On Transmission Problem for Berger Plates on an Elastic Base

M. Potomkin
Mathematics Division, B. Verkin Institute for Low Temperature Physics and Engineering National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkiv, 61103, Ukraine

E-mail:mika_potemkin@mail.ru
Received November 5, 2010

A nonlinear transmission problem for a Berger plate on an elastic base is studied. The plate consists of thermoelastic and isothermal parts. The problem generates a dynamical system in a suitable Hilbert space. In the paper the existence of a compact global attractor is proved.

Key words: transmission problem, thermoelasticity, dynamical systems, attractors.

Mathematics Subject Classification 2000: 35B41, 35B35.

1. Introduction

Let Ω, Ω_{1} and Ω_{2} be bounded open sets in \mathbb{R}^{2} with smooth boundaries Γ_{1}, $\Gamma_{1} \cup \Gamma_{0}$ and Γ_{0}, respectively, such that $\Omega=\Omega_{1} \cup \overline{\Omega_{2}}$ and $\Omega_{1} \cap \Omega_{2}=\emptyset$. An example is when Ω_{2} is completely surrounded by Ω_{1}. In what follows below ν denotes the outward vector on Γ_{1} and Γ_{0}. Also we assume that Ω_{2} is a star-shaped domain, i.e., the following condition holds

$$
\begin{equation*}
\left(\mathbf{x}-\mathbf{x}_{0}\right) \cdot \nu(\mathbf{x}) \geq 0 \text { on } \Gamma_{0} \text { for some } \mathbf{x}_{0} \in \mathbb{R}^{2} \tag{1.1}
\end{equation*}
$$

We study an asymptotic behavior of the following system:

$$
\begin{align*}
\rho_{1} u_{t t}+\beta_{1} \Delta^{2} u+\mu \Delta \theta+F_{1}(u, v)=0 & \text { in } \Omega_{1} \times \mathbb{R}^{+} \tag{1.2}\\
\rho_{0} \theta_{t}-\beta_{0} \Delta \theta-\mu \Delta u_{t}=0 & \text { in } \Omega_{1} \times \mathbb{R}^{+} \tag{1.3}\\
\rho_{2} v_{t t}+\beta_{2} \Delta^{2} v+F_{2}(u, v)=0 & \text { in } \Omega_{2} \times \mathbb{R}^{+} \tag{1.4}
\end{align*}
$$

Boundary conditions imposed on u along Γ_{1} are clamped

$$
\begin{equation*}
u=\frac{\partial u}{\partial \nu}=0 \text { on } \Gamma_{1} \times \mathbb{R}^{+} \tag{1.5}
\end{equation*}
$$

(C) M. Potomkin, 2011

We assume that θ satisfies Newton's law of cooling (with the coefficient $\lambda \geq 0$) through the Γ_{1} and θ vanishes along Γ_{0}

$$
\begin{equation*}
\theta=0 \text { on } \Gamma_{0} \times \mathbb{R}^{+}, \quad \frac{\partial \theta}{\partial \nu}+\lambda \theta=0 \text { on } \Gamma_{1} \times \mathbb{R}^{+} . \tag{1.6}
\end{equation*}
$$

Also we impose the following boundary conditions along Γ_{0} :

$$
\begin{equation*}
u=v, \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}, \beta_{1} \Delta u=\beta_{2} \Delta v, \quad \beta_{1} \frac{\partial \Delta u}{\partial \nu}+\mu \frac{\partial \theta}{\partial \nu}=\beta_{2} \frac{\partial \Delta v}{\partial \nu} \text { on } \Gamma_{0} \times \mathbb{R}^{+} . \tag{1.7}
\end{equation*}
$$

Real parameters ρ_{i}, β_{i} and μ are strictly positive and the relations

$$
\begin{equation*}
\rho_{1} \geq \rho_{2} \text { and } \beta_{1} \leq \beta_{2} \tag{1.8}
\end{equation*}
$$

hold. Nonlinearities are given by

$$
\begin{aligned}
& F_{1}(u, v)=-M\left(\|\nabla u\|_{\Omega_{1}}^{2}+\|\nabla v\|_{\Omega_{2}}^{2}\right) \Delta u+a_{1}(\mathbf{x}) u|u|^{p-1}+g_{1}(\mathbf{x}, u), \\
& F_{2}(u, v)=-M\left(\|\nabla u\|_{\Omega_{1}}^{2}+\|\nabla v\|_{\Omega_{2}}^{2}\right) \Delta v+a_{2}(\mathbf{x}) v|v|^{p-1}+g_{2}(\mathbf{x}, v),
\end{aligned}
$$

where $M(s)=s^{1+\alpha}$ with $\alpha>0, a_{1}(\mathbf{x}) \in L^{\infty}\left(\Omega_{1}\right)$ and $a_{2}(\mathbf{x}) \in L^{\infty}\left(\Omega_{2}\right)$. We assume that the following condition holds:

$$
\text { either } a(\mathbf{x}) \geq c_{0} \forall \mathbf{x} \in \Omega \text { or } 2(\alpha+2)>p+1, p \geq 1
$$

Here $a=\left\{a_{1}, a_{2}\right\}$, and $c_{0}>0$ is a small number. The functions $g_{1}(\mathbf{x}, u)$ and $g_{2}(\mathbf{x}, v)$ are scalar and satisfy the growth condition for some $\varepsilon_{0}>0$ and any $\mathbf{x}_{i} \in \Omega_{i}$

$$
\left|\frac{\partial}{\partial u} g_{1}\left(\mathbf{x}_{1}, u\right)\right|+\left|\frac{\partial}{\partial v} g_{2}\left(\mathbf{x}_{2}, v\right)\right| \leq C\left(1+|u|^{\max \left\{0, p-1-\varepsilon_{0}\right\}}+|v|^{\max \left\{0, p-1-\varepsilon_{0}\right\}}\right),
$$

and, for the sake of simplicity, we assume that $g_{2}(\mathbf{x}, 0)=0$.
The plate equations with nonlocal nonlinearity were introduced in [2] and their asymptotic behavior was deeply studied in [4] and [5]. Different models with partial damping were considered in [3, 7] (see also the references therein). Exponential stability of linear equations (1.2)-(1.7) $\left(F_{i}=0\right)$ was obtained in [12]. In [11] we proved the existence of a compact global attractor for the case when $\alpha=0$ and $a_{i}=g_{i}=0$.

Our main result is to prove the existence of a compact global attractor (Theorem 3.1). To obtain the result we need to overcome two difficulties. The first is to show that the corresponding energy of the system is a strict Lyapunov function, here we use the observability estimate from [1]. The second is to prove asymptotic smoothness. Here the idea of the stabilizability estimates from [5] (see also [6]) is used.

2. Preliminaries

Below the equality $w=\{u, v\}$ denotes that $w(\mathbf{x})=u(\mathbf{x})$ if $\mathbf{x} \in \Omega_{1}$ and $w(\mathbf{x})=v(\mathbf{x})$ if $\mathbf{x} \in \Omega_{2}$. We introduce a Hilbert space H_{D}^{1} as a space of such function $\phi \in H^{1}\left(\Omega_{1}\right)$ that $\phi=0$ on Γ_{0}. The space H_{D}^{1} is equipped with the following inner product:

$$
(w, \phi)_{H_{D}^{1}}:=\int_{\Omega_{1}} \beta_{0} \nabla w \cdot \nabla \phi \mathrm{~d} \mathbf{x}+\int_{\Gamma_{1}} \beta_{0} \lambda w \phi \mathrm{~d} \mathbf{x} .
$$

Denote $\mathcal{H}=H_{0}^{2}(\Omega) \times L^{2}(\Omega) \times L^{2}\left(\Omega_{1}\right)$. This space plays the role of a phase space for the dynamical system to be introduced below. The following set, which is densely embedded in \mathcal{H}, is needed for the statement about strong solutions:

$$
D_{0}=\left\{\begin{array}{c}
w \in\left[H_{0}^{2}(\Omega) \cap\left(H^{4}\left(\Omega_{1}\right) \times H^{4}\left(\Omega_{2}\right)\right)\right] \times H_{0}^{2}(\Omega) \times\left[H^{2}\left(\Omega_{1}\right) \cap H_{D}^{1}\right]: \\
\beta_{1} \Delta w_{1}=\beta_{2} \Delta w_{2} \text { and } \beta_{1} \frac{\partial \Delta w_{1}}{\partial \nu}+\mu \frac{\partial \theta}{\partial \nu}=\beta_{2} \frac{\partial \Delta w_{2}}{\partial \nu} \text { on } \Gamma_{0}, \\
\frac{\partial w_{5}}{\partial \nu}+\lambda w_{5}=0 \text { on } \Gamma_{1}
\end{array}\right\} .
$$

We introduce the potential
$\Pi(w)=\frac{1}{2(\alpha+2)}\|\nabla w\|_{L^{2}(\Omega)}^{2(\alpha+2)}+\frac{1}{p+1} \int_{\Omega} a(\mathbf{x})|w(\mathbf{x})|^{p+1} d \mathbf{x}+\int_{\Omega} \int_{0}^{w(\mathbf{x})} g(\mathbf{x}, s) d s d \mathbf{x}$, where $a=\left\{a_{1}, a_{2}\right\}$ and $g=\left\{g_{1}, g_{2}\right\}$. We have that $\Pi^{\prime}(w)=\left\{F_{1}(w), F_{2}(w)\right\}$.

Energy functional (or Lyapunov function) $\mathcal{E}: \mathcal{H} \longrightarrow \mathbb{R}$ is defined for an argument $w=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)\left(\right.$ here $\left\{w_{1}, w_{2}\right\} \in H_{0}^{2}(\Omega),\left\{w_{3}, w_{4}\right\} \in L^{2}(\Omega)$ and $\left.w_{5} \in L^{2}(\Omega)\right)$ as follows:

$$
\begin{align*}
& \mathcal{E}(w)=\frac{1}{2}\left[\int_{\Omega_{1}} \beta_{1}\left|\Delta w_{1}\right|^{2}+\rho_{1}\left|w_{3}\right|^{2}+\rho_{0}\left|w_{5}\right|^{2} d \mathbf{x}\right. \\
& \left.\quad+\int_{\Omega_{2}} \beta_{2}\left|\Delta w_{2}\right|^{2}+\rho_{2}\left|w_{4}\right|^{2} d \mathbf{x}+2 \Pi\left(w_{1}, w_{2}\right)\right] . \tag{2.1}
\end{align*}
$$

Theorem 2.1. Next statements hold true:
(i) For any initial $w_{0} \in \mathcal{H}$ and $T>0$ there exists a unique mild solution $w(t) \in C([0, T] ; \mathcal{H})$. Moreover, it satisfies the energy equality

$$
\begin{equation*}
\mathcal{E}(w(T))-\mathcal{E}(w(t))=-\int_{t}^{T} \int_{\Omega_{1}} \beta_{0}\left|\nabla w_{5}\right|^{2} d \mathbf{x} d \tau-\int_{t}^{T} \int_{\Gamma_{1}} \beta_{0} \lambda\left|w_{5}\right|^{2} d \Gamma d \tau \tag{2.2}
\end{equation*}
$$

for all $0 \leq t \leq T$. If one set $S(t) w_{0}=w(t)$, then $(\mathcal{H}, S(t))$ is a continuous dynamical system.
(ii) If $w_{0} \in D_{0}$, then the corresponding mild solution is strong.

We take the same definitions of mild and strong solutions as in [10, Ch. 4]. To prove this theorem we use the standard methods from the theory of semigroups of linear operators and their perturbations, see [10]. For some details for the similar model we refer to [11].

3. Main Result

Our main result is the following theorem:
Theorem 3.1. Let (1.1) and (1.8) hold. Then $(\mathcal{H}, S(t))$ possesses a compact global attractor.

To prove this theorem, we have to prove that the energy \mathcal{E} is a strict Lyapunov function for ($\mathcal{H}, S(t)$) (see Sec. 4) and ($\mathcal{H}, S(t)$) is asymptotically smooth (see Sec. 5) For how to prove the existence of a compact global attractor, taking into consideration the results of Secs. 4 and 5, we refer to [5, Cor. 2.29].

4. Strict Lyapunov Function

Proposition 4.1. If $\mathcal{E}(S(T) U)=\mathcal{E}(U)$ for any $T>0$, then $S(t) U=U$ for any $t \geq 0$.

In compare with [11], our model is more complicated because of the presence of the scalar nonlinearity and the assertion is stronger since, in contrast with the proposition above, Proposition 4.13 in [11] requires $\mathcal{E}(S(T) U)=\mathcal{E}(U)$ to hold for any $T \in \mathbb{R}$. To prove Proposition 4.1 we use the Carleman-type inequalities formulated in the following auxiliary lemma (see [1, Th. 3.4]):

Lemma 4.2. Let w be a solution to $w_{t t}+\Delta^{2} w=f$ in Ω_{2} and

$$
\left.w\right|_{\Gamma_{0}}=\left.\frac{\partial w}{\partial \nu}\right|_{\Gamma_{0}}=\left.\frac{\partial^{2} w}{\partial \nu^{2}}\right|_{\Gamma_{0}}=\left.\frac{\partial^{3} w}{\partial \nu^{3}}\right|_{\Gamma_{0}}=0 .
$$

Then there exists such $\tau_{0}>0$ that for all $\tau>\tau_{0}$ there holds

$$
\begin{equation*}
\left\|e^{\tau \phi} w\right\|_{2, \tilde{\tau}}^{2} \leq C\left\|e^{\tau \phi} \tilde{\tau}^{-1 / 2} f\right\|, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{gathered}
\left\|e^{\tau \phi} w\right\|_{2, \tilde{\tau}}^{2}:=\int_{0}^{T} \int_{\Omega_{2}} \tilde{\tau}^{4}\left|e^{\tau \phi} w\right|^{2}+\tilde{\tau}^{2}\left|\nabla\left(e^{\tau \phi} w\right)\right|^{2}+\left|\partial_{t}\left(e^{\tau \phi} w\right)\right|^{2}+\left|\Delta\left(e^{\tau \phi} w\right)\right|^{2} d \mathbf{x} d t \\
\tilde{\tau}=\tau g e^{\psi}, \psi(\mathbf{x})=|\mathbf{x}-\overline{\mathbf{x}}|^{2} \text { with } \overline{\mathbf{x}} \in \mathbb{R}^{2} \backslash \overline{\Omega_{2}}, g(t)=\frac{1}{t(T-t)} \text { and } \\
\phi(t, \mathbf{x})=g(t)\left(e^{\psi(\mathbf{x})}-2 e^{\left.\|\psi\|_{L^{\infty}\left(\Omega_{2}\right)}\right) .}\right.
\end{gathered}
$$

Proof of Proposition 4.1. Let us consider such $T>0$ and $U_{0} \in \mathcal{H}$ that $\mathcal{E}\left(S(T) U_{0}\right)=\mathcal{E}\left(U_{0}\right)$. Energy equality (2.2) implies that $\theta \equiv 0$, then equation (1.3) implies that $u_{t}=0$. Equation (1.2) implies that either $u \equiv 0$ for all $t \in[0, T]$ (case 1) or

$$
\begin{equation*}
M\left(\|\nabla u\|_{\Omega_{1}}^{2}+\|\nabla v\|_{\Omega_{2}}^{2}\right) \equiv M \tag{4.2}
\end{equation*}
$$

does not depend on t (case 2). Both cases are considered below.
Case 1. Let us assume $u \equiv 0$. Assume also that $\|\Delta v(t)\|_{\Omega_{2}}^{2}+\left\|v_{t}(t)\right\|_{\Omega_{2}}^{2} \leq r$. Then for any $t \in[0, T]$ and $\mathbf{x} \in \Omega_{2}$ we have

$$
\left|F_{2}(0, v)\right|^{2} \leq\left[\left|\|\nabla w\|_{\Omega_{2}}^{1+\alpha} \Delta v\right|+\left|\left|a_{2} \|_{L^{\infty}}\right| v\right|^{p-1}|v|+C(r)|v|\right]^{2} \leq C(r)\left[|\Delta v|^{2}+|v|^{2}\right]
$$

Using the following inequality that holds for any $t \in[0, T]$ and $\mathbf{x} \in \Omega_{2}$:

$$
\left|e^{\tau \phi} \Delta w\right|^{2} \leq\left|\Delta\left(e^{\tau \phi} w\right)\right|^{2}+C \tilde{\tau}^{2}\left|\nabla\left(e^{\tau \phi} w\right)\right|^{2}+C \tilde{\tau}^{4}\left|e^{\tau \phi} w\right|^{2},
$$

$\tilde{\tau}^{-1}<C / \tau, 1 \leq C \tilde{\tau}^{4}$ and (4.1) with $f=F_{2}(0, v)$, we finally get

$$
\left\|e^{\tau \phi} w\right\|_{2, \tilde{\tau}}^{2} \leq \frac{C(r)}{\tau}\left\|e^{\tau \phi} w\right\|_{2, \tilde{\tau}}^{2} .
$$

Choosing τ large enough we get the conclusion that $v \equiv 0$.
Case 2. Assume that $\|\nabla v\|_{\Omega_{2}}$ does not depend on t and (4.2) takes place. In this case we consider an application of (4.1) for $w_{h}(t)=v(t+h)-v(t)$ with some $h>0$, and

$$
\begin{aligned}
f & =F_{2}(u, v(t+h))-F_{2}(u, v(t)) \\
& =M \Delta w_{h}+a_{2}\left[\left|v(t+h) p^{p-1} v(t+h)-|v(t)|^{p-1} v(t)\right.\right. \\
& \left.+g_{2}(v(t+h))-g_{2}(v(t))\right] .
\end{aligned}
$$

Using the arguments as in case 1 , we obtain $w_{h}(t) \equiv 0$ and, hence, v does not depend on t.

5. Asymptotic Smoothness

The proof of the asymptotic smoothness is based on the method of compensated compactness function suggested in [8] and developed in [5] (see also [6]).

Let $\left(u^{1}(t), v^{1}(t), \theta^{1}(t)\right)$ and $\left(u^{2}(t), v^{2}(t), \theta^{2}(t)\right)$ be solutions to the problem (1.2)-(1.7) and assume that for any $t>0$ there exists $R>0$ such that

$$
\int_{\Omega_{1}} \rho_{1}\left|u_{t}^{i}\right|^{2}+\beta_{1}\left|\Delta u^{i}\right|^{2}+\rho_{0}\left|\theta^{i}\right|^{2} d \mathbf{x}+\int_{\Omega_{2}} \rho_{2}\left|v_{t}^{i}\right|^{2}+\beta_{2}\left|\Delta v^{i}\right|^{2} d \mathbf{x} \leq R^{2}
$$

Let $u(t)=u^{1}(t)-u^{2}(t), \quad v(t)=v^{1}(t)-v^{2}(t), \quad \theta(t)=\theta^{1}(t)-\theta^{2}(t)$. The triple $(u(t), v(t), \theta(t))$ satisfies boundary conditions (1.5)-(1.7) and the following system:

$$
\left\{\begin{array}{l}
\rho_{1} u_{t t}+\beta_{1} \Delta^{2} u+\mu \Delta \theta=G_{1}, \\
\rho_{0} \theta_{t}-\beta_{0} \Delta \theta-\mu \Delta u_{t}=0, \\
\rho_{2} v_{t t}+\beta_{2} \Delta^{2} v=G_{2} .
\end{array}\right.
$$

with $G_{1}(t)=F_{1}\left(u^{2}, v^{2}\right)-F_{1}\left(u^{1}, v^{1}\right)$ and $G_{2}(t)=F_{2}\left(u^{2}, v^{2}\right)-F_{2}\left(u^{1}, v^{1}\right)$.
Also we denote

$$
E(t)=\frac{1}{2} \int_{\Omega_{1}} \rho_{1}\left|u_{t}\right|^{2}+\beta_{1}|\Delta u|^{2}+\rho_{0}|\theta|^{2} d \mathbf{x}+\frac{1}{2} \int_{\Omega_{2}} \rho_{2}\left|v_{t}\right|^{2}+\beta_{2}|\Delta v|^{2} d \mathbf{x} .
$$

Proposition 5.1. Let (1.1) and (1.8) hold. There exists $k, C>0$ and a functional $R\left(u, v, u_{t}, v_{t}, \theta\right)$, continuous on \mathcal{H}, such that if

$$
R(t):=R\left(u(t), v(t), u_{t}(t), v_{t}(t), \theta(t)\right),
$$

then $|R(t)| \leq C E(t)$ and

$$
\frac{d}{d t} R(t) \leq-k E(t)+C\left[\int_{\Omega_{1}}|\nabla \theta|^{2} d \mathbf{x}+\int_{\Omega}|\{u, v\}|^{2}+\left|\Delta_{D}^{-1}\left\{\rho_{1} u_{t}, \rho_{2} v_{t}\right\}\right|^{2} d \mathbf{x}\right] .
$$

Our proof of Proposition 5.1 mostly follows the line of arguments given in [11]. We only give here the formula for R :

$$
R=J_{1}+\frac{\eta}{\beta_{1}}, J_{2}+\left(\frac{\mu}{2}-\eta C\right) J_{3}+\eta^{1 / 2} J_{4}
$$

with sufficiently small $\eta>0$ and J_{i} defined as follows:

$$
\begin{gathered}
J_{1}=-\int_{\Omega_{1}} \rho_{1} u_{t} w_{1} d \mathbf{x}-\int_{\Omega_{2}} \rho_{2} v_{t} w_{2} d \mathbf{x} \\
J_{2}=\int_{\Omega_{1}} \rho_{1} u_{t} h \cdot \nabla u d \mathbf{x}+\int_{\Omega_{2}} \rho_{2} v_{t} h \cdot \nabla v d \mathbf{x}, \quad J_{3}(t)=\int_{\Omega_{1}} \rho_{1} u_{t} \phi u d \mathbf{x} \\
J_{4}=\int_{\Omega_{1}} \rho_{1} u_{t} \psi m \cdot \nabla u d \mathbf{x}+\int_{\Omega_{2}} \rho_{2} v_{t} \psi m \cdot \nabla v d \mathbf{x}
\end{gathered}
$$

Here $\left\{w_{1}, w_{2}\right\}:=\Delta_{D}^{-1}\left\{\rho_{0} \phi_{1} \theta, 0\right\}$, where Δ_{D}^{-1} is an inverse Laplace operator with the Dirichlet boundary conditions on Γ_{1}, a vector field $h=\left(h_{1}, h_{2}\right) \in\left[C^{2}(\bar{\Omega})\right]^{2}$ satisfies $h(\mathbf{x})=-\nu(\mathbf{x})$ if $\mathbf{x} \in \Gamma_{1}, m(\mathbf{x})=\mathbf{x}-\mathbf{x}_{0}$, where \mathbf{x}_{0} is the same as in (1.1). Functions ϕ and ψ are scalar from $C^{2}(\bar{\Omega})$ and $\phi(\mathbf{x})=1$ if $\mathbf{x} \in \Omega_{1} \backslash U_{4 \delta}\left(\Gamma_{0}\right)$ and $\phi(\mathbf{x})=0$ if $\mathbf{x} \in U_{2 \delta}\left(\Gamma_{0}\right) \cap \Omega_{1} ; \psi(\mathbf{x})=1$ if $\mathbf{x} \in U_{4 \delta}\left(\Omega_{2}\right)$ and $\psi(\mathbf{x})=0$ if $\Omega_{1} \backslash U_{8 \delta}\left(\Omega_{2}\right)$. Number $\delta>0$ is chosen sufficiently small. The idea of such J_{i} was used by many authors (see, e.g., $[3,6,9,11,12]$ and the references therein).

Proposition 5.1 is a key step of the proof. We get the asymptotic smoothness using the arguments from [5, Ch. 3].

References

[1] P. Albano, Carleman Estimates for the Euler-Bernoulli Plate Operator. - Electronic Journal of Diff. Eq. 53 (2000), 1-13.
[2] M. Berger, A New Approach to the Large Deflection of Plate. - J. Appl. Mech. 22 (1955), 465-472.
[3] F. Bucci and D. Toundykov, Finite Dimensional Attractor for a Composite System of Wave/Plate Equations with Loclalised Damping. - Nonlinearity 23 (2010), 2271-2306.
[4] I.D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Acta, Kharkov, 2002. (Russian); Engl. transl.: Acta, Kharkov, 2002; http://www.emis.de/monographs/Chueshov/
[5] I.D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping. Memoirs of AMS, no. 912, Amer. Math. Soc., Providence, RI, 2008.
[6] I.D. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Springer, 2010.
[7] I.D. Chueshov, I. Lasiecka, and D. Toundykov, Long-Term Dynamics of Semilinear Wave Equation with Nonlinear Localized Interior Damping and a Source Term of Critical Exponent. - Discr. Cont. Dyn. Sys. 3 (2008), 459-510.
[8] A.K. Khanmamedov, Global Attractors for von Karman Equations with Nonlinear Dissipation. - J. Math. Anal. Appl. 318 (2006), 92-101.
[9] J. Lagnese, Boundary Stabilization of Thin Plates. SIAM Stud. Appl. Math. no. 10, SIAM, Philadelphia, PA, 1989.
[10] A. Pazy, Semigroups of Linear Operators and Applications to PDE. SpringerVerlag, New York, 1983.
[11] M. Potomkin, A Nonlinear Transmission Problem For a Compound Plate with Thermoelastic Part. available on arXiv.org 1003.3332
[12] J.E.M. Rivera and H.P. Oquendo, A Transmission Problem for Thermoelastic Plates. - Quarterly of Applied Mathematics 2 (2004), 273-293.

