# On Ideal Amenability of Banach Algebras 

A. Jabbari<br>Young Researchers Club, Ardabil Branch<br>Islamic Azad University, Ardabil, Iran<br>E-mail: jabbari_al@yahoo.com

## Received February 7, 2011

Let $\mathfrak{A}$ be a Banach algebra. The Banach algebra $\mathfrak{A}$ is said to be ideally amenable if every continuous derivation from $\mathfrak{A}$ into $\mathcal{I}^{*}$ is inner, where $\mathcal{I}$ is a two-sided ideal of $\mathfrak{A}$. In this paper, we consider the ideal amenability of Banach algebras, and try to give some new results on the ideal amenability of Banach algebras and commutative Banach algebras.

Key words: amenability, Banach algebra, convolution algebra, ideal amenability, Lipschitz algebra.

Mathematics Subject Classification 2000: 46H25 (primary); 46H20 (secondary).

## 1. Introduction

Let $\mathfrak{A}$ be a Banach algebra. Let $X$ be a Banach $\mathfrak{A}$-bimodule such that $X$ is a Banach space and an $\mathfrak{A}$-bimodule, where the module operations

$$
(a, x) \mapsto a \cdot x \quad \text { and } \quad(a, x) \mapsto x \cdot a
$$

from $\mathfrak{A} \times X$ into $X$ are jointly continuous. We can define the right and the left actions of $\mathfrak{A}$ on the dual space $X^{*}$ of $X$ via

$$
\langle x, \lambda . a\rangle=\langle a . x, \lambda\rangle \quad \text { and } \quad\langle x, a . \lambda\rangle=\langle x . a, \lambda\rangle
$$

for all $a \in \mathfrak{A}, x \in X$ and $\lambda \in X^{*}$. Similarly, the second dual $X^{* *}$ of $X$ becomes a Banach $\mathfrak{A}$-bimodule (for more details see [1]). Thus, in particular, $\mathcal{I}$ is a Banach $\mathfrak{A}$-bimodule, and $\mathcal{I}^{*}$ is a dual $\mathfrak{A}$-bimodule for every closed two-sided ideal $\mathcal{I}$ in $\mathfrak{A}$. Let $\mathfrak{A}$ be a Banach algebra, and let X be a Banach $\mathfrak{A}$-bimodule. A derivation is a linear map $D: \mathfrak{A} \longrightarrow X$ such that

$$
D(a b)=a \cdot D(b)+D(a) \cdot b \quad(a, b \in \mathfrak{A})
$$

The set of derivations from $\mathfrak{A}$ into $X$ is denoted by $Z^{1}(\mathfrak{A}, X)$; it is a linear subspace of $\mathcal{L}(\mathfrak{A}, X)$, where $\mathcal{L}(\mathfrak{A}, X)$ is the space of all bounded linear mappings from $\mathfrak{A}$ into $X$. For $x \in X$, set $D_{x}: a \mapsto a . x-x . a, \mathfrak{A} \longrightarrow X$. Derivations of this form are termed inner derivations, and an inner derivation $D_{x}$ is implemented by $x$; derivations which are not inner are called outer derivations. The set of inner derivations from $\mathfrak{A}$ into $X$ is a linear subspace $N^{1}(\mathfrak{A}, X)$ of $Z^{1}(\mathfrak{A}, X)$. We consider the quotient space $\mathcal{H}^{1}(A, X)=Z^{1}(\mathfrak{A}, X) / N^{1}(\mathfrak{A}, X)$, it is called the first cohomology group of $\mathfrak{A}$ with coefficients in $X$. Clearly, $\mathcal{H}^{1}(A, X)=\{0\}$ if and only if every derivation from $\mathfrak{A}$ into $X$ is inner.

The Banach algebra $\mathfrak{A}$ is called amenable if $\mathcal{H}^{1}\left(A, X^{*}\right)=\{0\}$, or, in other words, if every derivation from $\mathfrak{A}$ into every dual $\mathfrak{A}$-module is inner. The concept of amenability for the Banach algebra $\mathfrak{A}$ was introduced by Johnson in 1972 [2]. The Banach algebra $\mathfrak{A}$ is weakly amenable if $\mathcal{H}^{1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)=\{0\}$. Of course, every amenable Banach algebra is weakly amenable. However, the class of weakly amenable Banach algebras is considerably larger than that of amenable Banach algebras. For example, the group algebra $L^{1}(G)$ is weakly amenable for each locally compact group $G$. The examples of weakly amenable, but not amenable, Banach function algebras are given in [3], where it is noted that the commutative Banach algebra $\mathfrak{A}$ is weakly amenable if and only if $\mathcal{H}^{1}(\mathfrak{A}, X)=\{0\}$ for each Banach $\mathfrak{A}$-module $X$.

Let $n \in \mathbb{N}$; the Banach algebra $\mathfrak{A}$ is called $n$-weakly amenable if $\mathcal{H}^{1}\left(\mathfrak{A}, \mathfrak{A}^{(n)}\right)=$ $\{0\}$. Dales, Ghahramani and Grønbæk brought the concept of the $n$-weak amenability of Banach algebras in [4]. The Banach algebra $\mathfrak{A}$ is called permanently weakly amenable if $\mathcal{H}^{1}\left(\mathfrak{A}, \mathfrak{A}^{(n)}\right)=\{0\}$ for each $n \in \mathbb{N}$ (see [4]). The concept of the ideal amenability of Banach algebras was introduced by Gordji and Yazdanpanah in [5]. The Banach algebra $\mathfrak{A}$ is called ideally amenable if $\mathcal{H}^{1}\left(\mathfrak{A}, \mathcal{I}^{*}\right)=\{0\}$, and $\mathfrak{A}$ is $n$ - $\mathcal{I}$-weakly amenable if $H^{1}\left(\mathfrak{A}, \mathcal{I}^{(n)}\right)=\{0\}$ for every closed two-sided ideal $\mathcal{I}$ of $\mathfrak{A}$. The ideal amenability of the group algebras $L^{1}(G), L^{\infty}(G)$ and $M(G)$, where $G$ is a locally compact group, are studied in [6]. In [7], the ideal amenability of abstract Segal algebras, Segal algebras and triangular Banach algebras are studied. In this paper, we continue to study [5-8] for the ideal amenability of Banach algebras.

## 2. General Results

For the Banach algebra $\mathfrak{A}$ we denote the character space of $\mathfrak{A}$ by $\Phi_{\mathfrak{A}}$.
Theorem 2.1. Let $\mathfrak{A}$ be a Banach algebra, and $\varphi \in \Phi_{\mathfrak{A}}$ such that $a b=\varphi(a) b$ for each $a, b \in \mathfrak{A}$. Then $\mathfrak{A}$ is ideally amenable.

Proof. Let $\mathcal{I}$ be a closed two-sided ideal of $\mathfrak{A}$, and let $D: \mathfrak{A} \longrightarrow \mathcal{I}^{*}$ be a continuous derivation. Then

$$
\begin{align*}
\varphi(a)\langle c, D b\rangle & =\langle c, D(a b)\rangle=\langle c, a \cdot D(b)+D(a) \cdot b\rangle \\
& =\langle c a, D b\rangle+\langle b c, D a\rangle \\
& =\varphi(c)\langle a, D b\rangle+\varphi(b)\langle c, D a\rangle \tag{2.1}
\end{align*}
$$

for each $a, b, c \in \mathfrak{A}$. Let $\lambda \in \mathcal{I}^{*}$, and let $\delta_{\lambda}: \mathfrak{A} \longrightarrow \mathcal{I}^{*}$ be the inner derivation specified by $\lambda$. Then

$$
\begin{align*}
\left\langle b, \delta_{\lambda}(a)\right\rangle & =\langle b, a \cdot \lambda-\lambda \cdot a\rangle \\
& =\langle b a, \lambda\rangle-\langle a b, \lambda\rangle \\
& =\varphi(b)\langle a, \lambda\rangle-\varphi(a)\langle b, \lambda\rangle \tag{2.2}
\end{align*}
$$

for each $a, b \in \mathfrak{A}$. Choose $a_{0} \in \mathfrak{A}$ with $\varphi\left(a_{0}\right)=1$ and set $\lambda(a)=\left\langle a_{0}, D a\right\rangle$ for each $a \in \mathfrak{A}$. Then $\lambda$ is a linear functional. By use of (2.1) and (2.2), we have

$$
\begin{aligned}
\left\langle b, \delta_{\lambda}(a)\right\rangle & =\varphi(b)\langle a, \lambda\rangle-\varphi(a)\langle b, \lambda\rangle \\
& =\varphi(b)\left\langle a_{0}, D a\right\rangle-\varphi(a)\left\langle a_{0}, D b\right\rangle \\
& =\varphi\left(a_{0}\right)\langle b, D a\rangle=\langle b, D a\rangle
\end{aligned}
$$

Therefore, $D=\delta_{\lambda}$, and thus $\mathfrak{A}$ is $\mathcal{I}$-weakly amenable.
In [5], Gordji and Yazdanpanah asked (Question 4.1): If $\mathfrak{A}$ and $\mathfrak{B}$ are ideally amenable Banach algebras, then is $\mathfrak{A} \widehat{\otimes} \mathfrak{B}$ ideally amenable? In [9], Mewomo answered to this question for a special case, when both $\mathfrak{A}$ and $\mathfrak{B}$ have a bounded approximate identity. In the theorem below we will give the answer to Question 4.1 of [5] in the following sense.

Theorem 2.2. Let $\mathfrak{A}$ and $\mathfrak{B}$ be Banach algebras. Let $\varphi \in \Phi_{\mathfrak{A}}$, and $\psi \in \Phi_{\mathfrak{B}}$ such that

$$
a b=\varphi(a) b, \quad c d=\psi(c) d
$$

for each $a, b \in \mathfrak{A}$ and $c, d \in \mathfrak{B}$. Then $\mathfrak{A} \widehat{\otimes} \mathfrak{B}$ is ideally amenable.
Proof. Without loss of generality, we suppose that $\mathfrak{A}$ and $\mathfrak{B}$ are unital (see Proposition 1.14 of [5]). Let $e_{\mathfrak{A}}$ and $e_{\mathfrak{B}}$ be the unit elements of $\mathfrak{A}$ and $\mathfrak{B}$, respectively. Let $\mathcal{K}$ be a closed two-sided ideal of $\mathfrak{A} \widehat{\otimes} \mathfrak{B}$, and let $D: \mathfrak{A} \widehat{\otimes} \mathfrak{B} \longrightarrow \mathcal{K}^{*}$ be a continuous derivation. For each $a, c, e \in \mathfrak{A}$ and $b, d, f \in \mathfrak{B}$ we have

$$
\begin{align*}
\langle c \otimes d, D(a e \otimes b f)\rangle & =\langle c \otimes d, D((a \otimes b)(e \otimes f))\rangle \\
& =\langle c \otimes d,(a \otimes b) . D(e \otimes f)\rangle+\langle c \otimes d, D(a \otimes b) .(e \otimes f)\rangle \\
& =\langle c a \otimes d b, D(e \otimes f)\rangle+\langle e c \otimes f d, D(a \otimes b)\rangle \\
& =\varphi(c) \psi(d)\langle a \otimes b, D(e \otimes f)\rangle+\varphi(e) \psi(f)\langle c \otimes d, D(a \otimes b)\rangle \\
& =\varphi(a) \psi(b)\langle c \otimes d, D(e \otimes f)\rangle . \tag{2.3}
\end{align*}
$$

Fix $b_{0} \in \mathfrak{B}$ with $\psi\left(b_{0}\right)=1$. Then from (2.3) we can write

$$
\begin{align*}
\left\langle e_{\mathfrak{A}} \otimes e_{\mathfrak{B}}, D(a \otimes b)\right\rangle & =\left\langle e_{\mathfrak{A}} \otimes e_{\mathfrak{B}}, D\left(\left(a \otimes b_{0}\right)\left(e_{\mathfrak{A}} \otimes b\right)\right)\right\rangle \\
& =\varphi(a) \psi\left(b_{0}\right)\left\langle e_{\mathfrak{A}} \otimes e_{\mathfrak{B}}, D\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle \\
& =\left\langle a \otimes b_{0}, D\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle \tag{2.4}
\end{align*}
$$

for each $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$. Hence, there exists $\lambda \in \mathcal{K}^{*}$ such that

$$
\begin{equation*}
\langle a \otimes b, \lambda\rangle=\left\langle a \otimes b_{0}, D\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle \tag{2.5}
\end{equation*}
$$

for each $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$. Let $\delta_{\lambda}: \mathfrak{A} \widehat{\otimes} \mathfrak{B} \longrightarrow \mathcal{K}^{*}$ be an inner derivation specified by $\lambda$. Take $a \in \mathfrak{A}$ and $b, c \in \mathfrak{B}$. Then

$$
\begin{aligned}
\left\langle a \otimes c, \delta_{\lambda}\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle & =\left\langle a \otimes c,\left(e_{\mathfrak{A}} \otimes b\right) \cdot \lambda-\lambda \cdot\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle \\
& =\left\langle a \otimes c,\left(e_{\mathfrak{A}} \otimes b\right) \cdot \lambda\right\rangle-\left\langle a \otimes c, \lambda \cdot\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle \\
& =\langle a \otimes c b, \lambda\rangle-\langle a \otimes b c, \lambda\rangle \\
& =\left\langle a \otimes b_{0}, \psi(c) D\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle-\left\langle a \otimes b_{0}, \psi(b) D\left(e_{\mathfrak{A}} \otimes c\right)\right\rangle \\
& =\left\langle a \otimes b_{0}, \psi(c) D\left(e_{\mathfrak{A}} \otimes b\right)-\psi(b) D\left(e_{\mathfrak{A}} \otimes c\right)\right\rangle \\
& =\left\langle a \otimes b_{0},\left(e_{\mathfrak{A}} \otimes c\right) \cdot D\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle \\
& =\left\langle a \otimes c, D\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle .
\end{aligned}
$$

Therefore, $D\left(e_{\mathfrak{A}} \otimes b\right)=\delta_{\lambda}\left(e_{\mathfrak{A}} \otimes b\right)$ for each $b \in \mathfrak{B}$.
We claim that $D\left(a \otimes e_{\mathfrak{B}}\right)=\delta_{\lambda}\left(a \otimes e_{\mathfrak{B}}\right)$ for each $a \in \mathfrak{A}$. Choose $a_{0} \in \mathfrak{A}$ with $\varphi\left(a_{0}\right)=1$. Then from (2.5) we can write

$$
\begin{align*}
\langle a \otimes b, \lambda\rangle & =\left\langle a \otimes b_{0}, D\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle \\
& =\varphi(a)\left\langle e_{\mathfrak{A}} \otimes e_{\mathfrak{B}}, D\left(e_{\mathfrak{A}} \otimes b\right)\right\rangle \\
& =\left\langle a_{0} \otimes b, D\left(a \otimes e_{\mathfrak{B}}\right\rangle\right. \tag{2.6}
\end{align*}
$$

for each $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$. Now by (2.6), we have

$$
\begin{aligned}
\left\langle c \otimes b, \delta_{\lambda}\left(a \otimes e_{\mathfrak{B}}\right)\right\rangle & =\left\langle c \otimes b,\left(a \otimes e_{\mathfrak{B}}\right) \cdot \lambda-\lambda \cdot\left(a \otimes e_{\mathfrak{B}}\right)\right\rangle \\
& =\left\langle c \otimes b,\left(a \otimes e_{\mathfrak{B}}\right) \cdot \lambda\right\rangle-\left\langle c \otimes b, \lambda \cdot\left(a \otimes e_{\mathfrak{B}}\right)\right\rangle \\
& =\langle c a \otimes b, \lambda\rangle-\langle a c \otimes b, \lambda\rangle \\
& =\left\langle a_{0} \otimes b, \varphi(c) D\left(a \otimes e_{\mathfrak{B}}\right)\right\rangle-\left\langle a \otimes b_{0}, \varphi(a) D\left(c \otimes e_{\mathfrak{B}}\right)\right\rangle \\
& =\left\langle a_{0} \otimes b, \varphi(c) D\left(a \otimes e_{\mathfrak{B}}\right)-\varphi(a) D\left(c \otimes e_{\mathfrak{B}}\right)\right\rangle \\
& =\left\langle a_{0} \otimes b,\left(c \otimes e_{\mathfrak{B}}\right) \cdot D\left(a \otimes e_{\mathfrak{B}}\right)\right\rangle \\
& =\left\langle c \otimes b, D\left(a \otimes e_{\mathfrak{B}}\right)\right\rangle .
\end{aligned}
$$

Hence, $D\left(a \otimes e_{\mathfrak{B}}\right)=\delta_{\lambda}\left(a \otimes e_{\mathfrak{B}}\right)$ for each $a \in \mathfrak{A}$. Then for each $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$ we have

$$
\begin{aligned}
D(a \otimes b) & =D\left(\left(a \otimes e_{\mathfrak{B}}\right)\left(e_{\mathfrak{A}} \otimes b\right)\right) \\
& =\left(a \otimes e_{\mathfrak{B}}\right) \cdot D\left(e_{\mathfrak{A}} \otimes b\right)+D\left(a \otimes e_{\mathfrak{B}}\right) \cdot\left(e_{\mathfrak{A}} \otimes b\right) \\
& =(a \otimes b) \cdot \lambda-\lambda \cdot(a \otimes b)=\delta_{\lambda}(a \otimes b) .
\end{aligned}
$$

So, $D=\delta_{\lambda}$ on $\mathfrak{A} \widehat{\otimes} \mathfrak{B}$. Thus $\mathfrak{A} \widehat{\otimes} \mathfrak{B}$ is ideally amenable.
Let $\mathfrak{A}$ and $\mathfrak{B}$ be Banach algebras, and $\vartheta: \mathfrak{A} \longrightarrow \mathfrak{B}$ be a bounded homomorphism. $\mathfrak{B}^{(n)}$ (the $n$th dual of $\mathfrak{B}$ ) can be regarded as an $\mathfrak{A}$-bimodule under the module actions

$$
a . b^{(n)}=\vartheta(a) . b^{(n)}, \quad b^{(n)} . a=b^{(n)} . \vartheta(a) \quad\left(a \in \mathfrak{A}, b^{(n)} \in \mathfrak{B}^{(n)}\right)
$$

Also the first and second transposes of $\vartheta, \vartheta^{*}: \mathfrak{B}^{*} \longrightarrow \mathfrak{A}^{*}$ and $\vartheta^{*}: \mathfrak{A}^{* *} \longrightarrow \mathfrak{B}^{* *}$ are $\mathfrak{B}$-module morphisms. We can continue this to the $n$th transpose of $\vartheta$.

Theorem 2.3. Let $\mathfrak{A}$ and $\mathfrak{B}$ be Banach algebras. Suppose that $\mathcal{I}$ and $\mathcal{J}$ are two-sided ideals of $\mathfrak{A}$ and $\mathfrak{B}$, respectively. Let $\mathcal{F}: \mathfrak{A} \longrightarrow \mathfrak{B}$ be a bounded epimorphism, $\theta: \mathcal{I} \longrightarrow \mathcal{J}$ and $\varphi: \mathcal{J} \longrightarrow \mathcal{I}$ be bounded homomorphisms such that $\theta \circ \varphi=i d_{\mathcal{J}}\left(i d_{\mathcal{J}}\right.$ is the identity on $\left.\mathcal{J}\right)$. Then:
(i) Let $D: \mathfrak{B} \longrightarrow \mathcal{J}^{(2 n-1)}$ be a continuous derivation. Then $\mathcal{D}:=\left(\theta^{(2 n-1)} \circ\right.$ $D \circ \mathcal{F}): \mathfrak{A} \longrightarrow \mathcal{I}^{(2 n-1)}$ is a continuous derivation, $n \in \mathbb{N}$.
(ii) Let $D: \mathfrak{B} \longrightarrow \mathcal{J}^{(2 n)}$ be a continuous derivation. Then $\mathcal{D}:=\left(\varphi^{(2 n)} \circ D \circ \mathcal{F}\right)$ : $\mathfrak{A} \longrightarrow \mathcal{I}^{(2 n)}$ is a continuous derivation, $n \in \mathbb{N}$.
(iii) In cases (i) and (ii), if $\mathcal{D}$ is inner, then $D$ is also inner.
(iv) If $\mathfrak{A}$ is $n$-ideally amenable, then $\mathfrak{B}$ is also n-ideally amenable.

Proof. (i) Let $D$ be a continuous derivation. For each $a, b \in \mathfrak{A}$ we have

$$
\begin{align*}
\mathcal{D}(a b) & =\left(\theta^{(2 n-1)} \circ D \circ \mathcal{F}\right)(a b) \\
& =\theta^{(2 n-1)} \circ D(\mathcal{F}(a) \mathcal{F}(b)) \\
& =\theta^{(2 n-1)}(a \cdot D(\mathcal{F}(b))+D(\mathcal{F}(a)) \cdot b) \\
& =a \cdot \theta^{(2 n-1)}\left(D(\mathcal{F}(b))+\theta^{(2 n-1)}(D(\mathcal{F}(a)) \cdot b\right. \\
& =a \cdot \mathcal{D}(b)+\mathcal{D}(a) . b . \tag{2.7}
\end{align*}
$$

Let $\mathcal{D}=\mathcal{D}_{\lambda}$ be an inner derivation from $\mathfrak{A}$ into $\mathcal{I}^{(2 n-1)}$ specified by $\lambda \in$ $\mathcal{I}^{(2 n-1)}$. Take $b \in \mathfrak{B}$, therefore there exists $a \in \mathfrak{A}$ such that $\mathcal{F}(a)=b$. For each
$G \in \mathcal{J}^{(2 n-1)}$ we have

$$
\begin{align*}
\langle D(b), G\rangle & =\langle D(\mathcal{F}(a)), G\rangle=\left\langle D(\mathcal{F}(a)), \theta^{(2 n-2)} \circ \varphi^{(2 n-2)}(G)\right\rangle \\
& =\left\langle\theta^{(2 n-1)} \circ D(\mathcal{F}(a)), \varphi^{(2 n-2)}(G)\right\rangle \\
& =\left\langle\mathcal{D}(a), \varphi^{(2 n-2)}(G)\right\rangle=\left\langle a \cdot \lambda-\lambda \cdot a, \varphi^{(2 n-2)}(G)\right\rangle \\
& =\left\langle\varphi^{(2 n-1)}(a \cdot \lambda-\lambda \cdot a), G\right\rangle \\
& =\left\langle b \cdot \varphi^{(2 n-1)}(\lambda)-\varphi^{(2 n-1)}(\lambda) \cdot b, G\right\rangle . \tag{2.8}
\end{align*}
$$

By similar arguments, statements (ii) and (iii) hold. Part (iv) follows trivially from (iii).

## 3. Commutative Banach Algebras

The ideal amenability of commutative Banach algebras is studied in [8], and the authors referred to obtained many useful results for this case. In this section, we study the ideal amenability of commutative Banach algebras and special classes of them, namely, $\ell^{1}$-convolution and Lipschitz algebras.

Theorem 3.1. Let $\mathfrak{A}$ be a commutative Banach algebra. If there exists a closed subalgebra $\mathfrak{B}$ of $\mathfrak{A}$ such that
(i) $\mathfrak{B}$ is dense in $\mathfrak{A}$;
(ii) every derivation from $\mathfrak{B}$ into the dual of every closed ideal of $\mathfrak{A}$ is inner, then $\mathfrak{A}$ is ideally amenable.

Proof. Let $\mathcal{I}$ be a closed two-sided ideal of $\mathfrak{A}$, and let $D$ be a continuous derivation from $\mathfrak{A}$ into $\mathcal{I}^{*}$. Define $\left.D\right|_{\mathfrak{B}}=D^{\prime}$. Since every derivation from $\mathfrak{B}$ into the dual of every closed ideal of $\mathfrak{A}$ is inner and $\mathcal{I}^{*}$ is a symmetric $\mathfrak{B}$-bimodule, then by [3], $D^{\prime}=0$.

Set $a \in \mathfrak{A}$. Then for each $\varepsilon>0$ there exists $b \in \mathfrak{B}$ such that $\|a-b\|_{\mathfrak{A}}<\frac{\varepsilon}{\|D\|+1}$. Then we have

$$
\begin{aligned}
\|D a\| & =\left\|D a-D^{\prime} b\right\|=\|D(a-b)\| \\
& \leq\|D\|\|a-b\|_{\mathfrak{A}}<\varepsilon
\end{aligned}
$$

Since $a \in \mathfrak{A}$ and $\varepsilon>0$ are arbitrary, then $D=0$. Thus $\mathfrak{A}$ is $\mathcal{I}$-weakly amenable, and the proof is complete.

Theorem 3.2. Let $\mathfrak{A}$ be a commutative Banach algebra, and $\mathcal{I}$ be an unital two-sided ideal of $\mathfrak{A}$. If $\mathfrak{A}$ is $\mathcal{I}$-weakly amenable, then the closed linear span of $\mathfrak{A} \mathfrak{I A}$ is dense in $\mathcal{I}$.

Proof. Let $\mathfrak{B}$ be a closed linear span of $\mathfrak{A I M}$ such that $\mathfrak{B} \neq \mathcal{I}$. Choose $a \in \mathcal{I}$ such that $a \notin \mathfrak{B}$. Put $\mathfrak{B}_{1}:=\left\{b+a^{\prime} a: b \in \mathfrak{B}, a^{\prime} \in \mathcal{I}, a^{\prime} \notin \mathfrak{B}\right\}$. Define $\varphi: \mathfrak{B}_{1} \longrightarrow \mathcal{I}$ by $\varphi\left(b+a^{\prime} a\right)=a^{\prime}$. Thus, $\varphi$ is a homomorphism. We can also extend $\varphi$ to a homomorphism $\lambda_{1}: \mathcal{I} \longrightarrow \mathcal{I}$, where $\left.\lambda_{1}\right|_{\mathfrak{B}}=0$ and $\lambda_{1} \neq 0$.

Since $a \in \mathcal{I}$ and $a \notin \mathfrak{B}$, then there exists nonzero $\lambda_{2} \in \mathcal{I}^{*}$ such that $\left.\lambda_{2}\right|_{\mathfrak{B}}=0$. Now define the mapping $D: \mathfrak{A} \longrightarrow \mathcal{I}^{*}$ by

$$
D(a)=\lambda_{1}(a) \cdot \lambda_{2}
$$

for all $a \in \mathfrak{A}$. From the definition of $\lambda_{1}$ and $\lambda_{2}, D$ is linear. Since $\lambda_{2}$ on $\mathfrak{B}$ is zero, then $D$ is a nonzero derivation from $\mathfrak{A}$ into $\mathcal{I}^{*}$. But $\mathfrak{A}$ is $\mathcal{I}$-weakly amenable, consequently, this is a contradiction.

Let $\Lambda$ be a non-empty totally ordered set, and regard it as a semigroup by defining the product of two elements to be their maximum. The resulting semigroup, which we denote by $\Lambda_{\mathrm{V}}$, is a semilattice. We may then form the $\ell^{1}$ convolution algebra $\ell^{1}\left(\Lambda_{\vee}\right)$. For every $t \in \Lambda_{\vee}$ we denote the point mass concentrated at $t$ by $e_{t}$. The definition of multiplication in $\ell^{1}\left(\Lambda_{\vee}\right)$ ensures that $e_{s} e_{t}=e_{\max (s, t)}$ for all $s$ and $t$.

The semilattice $\Lambda_{\mathrm{V}}$ is a commutative semigroup in which every element is idempotent. If we denote the set of idempotent elements of $\Lambda_{\vee}$ by $E\left(\Lambda_{\vee}\right)$, then $E\left(\Lambda_{\vee}\right)=\Lambda_{\vee}$. The $\ell^{1}$-convolution algebras of semilattices provide interesting examples of commutative Banach algebras.

Proposition 3.3. Let $\Lambda$ be a totally ordered set. Then $\ell^{1}\left(\Lambda_{\vee}\right)$ is n-ideally amenable, $n \in \mathbb{N}$.

Proof. Since $E\left(\Lambda_{\vee}\right)=\Lambda_{\vee}$, then by Proposition 2.2 of $[10], \ell^{1}\left(\Lambda_{\vee}\right)$ is weakly amenable. The Banach algebra $\ell^{1}\left(\Lambda_{\vee}\right)$ is a commutative Banach algebra. Then by Theorem 2.1 of [8], the weak amenability of $\ell^{1}\left(\Lambda_{\vee}\right)$ implies its $n$-ideal amenability.

Let $K$ be a compact metric space with metric $d$, and take $\alpha$ such that $0<$ $\alpha \leq 1$. Then $\operatorname{Lip}_{\alpha} K$ is a space of the complex-valued functions $f$ on $K$ such that

$$
p_{\alpha}(f)=\sup \left\{\frac{|f(x)-f(y)|}{d(x, y)^{\alpha}}: x, y \in K, x \neq y\right\}
$$

is finite. For $f \in L i p_{\alpha} K$, set

$$
\|f\|_{\alpha}=|f|_{K}+p_{\alpha}(f) .
$$

Then $\left(\operatorname{Lip}_{\alpha} K,\|f\|_{\alpha}\right)$ is a Banach algebra on $K$. A function $f \in \operatorname{lip} p_{\alpha} K$ if

$$
\frac{|f(x)-f(y)|}{d(x, y)^{\alpha}} \longrightarrow 0 \quad \text { as } d(x, y) \longrightarrow 0,
$$

where $\operatorname{lip}_{\alpha} K$ is a close subalgebra of $\operatorname{Lip}_{\alpha} K$ (for more details see [11] and [12]). Many results on the amenability and weak amenability of Lipschitz algebras are given in [3].

Proposition 3.4. Let $K$ be an infinite compact metric space, and let $\alpha \in$ $(0,1)$. Then lip $_{\alpha} K$ is 2-ideally amenable.

Proof. The algebra $l i p_{\alpha} K$ is Arens regular, and $\left(l i p_{\alpha} K\right)^{* *}$ is semisimple, and so by Corollary 2.4 of [8], $l i p_{\alpha} K$ is 2-ideally amenable.

In the following theorem $\mathbb{T}$ is a group of complex numbers of modulus one,

$$
\mathbb{T}=\{z \in \mathbb{C}: \quad|z|=1\}
$$

such that it is isomorphic to $\mathbb{R} / \mathbb{Z}$, and $\mathbb{I}$ is the closed interval $[0,1]$.
Proposition 3.5. Let $K$ be a compact metric space, and let $\alpha \in(0,1)$. Then
(i) If $K$ is $\mathbb{T}$, and $\alpha>\frac{1}{2}$, then lip $\mathbb{T}$ is not ideally amenable. Furthermore, lip $\mathbb{T}$ is not $2 k+1$-ideally amenable for any $k \in \mathbb{Z}^{+}$.
(ii) If $K$ is $\mathbb{I}$, then Lip ${ }_{\alpha} \mathbb{I}$ is not ideally amenable.

Proof. (i) By Theorem 3.11 of [3], lip $\mathbb{T}$ is not weakly amenable, and by Theorem 2.1 of [8], $l i p_{\alpha} \mathbb{T}$ is not ideally amenable. (ii) By Proposition 9.2 of [11], there are nonzero continuous point derivations on $\operatorname{Lip} p_{\alpha} I$, and by Proposition 1.3 of [4], $\operatorname{Lip}_{\alpha} \mathbb{I}$ is not weakly amenable, then by theorem 2.1 of [8], $L i p_{\alpha} \mathbb{I}$ is not ideally amenable.

## References

[1] F.F. Bonsall and J. Duncan, Complete Normed Algebras. Springer-Verlag, Berlin, 1973.
[2] B.E. Johnson, Cohomology in Banach Algebras. - Mem. Amer. Math. Soc. 127, Providence, R.I., USA, 1972.
[3] W.G. Bade, P.C. Curtis, and H.G. Dales, Amenability and Weak Amenability for Beurling and Lipschitz Algebras. - Proc. London Math. Soc. 55 (1987), No. 2, 359-377.
[4] H.G. Dales, F. Ghahramani, and N. Grønbcek, Derivations into Iterated Duals of Banach Algebras. - Studia Math. 128 (1998), No. 1, 19-54.
[5] M.E. Gordji and T. Yazdanpanah, Derivations into Duals of Ideals of Banach Algebras. - Proc. Indian Acad. Sci. 114 (2004), No. 4, 339-403.
[6] M.E. Gordji and S.A.R. Hosseiniun, Ideal Amenability of Banach Algebras on Locally Compact Groups. - Proc. Indian Acad. Sci. 115 (2005), No. 3, 319-325.
[7] A. Jabbari, Ideal Amenability of Various Classes of Banach Algebras. - Acta Math. Vietnam 36 (2011), No. 3, 651-658.
[8] M.E. Gordji and R. Memarbashi, Derivations into n-th Duals of Ideals of Banach Algebras. - Bull. Iran. Math. Soc. 34 (2008), No. 1, 59-71.
[9] O.T. Mewomo, On Ideal Amenability in Banach Algebras. - An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.). 56 (2010), No. 2, 273-278.
[10] H.G. Dales, A.T.M. Lau, and D. Strauss, Banach Algebras on Semigroups and their Compactifications. -- Mem. Amer. Math. Soc. 205 (2010), No. 966.
[11] D.R. Sherbert, The Structure of Ideals and Point Derivations in Banach Algebras of Lipschitz Functions. - Trans. Amer. Math. Soc. 111 (1964), 240-272.
[12] N. Weaver, Lipschitz Algebras. World Scientific Publishing Co. Pte Ltd., 1999.

