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A nonlinear transmission problem for a Berger plate on an elastic base
is studied. The plate consists of thermoelastic and isothermal parts. The
problem generates a dynamical system in a suitable Hilbert space. In the
paper the existence of a compact global attractor is proved.
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1. Introduction

Let Ω, Ω1 and Ω2 be bounded open sets in R2 with smooth boundaries Γ1,
Γ1∪Γ0 and Γ0, respectively, such that Ω = Ω1∪Ω2 and Ω1∩Ω2 = ∅. An example
is when Ω2 is completely surrounded by Ω1. In what follows below ν denotes the
outward vector on Γ1 and Γ0. Also we assume that Ω2 is a star-shaped domain,
i.e., the following condition holds

(x− x0) · ν(x) ≥ 0 on Γ0 for some x0 ∈ R2. (1.1)

We study an asymptotic behavior of the following system:

ρ1utt + β1∆2u + µ∆θ + F1(u, v) = 0 in Ω1 × R+, (1.2)
ρ0θt − β0∆θ − µ∆ut = 0 in Ω1 × R+, (1.3)

ρ2vtt + β2∆2v + F2(u, v) = 0 in Ω2 × R+. (1.4)

Boundary conditions imposed on u along Γ1 are clamped

u =
∂u

∂ν
= 0 on Γ1 × R+. (1.5)
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We assume that θ satisfies Newton’s law of cooling (with the coefficient λ ≥ 0)
through the Γ1 and θ vanishes along Γ0

θ = 0 on Γ0 × R+,
∂θ

∂ν
+ λθ = 0 on Γ1 × R+. (1.6)

Also we impose the following boundary conditions along Γ0:

u = v,
∂u

∂ν
=

∂v

∂ν
, β1∆u = β2∆v, β1

∂∆u

∂ν
+µ

∂θ

∂ν
= β2

∂∆v

∂ν
on Γ0×R+. (1.7)

Real parameters ρi, βi and µ are strictly positive and the relations

ρ1 ≥ ρ2 and β1 ≤ β2 (1.8)

hold. Nonlinearities are given by

F1(u, v) = −M(||∇u||2Ω1
+ ||∇v||2Ω2

)∆u + a1(x)u|u|p−1 + g1(x, u),
F2(u, v) = −M(||∇u||2Ω1

+ ||∇v||2Ω2
)∆v + a2(x)v|v|p−1 + g2(x, v),

where M(s) = s1+α with α > 0, a1(x) ∈ L∞(Ω1) and a2(x) ∈ L∞(Ω2). We
assume that the following condition holds:

either a(x) ≥ c0 ∀x ∈ Ω or 2(α + 2) > p + 1, p ≥ 1.

Here a = {a1, a2} , and c0 > 0 is a small number. The functions g1(x, u) and
g2(x, v) are scalar and satisfy the growth condition for some ε0 > 0 and any
xi ∈ Ωi

∣∣∣∣
∂

∂u
g1(x1, u)

∣∣∣∣ +
∣∣∣∣

∂

∂v
g2(x2, v)

∣∣∣∣ ≤ C(1 + |u|max{0,p−1−ε0} + |v|max{0,p−1−ε0}),

and, for the sake of simplicity, we assume that g2(x, 0) = 0.
The plate equations with nonlocal nonlinearity were introduced in [2] and

their asymptotic behavior was deeply studied in [4] and [5]. Different models
with partial damping were considered in [3, 7] (see also the references therein).
Exponential stability of linear equations (1.2)–(1.7) (Fi = 0) was obtained in [12].
In [11] we proved the existence of a compact global attractor for the case when
α = 0 and ai = gi = 0.

Our main result is to prove the existence of a compact global attractor (Theo-
rem 3.1). To obtain the result we need to overcome two difficulties. The first is to
show that the corresponding energy of the system is a strict Lyapunov function,
here we use the observability estimate from [1]. The second is to prove asymptotic
smoothness. Here the idea of the stabilizability estimates from [5] (see also [6])
is used.
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2. Preliminaries

Below the equality w = {u, v} denotes that w(x) = u(x) if x ∈ Ω1 and
w(x) = v(x) if x ∈ Ω2. We introduce a Hilbert space H1

D as a space of such
function φ ∈ H1(Ω1) that φ = 0 on Γ0. The space H1

D is equipped with the
following inner product:

(w, φ)H1
D

:=
∫

Ω1

β0∇w · ∇φdx +
∫

Γ1

β0λwφdx.

Denote H = H2
0 (Ω) × L2(Ω) × L2(Ω1). This space plays the role of a phase

space for the dynamical system to be introduced below. The following set, which
is densely embedded in H, is needed for the statement about strong solutions:

D0 =





w ∈ [
H2

0 (Ω) ∩ (
H4(Ω1)×H4(Ω2)

)]×H2
0 (Ω)× [

H2(Ω1) ∩H1
D

]
:

β1∆w1 = β2∆w2 and β1
∂∆w1

∂ν + µ ∂θ
∂ν = β2

∂∆w2
∂ν on Γ0,

∂w5
∂ν + λw5 = 0 on Γ1



 .

We introduce the potential

Π(w) =
1

2(α + 2)
||∇w||2(α+2)

L2(Ω)
+

1
p + 1

∫

Ω
a(x)|w(x)|p+1dx+

∫

Ω

∫ w(x)

0
g(x, s)dsdx,

where a = {a1, a2} and g = {g1, g2}. We have that Π′(w) = {F1(w), F2(w)}.
Energy functional (or Lyapunov function) E : H −→ R is defined for an

argument w = (w1, w2, w3, w4, w5) (here {w1, w2} ∈ H2
0 (Ω), {w3, w4} ∈ L2(Ω)

and w5 ∈ L2(Ω)) as follows:

E(w) =
1
2

[ ∫

Ω1

β1|∆w1|2 + ρ1|w3|2 + ρ0|w5|2dx

+
∫

Ω2

β2|∆w2|2 + ρ2|w4|2dx + 2Π(w1, w2)
]

. (2.1)

Theorem 2.1. Next statements hold true:

(i) For any initial w0 ∈ H and T > 0 there exists a unique mild solution
w(t) ∈ C([0, T ];H). Moreover, it satisfies the energy equality

E(w(T ))− E(w(t)) = −
∫ T

t

∫

Ω1

β0|∇w5|2dxdτ −
∫ T

t

∫

Γ1

β0λ|w5|2dΓdτ

(2.2)
for all 0 ≤ t ≤ T . If one set S(t)w0 = w(t), then (H, S(t)) is a continuous
dynamical system.

(ii) If w0 ∈ D0, then the corresponding mild solution is strong.
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We take the same definitions of mild and strong solutions as in [10, Ch. 4].
To prove this theorem we use the standard methods from the theory of semigroups
of linear operators and their perturbations, see [10]. For some details for the
similar model we refer to [11].

3. Main Result

Our main result is the following theorem:

Theorem 3.1. Let (1.1) and (1.8) hold. Then (H, S(t)) possesses a compact
global attractor.

To prove this theorem, we have to prove that the energy E is a strict Lyapunov
function for (H, S(t)) (see Sec. 4) and (H, S(t)) is asymptotically smooth (see
Sec. 5) For how to prove the existence of a compact global attractor, taking into
consideration the results of Secs. 4 and 5, we refer to [5, Cor. 2.29].

4. Strict Lyapunov Function

Proposition 4.1. If E(S(T )U) = E(U) for any T > 0, then S(t)U = U for
any t ≥ 0.

In compare with [11], our model is more complicated because of the presence
of the scalar nonlinearity and the assertion is stronger since, in contrast with the
proposition above, Proposition 4.13 in [11] requires E(S(T )U) = E(U) to hold
for any T ∈ R. To prove Proposition 4.1 we use the Carleman-type inequalities
formulated in the following auxiliary lemma (see [1, Th. 3.4]):

Lemma 4.2. Let w be a solution to wtt + ∆2w = f in Ω2 and

w|Γ0 =
∂w

∂ν
|Γ0 =

∂2w

∂ν2
|Γ0 =

∂3w

∂ν3
|Γ0 = 0.

Then there exists such τ0 > 0 that for all τ > τ0 there holds

||eτφw||22,τ̃ ≤ C||eτφτ̃−1/2f ||, (4.1)

where

||eτφw||22,τ̃ :=
∫ T

0

∫

Ω2

τ̃4|eτφw|2 + τ̃2|∇(eτφw)|2 + |∂t(eτφw)|2 + |∆(eτφw)|2dxdt

τ̃ = τgeψ, ψ(x) = |x− x|2 with x ∈ R2\Ω2, g(t) = 1
t(T−t) and

φ(t,x) = g(t)(eψ(x) − 2e||ψ||L∞(Ω2)).
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P r o o f of Proposition 4.1. Let us consider such T > 0 and U0 ∈ H that
E(S(T )U0) = E(U0). Energy equality (2.2) implies that θ ≡ 0, then equation (1.3)
implies that ut = 0. Equation (1.2) implies that either u ≡ 0 for all t ∈ [0, T ]
(case 1) or

M(||∇u||2Ω1
+ ||∇v||2Ω2

) ≡ M (4.2)

does not depend on t (case 2). Both cases are considered below.
Case 1. Let us assume u ≡ 0. Assume also that ||∆v(t)||2Ω2

+ ||vt(t)||2Ω2
≤ r.

Then for any t ∈ [0, T ] and x ∈ Ω2 we have

|F2(0, v)|2≤
[
| ||∇w||1+α

Ω2
∆v|+ ||a2||L∞ |v|p−1|v|+ C(r)|v|

]2
≤ C(r)

[|∆v|2 + |v|2] .

Using the following inequality that holds for any t ∈ [0, T ] and x ∈ Ω2:

|eτφ∆w|2 ≤ |∆(eτφw)|2 + Cτ̃2|∇(eτφw)|2 + Cτ̃4|eτφw|2,

τ̃−1 < C/τ , 1 ≤ Cτ̃4 and (4.1) with f = F2(0, v), we finally get

||eτφw||22,τ̃ ≤
C(r)

τ
||eτφw||22,τ̃ .

Choosing τ large enough we get the conclusion that v ≡ 0.
Case 2. Assume that ||∇v||Ω2 does not depend on t and (4.2) takes place.

In this case we consider an application of (4.1) for wh(t) = v(t + h) − v(t) with
some h > 0, and

f = F2(u, v(t + h))− F2(u, v(t))
= M∆wh + a2

[|v(t + h)|p−1v(t + h)− |v(t)|p−1v(t)
+g2(v(t + h))− g2(v(t))] .

Using the arguments as in case 1, we obtain wh(t) ≡ 0 and, hence, v does not
depend on t.

5. Asymptotic Smoothness

The proof of the asymptotic smoothness is based on the method of compen-
sated compactness function suggested in [8] and developed in [5] (see also [6]).

Let (u1(t), v1(t), θ1(t)) and (u2(t), v2(t), θ2(t)) be solutions to the problem
(1.2)–(1.7) and assume that for any t > 0 there exists R > 0 such that

∫

Ω1

ρ1|ui
t|2 + β1|∆ui|2 + ρ0|θi|2dx +

∫

Ω2

ρ2|vi
t|2 + β2|∆vi|2dx ≤ R2.
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Let u(t) = u1(t) − u2(t), v(t) = v1(t) − v2(t), θ(t) = θ1(t) − θ2(t). The
triple (u(t), v(t), θ(t)) satisfies boundary conditions (1.5)–(1.7) and the following
system: 




ρ1utt + β1∆2u + µ∆θ = G1,
ρ0θt − β0∆θ − µ∆ut = 0,
ρ2vtt + β2∆2v = G2.

with G1(t) = F1(u2, v2)− F1(u1, v1) and G2(t) = F2(u2, v2)− F2(u1, v1).
Also we denote

E(t) =
1
2

∫

Ω1

ρ1|ut|2 + β1|∆u|2 + ρ0|θ|2dx +
1
2

∫

Ω2

ρ2|vt|2 + β2|∆v|2dx.

Proposition 5.1. Let (1.1) and (1.8) hold. There exists k, C > 0 and a
functional R(u, v, ut, vt, θ), continuous on H, such that if

R(t) := R(u(t), v(t), ut(t), vt(t), θ(t)),

then |R(t)| ≤ CE(t) and

d

dt
R(t) ≤ −kE(t) + C

[ ∫

Ω1

|∇θ|2dx +
∫

Ω
| {u, v} |2 + |∆−1

D {ρ1ut, ρ2vt} |2dx
]

.

Our proof of Proposition 5.1 mostly follows the line of arguments given in
[11]. We only give here the formula for R:

R = J1 +
η

β1,
J2 +

(µ

2
− ηC

)
J3 + η1/2J4

with sufficiently small η > 0 and Ji defined as follows:

J1 = −
∫

Ω1

ρ1utw1dx−
∫

Ω2

ρ2vtw2dx,

J2 =
∫

Ω1

ρ1uth · ∇udx +
∫

Ω2

ρ2vth · ∇vdx, J3(t) =
∫

Ω1

ρ1utφudx,

J4 =
∫

Ω1

ρ1utψm · ∇udx +
∫

Ω2

ρ2vtψm · ∇vdx.

Here {w1, w2} := ∆−1
D {ρ0φ1θ, 0}, where ∆−1

D is an inverse Laplace operator with
the Dirichlet boundary conditions on Γ1, a vector field h = (h1, h2) ∈ [C2(Ω)]2

satisfies h(x) = −ν(x) if x ∈ Γ1, m(x) = x − x0, where x0 is the same as in
(1.1). Functions φ and ψ are scalar from C2(Ω) and φ(x) = 1 if x ∈ Ω1 \U4δ(Γ0)
and φ(x) = 0 if x ∈ U2δ(Γ0) ∩ Ω1; ψ(x) = 1 if x ∈ U4δ(Ω2) and ψ(x) = 0 if
Ω1 \U8δ(Ω2). Number δ > 0 is chosen sufficiently small. The idea of such Ji was
used by many authors (see, e.g., [3, 6, 9, 11, 12] and the references therein).

Proposition 5.1 is a key step of the proof. We get the asymptotic smoothness
using the arguments from [5, Ch. 3].
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