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Let F be the one dimensional Fourier�Plancherel operator and E be a
subset of the real axis. The truncated Fourier operator is the operator FE

of the form FE = PEFPE , where (PEx)(t) = 1IE(t)x(t), and 1IE(t) is the
indicator function of the set E. In the presented work, the basic properties
of the operator FE according to the set E are discussed. Among these pro-
perties there are the following ones:

1) the operator FE has a nontrivial null-space;
2) FE is strictly contractive;
3) FE is a normal operator;
4) FE is a Hilbert�Schmidt operator;
5) FE is a trace class operator.
Key words: truncated Fourier operator, normal operator, contractive

operator, Hilbert�Schmidt operator, trace class operator.
Mathematics Subject Classi�cation 2000: 47A38 (primery); 47B35, 47B06,

47A10 (secondary).

Let E be a measurable subset of the real axis R. (The case E = R is not
excluded). For p ≥ 1, let Lp(E) be the space of complex valued functions on E
satisfying the condition

∫
E

|x(t)|p dt < ∞ . We mainly deal with the case p = 2, but

episodically the case p = 1 is needed. The space L2(E), provided by the standard
linear operations and the scalar product 〈x, y 〉E

〈x, y〉E =
∫

E

x(t)y(t) dt, x, y ∈ L2(E) , (1)

is a Hilbert space. The norm in L2(E) is

‖x‖E =
√
〈x, x〉E . (2)
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The Fourier operator F is de�ned by the formula

(Fx)(t) =
1√
2π

∫

R

eitξ x(ξ) dξ , t ∈ R. (3)

One of central facts of the Fourier transform theory is the Parseval equality

‖(Fx)‖2
R = ‖x‖2

R , ∀x ∈ L2(R). (4)

This means that the Fourier operator F is an isometric operator in L2(R). The
next central fact of the Fourier transform theory is that the Fourier operator F

maps the space L2(R) onto the whole space L2(R), that is the F is an unitary
operator in L2(R). Moreover, the inverse operator F−1 is determined by the
formula

(F−1x)(t) =
1√
2π

∫

R

e−itξ x(ξ) dξ , t ∈ R. (5)

R e m a r k 1. The integral in the right-hand side of (3) is a Lebesgue integral.
It is well de�ned only if x ∈ L1(R). If x ∈ L1(R) ∩ L2(R), then both the integral
is well de�ned and the Parseval equality (4) holds. Thus, the operator F can be
de�ned originally by (3) only for x ∈ L1(R) ∩ L2(R). The set of such x is dense
in L2(R). Since the operator F acts isometrically on this set, it can be extended
by the continuity on the whole space L2(R). The same is related to the operator
which appears in (5).

In this paper we deal with the truncated Fourier operator.

De�nition 1. Let E be a measurable subset of the real axis, 0 < m(E) ≤ ∞ .
The operator FE : L2(E) → L2(E), is de�ned as

(FEx)(t) =
1√
2π

∫

E

eitξ x(ξ) dξ , t ∈ E. (6)

The operator FEx is said to be the truncated Fourier operator, or in more detail,
the Fourier operator truncated on the set E.

R e m a r k 2. If the set E is a set of �nite Lebesgue measure:
∫
E

dt < ∞, then

L2(E) ⊂ L1(E) and the integral in (6) is well de�ned for every x ∈ L2(E).

The operator F ∗
E , which is the adjoint operator to FE with respect to the

scalar product (1), is

(F ∗
Ex)(t) =

1√
2π

∫

E

e−itξ x(ξ) dξ , t ∈ E. (7)
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R e m a r k 3. The operator FE , acting in L2(E), may be naturally identi�ed
with the operator PEFPE , acting in L2(R), where

(PEx)(t) = 1IE(t)x(t), (8)

1IE(t) =

{
1, t ∈ E ,

0, t /∈ E .
(9)

Lemma 1. For any E, the operator FE is a contractive operator in L2(E)

‖FEx‖2
E ≤ ‖x‖2

E (∀x ∈ L2(E)). (10)

P r o o f. Indeed, if

y(t) =
1√
2π

∫

E

eitξ x(ξ) dξ , (t ∈ R), (11)

then by the Parseval equality,
∫
R
|y(t)|2 =

∫
E

|x(t)|2, hence ∫
E

|y(t)|2 ≤ ∫
E

|x(t)|2.

Thus, the inequalities hold

0 ≤ F∗EFE ≤ IE and 0 ≤ FF∗ ≤ IE . (12)

Here and in what follows IE is the identity operator.

Theorem 1.
1 . If mesE > 0, then no-one of the operators FE = 0 and F∗E = 0 equals zero:

there exists x ∈ L2(E) for which both

FEx 6= 0 and F∗Ex 6= 0 . (13)

2 . If mes(R \ E) > 0, then no-one of the operators FE and F∗E is isometric:
there exists x ∈ L2(E) for which both

‖FEx‖ < ‖x‖ and ‖F∗Ex‖ < ‖x‖ . (14)

P r o o f. Let t0 ∈ E is such that

lim
n→∞

m
(
E ∪ [t0 − 1/n , t0 + 1/n]

)

m
(
[t0 − 1/n , t0 + 1/n]

) = 1 .
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(Almost every point t0 ∈ E possesses this property). Let us set

xn(ξ) =
1

m
(
[t0 − 1/n , t0 + 1/n]

)
{

1, ξ ∈ E ∩ [t0 − 1/n , t0 + 1/n]
0, ξ ∈ E \ [t0 − 1/n , t0 + 1/n]

.

It is clear that xn ∈ L2(E) ∀n, and that
∫

E

xn(ξ)e±itξ dξ → e±i t t0 as n →∞, the limit is locally uniform on R .

If n is large enough, then
∫
R\E

|Fxn)(t)|2 dt > 0,
∫
R\E

|(F∗xn)(t)|2 dt > 0. Because

xn vanishes outside of E,
∫
E

|xn(t)|2 dt =
∫
R
|xn(t)|2 dt. By the Parseval equality,

∫
R
|Fxn)(t)|2 dt =

∫
R
|(F∗xn)(t)|2 dt =

∫
E

|xn(t)|2 dt. Thus, the inequalities (14) hold
for x = xn if n is large enough.

It is clear that if the set E is bounded, then the inequalities (13), (14) hold
for any x ∈ L2(E), x 6= 0. Indeed, given x ∈ L2(E), x 6= 0, let y be determined
from x according to (11). Since the set E is bounded, y(t) is an entire function
of t. Therefore the function y(t) may vanish only in isolated points. In parti-
cular,

∫
E

|y(t)|2 > 0,
∫
R\E

|y(t)|2 > 0. The �rst inequality means that ‖Fx‖ > 0,

the second one � that ‖Fx‖ < ‖x‖. In [1, Prop. 5] it was shown that if
mesE < ∞ (the set E may be unbounded), then the inequalities (14) hold for
arbitrary x ∈ L2(E), x 6= 0.

Actually, the much more stronger statement takes place.

Theorem 2. If mesE < ∞, then the inequalities

‖FEx‖2 ≤ (
1−A−1e−A(mesE)2

)‖x‖2 , ‖F∗Ex‖2 ≤ (
1−A−1e−A(mesE)2

)‖x‖2

(15)
hold for every x ∈ L2(E) . Here A, 1 ≤ A < ∞, is an absolute constant: depends
neither on x, nor on E.

P r o o f. In fact, Theorem 2 is a special case of the Nazarov uncertainty
principle. In [2], F.L. Nazarov proved the remarkable inequality

∫

R

|y(t)|2 dt ≤ AeA(mesE)(mesF )
( ∫

R\E

|y(t)|2 dt +
∫

R\F

|x(ξ)|2 dξ
)
, (16)

where x ∈ L2(R) is an arbitrary functions, y is the Fourier transform of x: y(t) =
1√
2π

∫
R

eitξ x(ξ) dξ, E and F are arbitrary measurable subsets of R. If F = E and
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x is an arbitrary function vanishing outside of E, then the inequality (16) takes
the form

∫

R

|y(t)|2 dt ≤ A eA(mesE)2
( ∫

R

|y(t)|2 dt−
∫

E

|y(t)|2 dt
)
.

Invoking the Parseval identity, we rewrite this inequality in the form
∫

E

|x(t)|2 dt ≤ AeA(mesE)2
( ∫

E

|x(t)|2 dt−
∫

E

|y(t)|2 dt
)
.

The latter inequality coincides with the �rst of the inequalities (15).

R e m a r k 4. As it is stated below, the equality for the Hilbert�Schmidt
norm ‖FE‖S2 holds ‖FE‖S2 = mesE. Since the Hilbert�Schmidt norm majorizes
the operator norm, the inequalities hold

‖FEx‖ ≤ (mesE)‖x‖, ‖F∗Ex‖ ≤ (mesE) ‖x‖ , (17)

where E is an arbitrary measurable set and x is an arbitrary function from L2(E).
Both inequalities (15) and (17) are true. However, (17) is more precise for

small values of mesE, and (15) � for large ones.

R e m a r k 5. If the set E is not just of a set of �nite measure, but a
�nite interval, then the estimate (15) can be re�ned for large values of mesE.
For E = [−l, l], the largest eigenvalue λ0(l) of the operator F∗EFE coincides with
the squares of norm ‖FE‖2. For E = [−l, l], the operator F∗EFE is the integral
operator in L2([−l, l]) of the form

(
F∗EFE x

)
(t) =

1
π

∫

[−l.l]

sin l(t− τ)
t− τ

x(τ) dτ . (18)

The asymptotic behavior as l → ∞ of the eigenvalue λ0(l) of the integral
operator (18) was found by W.H.J. Fuchs in [3]

1− λ0(l) ≈ 4
√

πl1/2e−2l (= 2
√

2π(mesE)1/2e−mesE .

Thus, for E = [−l, l], the estimate holds, which is stronger than the estimate (15),

‖FE x‖ ≤ (1−A(ε)e−(1+ε)mesE)‖x‖ , ‖F∗E x‖ ≤ (1−A(ε)e−(1+ε)mesE)‖x‖ , (19)

for every x ∈ L2(E) . Here ε > 0 is arbitrary, and A(ε) < ∞ for any ε > 0. The
value A(ε) does not depend on l and x.
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Theorem 1 claims that if the set E is bounded, then the null-spaces of each
of operators F∗EFE , F∗EF∗E are trivial � they consist of zero-vectors only.

Theorem 2 implies that if mesE < ∞, then the null-spaces of each of operators
IE − F∗EFE , I − FEF∗E are trivial.

The following example shows that if mesE = ∞, then each of these null-spaces
can be not only nontrivial, but even in�nite dimensional.

E x a m p l e 1. Let K ⊂ R be the interval

K = [−a, a], where 0 < a <

√
π

2
. (20)

The set E is a "periodic" system of the intervals

E =
⋃

p∈Z

(
K + p

√
2π

)
. (21)

Let u(t) 6≡ 0 be a (smooth) function on R such that

suppu ⊆ K . (22)

The function u(t) is representable in the form

u(t) =

∞∫

−∞
eitξv(ξ) dξ , (23)

where v(ξ) is a fast decaying function. Let

y(t) =
∑

p∈Z
cpu(t + p

√
2π) , (24)

where {cp}p∈Z is a summable sequence. From (21)�(24) it follows that

supp y ⊆ E . (25)

Moreover,

y(t) =

∞∫

−∞
eitξv(ξ) ϕ(ξ) dξ, (26)

where
ϕ(ξ) =

∑

p∈Z
cpe

ipξ
√

2π, −∞ < ξ < ∞ . (27)

The function ϕ is periodic,

ϕ(ξ +
√

2π) ≡ ϕ(ξ), −∞ < ξ < ∞ . (28)
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Let us invert the order of reasoning. Starting from a function u(t) supported on
K, (22), and

√
2π-periodic function ϕ(ξ), (28), we de�ne the function y(t) by

(26), where v(ξ) is determined from u by (23). Then the equality (24) holds,
where {cp}p∈Z is the sequence of the Fourier coe�cient by the originally given
function ϕ: (27). Let a

√
2π-periodic function ϕ 6≡ 0 satisfy the condition

suppϕ ∩ [−
√

π/2,−
√

π/2] ⊆ K, (29)

where K is the same as before. Then

supp v(ξ)ϕ(ξ) ⊆ E . (30)

If, moreover, the function ϕ is smooth, then the sequence {cp}p∈Z, (27), is summable.
Thus the function y(t) is representable in the form (11), where x(ξ) =

√
2πv(ξ)ϕ(ξ),

suppx ⊆ E, supp y ⊆ E, therefore
∫

E

|y(t)|2 =
∫

R

|y(t)|2 =
∫

E

|x(ξ)|2dξ ,

i.e.,
‖FEx‖2 = ‖x‖2 . (31)

Because of the freedom in the choice of u(t) and ϕ(ξ), the set of x ∈ L2(E)
satisfying the condition (31) is an in�nite dimensional subspace of L2(E).

Let x1(ξ) = x(ξ)e−ihξ, where h ∈ R, and

y1(t) =
1√
2π

∫

E

eitξ x1(ξ) dξ , t ∈ R.

Then y1(t) = y(t− h), supp y1 = h + supp y. If a < 1
2

√
π
2 , then h can be chosen

such that (E + h) ∩ E = ∅ . In this case, y1(t) = 0, ∀t ∈ E, thus

FEx1 = 0 . (32)

As before, the set of x1 ∈ L2(E) satisfying the condition (32) is an in�nite dimen-
sional subspace of L2(E).

In this example, both

mes(E) = ∞, mes(R \ E) = ∞ . (33)

R e m a r k 6. In [1, Prop. 6] it was shown that if a set E satis�es the condition
mes (R \ E) < ∞, then the set of x ∈ L2(E) satisfying the equality (31) is an
in�nite dimensional subspace of L2(E).
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We recall that the operator A acting in a Hilbert space is said to be normal if

A∗A = AA∗ ,

where A∗ is the operator adjoint to the operator A.

Here and further
−E = {t ∈ R : −t ∈ E}. (34)

Lemma 2. The truncated Fourier operator FE is normal if and only if the
equality ∫

E\(−E)

|y(t)|2dt =
∫

(−E)\E

|y(t)|2dt (35)

holds for every y(t) of the form y(t) = 1√
2π

∫
E

eitξ x(ξ) dξ, t ∈ R, where x runs

over the whole space L2(E).

P r o o f. The condition F∗EFE = FEF∗E is equivalent to the condition:
the equality ‖FEx‖2 = ‖F∗Ex‖2 holds for every x ∈ L2(E). If x ∈ L2(E), then
(FEx)(t) = y(t), t ∈ E , and (F∗Ex)(t) = y(−t), t ∈ E . Thus, the equality
‖FEx‖2 = ‖F∗Ex‖2 takes the form

∫
E

|y(t)|2dt =
∫
E

|y(−t)|2dt. The latter equality

is equivalent to the equality (35).

De�nition 2. The set E is said to be symmetric if

mes∆(E,−E) = 0 , (36)

where ∆(E,−E) is the symmetric di�erence of the sets E and −E,

∆(E,−E) = (E \ (−E)) ∪ ((−E) \ E).

Since (E \ (−E))∩ ((−E) \E) = ∅ and mes (E \ (−E)) = mes ((−E) \E), the
condition (36) can be expressed in asymmetric form

mes
(
E \ (−E)

)
= 0.

Theorem 3. If the set E is symmetric, then the operator FE is a normal
operator.

P r o o f. The theorem is an evident consequence of Lemma 2: the expressions
in both sides of (35) are equal because both of them vanish.
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Question 1. Let the operator FE be normal. Is the set E symmetric?
We can not answer this question in full generality. However, under some extra

condition imposed on the set E the answer to this question is a�rmative.
The set S, S ⊂ R, is said to be bounded, bounded from below and bounded from

above, respectively, if S is contained, respectively, in some bounded interval [a, b],
bounded from above interval [a, +∞) or bounded from below interval (−∞, b],
where a, b are some �nite numbers. (In the �rst case, a < b.) The set S, S ⊂ R,
is said to be semi-bounded, if S is either bounded from above, or is bounded from
below. (In particular, every bounded set is semi-bounded.)

Theorem 4. Assume that the following two conditions are satis�ed:
1. The operator FE is normal;
2. The set E \ (−E) is semi-bounded.
Then the set E is symmetric.

Lemma 3. Let E, E ⊂ R be a set of positive measure mes (E) > 0, and
the set S, S ⊂ R, is semi-bounded. Then the set of all functions of the form
y(t) = 1√

2π

∫
E

eitξ x(ξ) dξ, t ∈ S, where x runs over L2(E), is dense in L2(S).

P r o o f. Assume for de�niteness that the set S is bounded from above,
say S ⊆ (−∞, b], where b < ∞. If the set of all such y is not dense in L2(S),
then there exists v ∈ L2(S), v 6= 0, such that

∫
S

v(t)y(t) dt = 0 for all y(t). From

this follows that
∫
S

v(t)e−itξ dt = 0, ∀ ξ ∈ E. Since S ⊆ (−∞, b], the function

f(ξ) = eibξ
∫
S

v(t)e−itξ dt, ξ ∈ R, belongs to the Hardy class H2
+. Since v ∈ L2(S)

is non-zero, f is a non-zero function from H2
+. Moreover, f(ξ) = 0 for ξ ∈ E.

However, the non-zero function from the Hardy class can not vanish on the set of
positive measure.

P r o o f of Theorem 4. We show that if the set S is not symmetric, that
is if mes (E \ (−E)) > 0, then the condition (35) is violated for some y(t) =

1√
2π

∫
E

eitξ x(ξ) dξ, where x ∈ L2(E). Then by Lemma 2, the operator FE is not
normal.

We �rst present the proof assuming that the set E \ (−E) is bounded. If the
set E \ (−E) is bounded, then the set

S
def= (E \ (−E)) ∪ ((−E) \ E) (37)

is bounded as well. We de�ne the function g(t) as

g(t) = 1, t ∈ (E \ (−E)), g(t) = 0, t ∈ ((−E) \ E) .
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Since the sets (E \ (−E)) and ((−E) \ E) do not intersect, the de�nition of the
function g is not contradictory. According to Lemma 3, for every number ε > 0
there exists a function y(t) = 1√

2π

∫
E

eitξ x(ξ) dξ such that

∫

S

|g(t)− y(t)|2 dt ≤ ε2 mes (E \ (−E)).

Since g(t) = 1 on (E \ (−E)),
∫

E\(−E)

|y(t)|2 dt ≥ (1− ε)2mes (E \ (−E)) .

Since g(t) = 0 on (−E) \ E),
∫

(−E)\E

|y(t)|2 dt ≤ ε2mes (E \ (−E)) .

Choosing ε < 1/2, we �nd y(t) = 1√
2π

∫
E

eitξ x(ξ) dξ for which the equality (35) is
violated.

If the set E \ (−E) is semi-bounded but not bounded, then the set S, (37),
is not bounded "in both directions". We assume for de�niteness that the set
E \ (−E) is bounded from above, say∗ (E \ (−E)) ⊂ (−∞, b], where b < ∞. We
construct such a function y(t) of the form (11) for which

∫

E\(−E)

|y(t)|2dt <

∫

(−E)\E

|y(t)|2dt . (38)

Since the set E \ (−E) is bounded from above but not bounded,

mes
(
((−E) \ (E)) ∩ (b,∞)

)
> 0 .

Therefore, there exists a �nite interval [p, q], [p, q] ∈ (b,∞), such that

mes
(
[p, q] ∩ ((−E) \ E)

)
> 0 .

Let
S = (−∞, q] ∩ (

(E \ (−E)) ∪ ((−E) \ E)
)
,

g(t) =

{
0, if t ∈ S, −∞ < t < p,

1, if t ∈ S, p ≤ t ≤ q .

∗Strictly speaking, this condition should be formulated as mes
(
(E \ (−E)) ∩ (b,∞)

)
= 0.
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Clearly,

(E \ (−E)) ⊂ S ∩ (−∞, p), S ∩ [p, q] = ((−E) \ E) ∩ [p, q], (39)

and ∫

E\(−E)

|g(t)|2dt <

∫

[p,q]∩((−E)\E)

|g(t)|2dt . (40)

(The left-hand side of this inequality is equal to zero, and the right-hand side is
equal to the strictly positive number mes

(
[p, q] ∩ ((−E) \ E)).) By Lemma 3, for

any ε > 0 there exists a function y of the form (11) such that
∫

S

|y(t)− g(t)|2dt < ε2 . (41)

If ε is small enough, then from (39)�(41) it follows that
∫

E\(−E)

|y(t)|2dt <

∫

((−E)\E)∩[p,q]

|y(t)|2dt ,

and all the more the inequality (38) holds.

R e m a r k 7. If mesE < ∞, then the operators F ∗
EFE and FEF ∗

E are integral
operators with the kernels

∫
E

eiω(t−s) dω,
∫
E

e−iω(t−s) dω, t, s ∈ E . The normality

of the operator FE means that these kernels coincide, that is
∫

E

eiωτ dω =
∫

E

e−iωτ dω, ∀ τ ∈ E − E .

Thus, the normality of the operator FE is equivalent to the equality
∫

E

sinωτ dω = 0, ∀ τ ∈ E − E . (42)

Since sinωτ is an odd function of ω,
∫

E

sinωτ dω =
∫

E\(−E)

sinωτ dω .

Thus, to obtain the negative answer to Question 1, it is enough to construct an
asymmetric set E of �nite positive measure

E ∩ (−E) = ∅, 0 < mesE < ∞ (43)
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such that ∫

E

sinωτ dω = 0, ∀ τ ∈ E −E . (44)

It is known that if mesE > 0, then the set E − E contains some interval
[−ε, ε], ε > 0. In particular, the condition (44) implies that

∫

E

sinωτ dω = 0, ∀ τ ∈ [−ε, ε] for some ε > 0 . (45)

We remark that in the paper [4] the set E, 0 < mesE < ∞, was constructed such
that ∫

E

eiωτ dω = 0, ∀ τ ∈ [−ε, ε] for some ε > 0 .

The methods used in the paper [4] (see also [5]) might help to obtain the negative
answer to Question 1.

Theorem 5. Assume that the Lebesgue measure of the set E is �nite. Then:
1. The operator F ∗

EFE is an integral operator

(F ∗
EFEx)(t) =

∫

E

KE(t, s)x(s) ds (46)

with the kernel
KE(t, s) =

∫

E

eiξ(t−s) dξ, t, s ∈ E . (47)

2. The operator F ∗
EFE is a trace class operator

traceF ∗
EFE = (mesE)2 , (48)

i.e., the operator FE belongs to the class S2 of Hilbert�Schmidt operators

‖FE‖S2 = mesE . (49)

In particular, the operator FE is a compact operator.
3. The trace norm of the operator FE satis�es the condition

(mesE)2 ≤ ‖FE‖S1 ≤ ∞ . (50)

P r o o f.
1. The representation (46), (47) is a direct consequence of the equalities (6)

and (7) and of the rule for calculation the kernel of the product of two integral
operators in terms of their kernels.
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2. The kernel KE(t, s), (47), is positive de�nite, bounded and uniformly
continuous for (t, s) ∈ E × E. As it claimed in [6, Chap. 3, Sec. 10], from these
properties of the kernel of an integral operator it follows that this operator is a
trace class operator, and that its trace is equal to the integral

∫
E

KE(t, t) dt . (See

the last paragraph of Section 10 of the quoted reference.)
3. The equality (48) means that

∑

1≤j<∞
(sj(FE))2 = (mesE)2 , (51)

where sj(FE) are the singular values of the operator FE . In view of (12),

sj(FE) ≤ 1, 1 ≤ j < ∞ .

Thus, ∑

1≤j<∞
sj(FE) ≥ (mesE)2 . (52)

To study under which conditions the operator FE , or what is the same (see
Remark 3) the operator PEFPE , belongs to the trace class S1, we have to consider
the more general operator

FS1,S2 = PS2FPS1 , (53)
where S1, S2 ⊂ R are measurable sets, and for the set S, S ⊂ R, the operator
PS : L2(R) → L2(R) is de�ned as

(PSx)t) = 1IS(t)x(t), where 1IS(t) = 1, t ∈ S, 1IS(t) = 0, t /∈ S . (54)

Theorem 6. If the truncated Fourier operator FE is a Hilbert�Schmidt
operator FE ∈ S2, then the set E is of �nite measure, and the equality (49)
holds.

P r o o f. The equality (49) was obtained under the assumption that
mesE < ∞. If mesE = ∞, the kernel KE(t, s), (47), is not well de�ned, and
the reasoning used in the proof of Theorem 5 is not applicable. Consider the
set En = E ∩ [−n, n] and the operator FEn . The operator FEn can be identi�ed
with the operator PEnFEPEn (see Remark 3), where PEn is the orthoprojector
in L2(R): (PEnx)(t) = 1IEn(t)x(t). Therefore, ‖FEn‖S2 ≤ ‖FE‖S2 . On the other
hand, the set En is of �nite measure, and the formula (49) is applicable to En:
mesEn = ‖FEn‖S2 . Thus, for every n, mesEn ≤ ‖FE‖S2 . Turning n to in�nity,
we obtain that mesE ≤ ‖FE‖S2 < ∞.
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Lemma 4. Assume that S1, S2 are bounded measurable sets

S1, S2 ⊆ [−R, R] for some R ∈ (0,∞). (55)

Then the operator FS1,S2 belongs to the trace class S1, and its trace norm
‖FS1,S2‖S1 admits the estimate

‖FS1,S2‖S1 ≤ (mesS1)1/2 · (mesS2)1/2 · eR2
. (56)

P r o o f. The operator FS1,S2 is an integral operator in the space L2(R) with
the kernel k(t, ξ) = 1IS2(t)e

itξ1IS1(ξ) , which is the sum of the rank-one kernels

k(t, ξ) =
∑

0≤j<∞
ijkj(t , ξ), kj(t , ξ) =

1
j!
· 1IS2(t)t

j · ξj1IS1(ξ) .

The one-dimensional integral operator Kj ≥ 0 with the kernel kj(t, ξ) admits the
estimate

‖Kj‖S1 ≤
1
j!
· ‖1IS2(t)t

j‖L2(R) · ‖ξj1IS1(ξ)‖L2(R) .

Since S1 ⊂ [−R, R], S2 ⊂ [−R,R],

‖1IS(t)tj‖L2(R) ≤ (mesS)1/2Rj , S = S1, S2 .

Therefore,

‖FS1,S2‖S1 ≤
∑

0≤j<∞
‖Kj‖S1 ≤ (mesS1)1/2 · (mesS2)1/2 ·

∑

0≤j<∞

R2j

j!
.

The estimate (56) shows that if the set E is bounded, then the operator FE

is a trace class operator. However, this estimate does not work if the set E is
unbounded.

Theorem 7. Let the set E, E ⊂ R, satis�es the condition
∑

j∈Z
(mes (Ej))1/2 < ∞, (57)

where
Ej = E ∩ [j − 1/2, j + 1/2] , j ∈ Z. (58)

Then the operator FE is a trace class operator.

The following lemma is a modi�cation of Lemma 4:
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Lemma 5. Let E, E ⊂ R, be a measurable set, and the operator FEp,Eq =
PEqFPEp is de�ned by (53)�(54), with S1 = Ep, S2 = Eq.

Then

‖FEp,Eq‖S1 ≤ e1/4 · (mesEp)1/2 · (mesEq)1/2, ∀ p, q ∈ Z. (59)

P r o o f. For p = 0, q = 0, the estimate (59) is the special case of Lem-
ma 4 corresponding to S1 = E0, S2 = E0, R = 1/2. The general case of arbitrary
integers p and q can be reduced to the case p = 0, q = 0 by means of translation.
The sets S1 = −p+Ep and S2 = −q+Eq are contained in the interval [−1/2, 1/2],
and the operator FEp,Eq is related to the operator FS1,S2 by the equality FEp,Eq =
Uq FS1,S2Up, where Ur, r ∈ Z, are the unitary operators (Urx)(t) = eirtx(t).

P r o o f of Theorem 7. Identifying the operator FE with the operator
PEFPE , we represent it as the double sum

FE =
∑

p∈Z,q∈Z
PEqFPEp ,

hence
‖FE‖S1 ≤

∑

p∈Z,q∈Z
‖PEqFPEp‖S1 .

Applying the estimate (59) to the summand in the right-hand side, we obtain
that

‖FE‖S1 ≤ e1/4
(∑

j∈Z
(mesEj)1/2

)2
, (60)

where Ej is de�ned in (58).

R e m a r k 8. Since
∑

aj ≤
(∑

a
1/2
j

)2 for non-negative aj ,

mesE =
∑

j∈Z
mesEj ≤

( ∑

j∈Z
(mesEj)1/2

)2
.

Thus the set E, for which the expression in the right-hand side of (60) is �nite
automatically, satis�es the condition mesE < ∞. However, there are the sets E
of �nite measure for which the expression in the right-hand side of (60) is in�nite.
For example, E =

⋃
1≤j<∞

[j − j−2, j + j−2].

It should be mentioned that Theorem 7 is related to some results by M.Sh. Bir-
man and M.Z. Solomyak [7, Theorem 11.1], and may be considered as a special
case of their result. However, our presentation is more direct and simple.

Theorem 7 is precise.
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Theorem 8 (B. Simon, [8, Prop. 4.7]). Let the operator FE be a trace class
operator. Then the set E satis�es the condition (57), (58).

P r o o f. We identify the operator FE with the operator PEFPE . (See
(8), (9), and Remark 3.) Since the Fourier�Plancherel operator F is unitary, the
operator F−1FE = F−1PEFPE is a trace class operator as well

F−1(PEFPE) ∈ S1 . (61)

We are to deduce from (61) that the set E satis�es the condition (57), (58).
According to Theorem 6, the condition (61) implies that the set E is of �nite
measure mesE < ∞ (see (50)). Therefore, the function

hE(t) =
1
2π

∫

E

e−iξt dξ , t ∈ R , (62)

is well-de�ned and continuous on R. The operator

Ce = (F−1PEF)PE (63)

can be represented as the product of the multiplication and the convolution op-
erators

(CEx)(t) =
∫

R

hE(t− ξ) 1IE(ξ) x(ξ) dξ . (64)

We assume that the operator CE is a trace class operator acting in the space
L2(R). We have to derive from here that the set E satis�es the condition (57),
(58).

The value h(0) = 1
2πmesE is strictly positive, and the function h is continuous.

Therefore there exists δ > 0 such that

Reh(t) >
1
4π

mesE, t ∈ [−δ, δ] . (65)

Since the operator CE is a trace class operator in L2(R), for any two systems ∗
{ϕm}m∈M and {ψm}m∈M , orthonormal in L2(R), the inequality

∑

m∈M

|〈CEϕm, ψm〉L2
E
| ≤ ‖CE‖S1 < ∞ (66)

holds. We obtain the information concerning the set E by choosing the systems
{ϕj}m∈M and {ψm}j∈M in an appropriate way.

∗M ⊆ Z is an indexing set.
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Let
Qm,δ = [mδ − δ/2,mδ + δ/2) , m ∈ Z . (67)

The intervals Qm,δ, m ∈ Z, form the partition of the real axis. Let

Em,δ = E ∩Qm,δ , m ∈ Z . (68)

We will prove that for chosen δ,
∑

m∈Z
(mesEm,δ)1/2 < ∞ . (69)

Let M = {m ∈ Z : mesEm,δ > 0}. For m ∈ M , we set

ϕm(t) = (mesQm,δ)−1/2 · 1I
Qm,δ

(t), (70a)

ψm(t) = (mesEm,δ)−1/2 · 1I
Em,δ

(t) . (70b)

The systems {ϕm}m∈M and {ψm}m∈M , de�ned by (70), are orthonormal. Let
us calculate and estimate the scalar product 〈CE ϕm, ψm〉L2(R) . According to (63)
and (70),

〈CE ϕm, ψm〉L2(R)

= (mesQm,δ)−1/2(mesEm,δ)−1/2

∫∫

t∈Qm,δ

ξ∈Qm,δ

h(t− ξ)1I
Em,δ

(ξ) dξ . (71)

According to (67), for t ∈ Qm,δ, ξ ∈ Qm,δ, the inequality |t − ξ| ≤ δ holds.
Together with (65), this yields

Reh(t− ξ) ≥ c > 0 for t ∈ Qm,δ, ξ ∈ Qm,δ, where c =
1
4π

mesE . (72)

Invoking (71), we obtain

|〈CE ϕm, ψm〉L2(R) | ≥ Re 〈CE ϕm, ψm〉L2(R)

= (mesQm,δ)−1/2(mesEm,δ)−1/2

∫∫

t∈Qm,δ

ξ∈Qm,δ

Reh(t− ξ)1I
Em,δ

(ξ) dξ . (73)

Finally, taking into account that mesQm,δ = δ, we get

|〈CE ϕm, ψm〉L2(R) | ≥ c δ (mesEm,δ)1/2 . (74)
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From here and (66), the condition (69) follows.
The condition (69) is almost what we need. We obtain the condition for any

δ satisfying the condition (65). We need the condition (69) for δ = 1. (For δ = 1,
the condition (57) is needed.)

Actually, if the condition (69) is ful�lled for some positive δ, then it is ful�lled
for any positive δ. We show this in the generality which we need. Because we
may diminish δ without violating the condition (65), we choose δ of the form

δ =
1
N

, N is a positive integer which is large enough . (75)

If a1, a2, . . . , aN are non-negative numbers, then

(a1 + a2 + · · · + aN )1/2 ≤
∑

1≤k≤N

a
1/2
k .

It is clear that for δ = 1/N , either the sets Qj,1 and Qm,δ do not intersect, or
the set Qm,δ is contained in Qj,1. Moreover, the total number of the sets Qm,δ

contained in Qj,1 is equal to N . Thus,

mes (E ∩Qj,1) =
∑

m: Qm,δ⊂Qj,1

mes (E ∩Qm,δ) ,

and the sum in the right-hand side contains precisely N summands. Therefore,
for every j ∈ Z,

(mes (E ∩Qj,1))1/2 ≤
∑

m: Qm,δ⊂Qj,1

(mes (E ∩Qm,δ))1/2 ,

and ∑

j∈Z
(mes (E ∩Qj,1))1/2 ≤

∑

m∈Z
(mes (E ∩Qj,δ))1/2 . (76)

Question 2. For which sets E the operator FE is compact?
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