 
for the plane Х2OХ3. By analogy to Fig. 3 we have 

,sin23 γadmr=∆  

.cos32 γadmr=∆  

Therefore, 
[ ]232323 , ∆+∆− xx  – right side, 

[ ]232323 , ∆−∆+ xx  – left side. 

Elastic line of a drill string is a set of points with 
coordinates [ε+ux1(ε), ux2(ε), ux3(ε)], ε =0..1, because the 
stress-strain state is analyzed by the numerical method. 
As a result we can write the conditions that the distance 
between a drill column and a hole side in this point is 
within the radial clearance (see Table 1). 

Table 1 – Conditions for defining a drill column 
position in a well bore 

Conditions Plane 
х1 – ∆1 ≤ ε+ux1(ε) ≤ х1 + ∆1 
х2 – ∆2 ≤ ux2(ε) ≤ х2 + ∆2 

Х10Х2 

х1 – ∆1 ≤ ε+ux1(ε) ≤ х1 + ∆1 
х3 – ∆3 ≤ ux3(ε) ≤ х3 + ∆3 

Х10Х3 

х2 – ∆23 ≤ ux2(ε) ≤ х2 + ∆23 

х3 – ∆32 ≤ ux3(ε) ≤ х3 + ∆32 
Х20Х3 

 
If conditions (see Table 1) are true, the distance 

between well axis and drill string axis is in the range of 
a radial clearance. 

For analysis of the stress-strain state of a drill 
string we can simulate it by a flexible beam [8], for 
which the system of vector equations of equilibrium is 
the following [9] 

,0=+×+ PQ
Q χχχχ
εd

d
                      (1) 

,01 =+×+×+ TQM
M

e
d

d �χχχχ
ε

                (2) 

( ),)1(
0χχχχχχχχ −= AM                         (3) 

,011
02 =−+ − MАL

dε

d
L )(χχχχϑϑϑϑ

                (4) 

( ) ,01 331221111 =++−+×+ eeeu
u

lll
dε

d χχχχ       (5) 

where Q  and M  are vectors of internal forces and 

moments; ε is a non-dimentional coordinate; P , T  are 
vectors of external forces and moments; χχχχ , χχχχ (1)

0 are 

vectors of current and initial curvature of beam; 1e , 2e , 

3e  are unit vectors of moving coordinate system (it 

moves the system of coordinate with axles, the direction 
of which coincides with the direction of basic beam 
axles of inertia); А is a matrix of the beam stiffness;  
L, L2 are transformation matrixes between vector bases; 
ϑϑϑϑ  is a vector of rotation angle of moving coordinate 

system relatively to its initial position; u  is a displace-
ment vector; l11, l21, l31 are elements of the matrix L. 

The vectors P  and T  are defined by the formulas 

( ),
1

)(∑
=

−+=
n

i
i

i εεδPqP  

( ),
1

)(∑
=

−+=
ρ

υ
υ

υ εεδTT µµµµ  

where q is the vector of distribute force; P(i) is the vector 
of force; µµµµ is the vector of a distributed moment; T(υ) is 
the vector of a moment; εі, ευ are curvilinear coordinates 
of points where vectors are affixed. 

For the practical implementation the system  
(1) – (5) can be projected on the axes of the moving 
coordinate system [9]. For this purpose we examine the 
components of external forces and moments vectors in 
details. 

Among the distributed forces which influence a 
flexible beam we examine the equivalent distributed 
force of a drill string weight in a drilling agent qx1 (see 
Fig. 4). This force is always directed vertically 
downward parallel to the axes 0Х1. That is why its 
projections on the moving coordinate system axles equal 

,111 1
lqq х=  ,212 1

lqq х=  .313 1
lqq х=  

 
Figure 4 – Simulation of a drill string by a flexible 

beam 
 
We simulate reactions between sides of a well and 

a drill string in the form of the centered forces Px2
(і) and 

Px3
(і). These forces are parallel to axles 0X2 and 0X3 of a 

fixed coordinate system (see Fig. 4). Their projections 
on moving coordinate system axles are the following 
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The values l12, l13, l22, l23, l32 and l33 are 
components of the matrix L. 

Well side reactions P2
(1), P3

(1) and the axial force 
Р1

(1) in point ε = 1 (see Fig. 4) are simulated by the 
moving forces, which are in boundary conditions 
according to recommendations [9]. 

We assume that distributed moments do not 
influence a drill string. Therefore, 

.0=µµµµ  

A reactive torsional moment, which occurs in a 
drill string, is simulated by the torsional moment T1

(1), 
which influences a flexible beam bottom (see Fig. 4). 
This moment is also in boundary conditions [9]. 

We assume that the top (ε = 0) ending of a flexible 
beam is fixed and the bottom one (ε = 1) is free. 
Therefore, the boundary conditions for solving the 
system of vector equations of equilibrium (1) – (5) are 
the following 

( ) ,001 =u  ( ) ,002 =u  ( ) ,003 =u   

( ) ,0 01 γϑ =  ( ) ,002 =ϑ  ( ) ,003 =ϑ  

( ) ( ),1 1
11 PQ =  ( ) ( ) ,1 1

22 PQ =  ( ) ( ),1 1
33 PQ =   

( ) ( ),1 1
11 TM =  ( ) ,012 =M  ( ) ,013 =M  

were ( )εiu , ( )εiQ , ( )εiM  are the projections of a 

displacement vector, cross-axis force and a bending 
moment on axes of a moving coordinate system; γ0 is the 
initial value of a rotary angle; i = 1, 2, 3. 

In order to compare an elastic line of a flexible 
beam with a well axis we define the following 
projections of a displacement vector on a fixed 
coordinate system  

( ) ( ) ( ) ( ),3312211111
εεεε ulululux ++=  

( ) ( ) ( ) ( ),3322221122
εεεε ulululux ++=  

( ) ( ) ( ) ( ).3332231133
εεεε ulululux ++=  

The sum of concentrated forces Px2
(1), Px2

(2), 
Px2

(3),…, Px2
(n), Px3

(1), Px3
(2), Px3

(3),…, Px3
(n), their values 

and points of application are defined by the following 
algorithm. Using the results of a drillhole survey there is 
chosen a potentially dangerous area of a well. Usually 
this is an interval with the greater change of inclination 
and horizontal angles. Points at the beginning and the 
ending of a "dog-leg" are fixed. Then the middle point 
of a "dog-leg" is put. Then the top of a flexible beam is 
fixed at the point directly over the middle point. This 
point is called a top point. The length of a drill string is 
chosen in the way that its bottom reaches the point, 
which is under the middle point. This point is called a 
bottom point. This length is equal to the distance 
between the top and the bottom points along the well 
axis. 

Consequently, the sequence of calculation is the 
following. We assume that the distances between 
curvilinear coordinates ε1, ε2, ε3,..., εn along the well axis 
are known and constant. 

Two forces Px2
(1) and Px3

(1) are affixed to point ε1. 
The values of these forces change in a predetermined 
range. Now we solve the equations (1) – (5) and define 
the function projections of an elastic axis of a flexible 
beam for each plane Х10Х2, Х10Х3 and Х20Х3. If three 

projections exist simultaneously, each point of which is 
under the conditions from Table 1, we calculate the 
potential energy of bending by the formula 

( )
,

2

3

2 0
∑ ∫
=

=
i

l
bi dl

EI

lM
U

b

                          (6) 

where EI is the stiffness of the drill string bending. 
Then two forces Px2

(2) та Px3
(2) are applied to the 

point ε2. The calculation, given above, is repeated. A 
similar algorithm is implemented for all curvilinear 
coordinates. 

The next step is to load the flexible beam 
simultaneously with two pairs of forces. To begin with, 
the first pair of forces Px2

(1) and Px3
(1) is applied to the 

point ε1, the second – to the point ε2 . By varying the 
values of these forces in a given range we obtain 
solutions of vector differential equations of flexible 
beam equilibrium. As it was mentioned before, the 
potential energy of the beam deformation is calculated 
for solutions that meet the conditions of the Table 1. 

Further, the position of the first pair of forces 
remains unchanged, and the second pair of forces is 
applied to the point ε3. All the necessary calculations are 
made, followed by the movement of the second pair of 
forces to the point with curvilinear coordinates ε4. The 
calculation is made again. This process is repeated until 
the second pair of forces is applied to all points except 
ε1.  

Then the first pair of forces is applied in turn to 
point ε2, and the second pair – to each point except for 
ε2. All the necessary calculations are made for each 
combination of reciprocal positions of forces pairs. 
Then the first pair of forces is concentrated in points ε3, 
ε4,..., εn in turn. However, as in the previous case, the 
calculation is made for all the points of the second pair 
of forces except for the points, where the first pair 
exists. In general, the calculation is repeated until the 
number of forces that are simultaneously applied to a 
flexible beam is equal to n. Of all the possible positions 
of an elastic axis of a flexible beam we choose the one 
for which the potential energy of bending is minimal.  

Then the flexible beam length lb increases. For this 
purpose, its top moves to one drillhole survey point 
towards the wellhead, and its bottom – toward the 
bottom hole. The calculation is made according to the 
given above algorithm. Having made the calculations 
we obtain the next position of an elastic axis.  

The length of a beam increases until the 
dependence of U(lb)  acquires an explicit minimum. The 
function of an elastic axis, which corresponds to this 
minimum, is the desired position of a drill string in the 
“dog-leg”.  

In practice this algorithm is calculated in 
“Waterloo Maple.”  

Now we shall consider the way of applying this 
methodology. According to the drillhole survey of the 
well № 10 in Odessa oilfield there is found a “dog-leg” 
with a sharp change in zenith and azimuth angles in 
curvilinear depth interval of 990–1,065 m.  

We analyze the stress-strain state of a drill string 
with outer diameter of 127 mm and inner diameter of 
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111 mm in this area. The diameter of the hole in a  
“dog-leg” is 219 mm.  

Using the above algorithm we obtain the function 
of an elastic axis of a drill string. Its projections on the 
planes X1ОX2, X1ОX3 and X2ОX3 are shown in  
Figures 5, 6 and 7 respectively. 

The view of an elastic axis of a drill string in a 3D 
coordinate system is shown in Figure 8. 

The number, values and curvilinear coordinates of 
forces, which show the reactions of borehole walls, are 
shown in Table 2.  

The length of a flexible beam that satisfies the 
criterion of the minimum potential energy of bending 
(6) equals lb = 75 m 

 The diagram of the change of normal stresses of 
bending in the cross section of a drill string is shown in 
Figures 9 and 10. 

So we can see that the “dog-leg” in this well 
causes bending strains around principal axes of inertia 
of a drill string cross-section that are equal to 65 MPa 
and 54 MPa. 

 
Figure 5 – The projection of an elastic axis of a drill string in a “dog leg” of the well № 10 in Odessa oilfield 

on the plane Х1ОХ2 
 

 
Figure 6 – The projection of an elastic axis of a drill string in a “dog leg” of the well № 10 in Odessa oilfield 

on the plane Х1ОХ3 
 

  
Figure 7 – The projection of an elastic axis  

of a drill string in a “dog leg”  
of the well № 10 in Odessa oilfield on the plane Х2ОХ3 

Figure 8 – An elastic axis of a drill string  
in a 3D coordinate system  
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We also define bending strains in this section of 
the well without taking into account a “dog-leg”. The 
results of a drillhole survey are the following: the length 
of a well curvilinear section lc = 180 m; the zenith and 
azimuth angles at the beginning of the interval αs = 00, 
γs = 240; the zenith and azimuth angles at the end of 
interval αe = 650, γe = 1200. For calculating the strains 
we use the formulas mentioned in the research paper 
[10]. Therefore, the change of a spatial angle is 

(
( )) .24sinsinsin

coscos
180

°=−+

+°=∆

sees

esQ

γγαα

αα
π  

Radius of the well curvature equals 

.m8.429
3.57 =

∆
=

Q

l
R c  

Therefore bending strains of a drill string cross-
section are the following 

.Pа1031.0
2

8⋅==
R

dE
bσ                  (7) 

Thus, a “dog-leg” of a hole axis causes the fact 
that the strain in the cross section of a drill string is 
twice greater than the value, calculated by the formula 
(7). It should also be noted that, based on the system  
(1) – (5), the offered method has a number of features, 
including:  

1) curvilinear coordinates are taken as an argument 
of an elastic axis of a drill string. It enables us to 
analyze the stress-strain state when the movement of an 
elastic axis relatively the initial position is 
commensurate with the length of the studied column. 
This may be appropriate when analyzing “dog-legs” in 
the curvilinear sections of wells;  

2) the directions of vectors of some external loads 
are chosen depending on the specifics of their actions in 
real conditions. For example, a vector of gravity of a 
drill string is set by one projection in a fixed coordinate 
system and is directed vertically downwards along the 
axis Х1. Therefore, when analyzing the stress-strain 
state of the column, the values of the vector’s 
projections on the moving coordinate system can vary 
depending on the position of an elastic axis. This fact 
enables us to consider the influence of gravity on 
deformation of drill pipes in both the axial and radial 
directions. The vectors of external axial force and 
torsional moment, applied to the lower end of the drill 
string, however, are set in projections of a moving 
coordinate system. This makes it possible to preserve 
their directions relatively to the cross-section of drill 
pipes regardless the deformation of the elastic axis of 
the column;  

3)  a view of a function of the elastic axis is not set 
first, it is the result of the numerical solution of 
differential equations of equilibrium.  

Table 2 – Values and curvilinear coordinates of forces that show  reactions of borehole walls  

Forces parallel to axis х2 
Forces values, N 0 -1,660 3,310 0 -2,450 700 
Points curvilinear coordinates,  
where forces are apply 

0.50 0.67 0.74 0.75 0.86 1 

Forces parallel to axis х3 
Forces values, N 370 0 0 -770 0 410 
Points curvilinear coordinates,  
where forces are apply 

0.50 0.67 0.74 0.75 0.86 1 

 
Figure 9 – The diagram of the change of normal stresses of bending around axis е3 

 
Figure 10 – The diagram of the change of normal stresses of bending around axis е2  
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From the above mentioned we can conclude on the 
feasibility of additional research of stress-strain state of 
the drill string in the place of a well with a sharp change 
in inclination and horizontal angles. 
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УДК 622.245.23 

Напружено-деформований стан бурильної колони  
на ділянках свердловин з “різкими перегинами” 

Р.В.Рачкевич* 

Івано-Франківський національний технічний університет нафти і газу;  
вул. Карпатська, 15, м. Івано-Франківськ, 76019, Україна 

Бурильна колона змодельована гнучким стержнем, що зазнає просторового згину під дією прикладених 
навантажень. Для аналізу напружено-деформованого стану використано систему векторних 
диференціальних рівнянь рівноваги. Математична модель враховує власну вагу та жорсткість бурильної 
колони, осьову силу, крутний момент і реакції стінки свердловини. 

На основі розробленого методу проаналізовано напружено-деформований стан бурильної колони в 
“різкому перегині” свердловини за реальних умов експлуатації. Одержано функцію пружної осі бурильної 
колони в тривимірній системі координат. Побудовано графіки нормальних напружень згину навколо 
головних осей інерції поперечного перерізу бурильної колони та відзначено, що наявність “різкого 
перегину” збільшує величину цих напружень у два рази порівняно із величиною, яка б мала місце за 
відсутності “різкого перегину” свердловини. 

 
Ключові слова: бурильна колона, гнучкий стержень, напружено-деформований стан, нормальні 

напруження, просторова пружна вісь, “ різкий перегин”. 
 


