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1. Introduction

Let Z be a subset of a Banach space X and x ∈ X . The distance from x to Z
is de�ned as

E(x,Z) = inf{||x− z|| : z ∈ Z}.

De�nition 1.1. Let K be a subset of a Banach space X , n ∈ N ∪ {0}. The
Kolmogorov n-width (or n-th Kolmogorov number) of K is given by

dn(K,X ) = inf
Xn

sup
x∈K

E(x,Xn),

where the in�mum is over all subspaces Xn ⊂ X , of dimension not exceeding n.
We use the notation dn(K) if X is clear from context.

This notion was introduced by Kolmogorov [Kol36] in 1936. It has been a
subject of an extensive study and has found many applications, both in Approxi-
mation Theory and in Functional Analysis, see [CS90], [LGM96], [Pie80], [Pin85],
and [Tik60]. In [OS09] it was discovered that some general asymptotic properties
of Kolmogorov widths are useful in the study of closures of sets of operators in
the weak operator topology. More results on asymptotic properties of Kolmogorov
widths were discovered in [Ost10]. The purpose of this paper is to continue anal-
ysis of asymptotic properties of widths.

Our emphasis in this paper is on dependence of asymptotic properties of widths
on the ambient space. It is known for long time (see [Tik60, �7]) that if Y is a
subspace of a Banach space X and K ⊂ Y, then it can happen that dn(K,Y) >
dn(K,X ). Furthermore, the quotient dn(K,Y)/dn(K,X ) can be arbitrarily large.
An example with in a certain sense optimal order of this quotient was found in
[Ost10], where the following result was proved:

Theorem 1.2 ([Ost10]). For each n the Banach space `3n
1 contains a 2n-

dimensional subspace Y2n and a compact K2n ⊂ Y2n such that dn(K2n, `3n
1 ) ≤ 1

but dn(K2n,Y2n) ≥ c
√

n for some absolute constant c > 0.

R e m a r k 1.3. The order in Theorem 1.2 is optimal in the following sense:
Proposition 2.7 implies that dn(K2n,Y2n) ≤ √

2ndn(K2n, `3n
1 ).

The paper is structured as follows: in Section 2 we introduce the notion of
the absolute width da

n(K) (De�nition 2.1), and collect the necessary basic facts.
In general, da

n(K) ≤ dn(K), but in some cases, we obtain the equality, or at least
proportionality, of the two quantities. In Section 3 we study a�ne widths. This
allows us to construct, in certain Banach spaces X, a compact convex set K so
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that d1(K) > da
1(K). In Section 4 we note some connections of Kolmogorov and

absolute widths to other s-sequences (such as the sequence of Gelfand numbers).
This provides us with some tools to be used later.

We then pass to the study of asymptotic behavior of Kolmogorov numbers. In
Section 5 we exhibit a large class of Banach spaces which contain a sequence of
compact subsets (Kn), so that limn dkn(Kn)/da

kn
(Kn) = ∞, for some increasing

sequence (kn). In Section 6 we sharpen this result by showing that, if a space
X satis�es certain conditions (for instance, if it is K-convex), then it contains a
compact K with the property that lim supn dn(K)/da

n(K) = ∞. If, furthermore,
X contains `p (1 < p < ∞) as a complemented subspace, then it contains a
compact subset K so that lim infn n−σdn(K)/da

n(K) = ∞, for some σ > 0. In
Section 7 we examine compacts K for which dn(K) = da

n(K), for any ambient
space. Finally, Section 8 is devoted to comparing the Kolmogorov widths of the
sets K and u(K), where u is compact operator.

Throughout the paper we pose some interesting geometric problems related
to our study (Problems 2.5, 2.6, 5.12, 6.1, 6.4, 7.1, 8.1). Problem 5.12 could be
of interest not only in the context of the theory of widths.

We use the basic Banach space theory and its standard notation. We denote
by B(X ) the closed unit ball of a space X .

2. Absolute Widths
Dependence of the sequence {dn(K)}∞n=0 on the ambient Banach space leads

to the introduction of the following de�nition.
De�nition 2.1 ([Ism74]). Let K be a compact in a Banach space Y and

n ∈ N. The n-th absolute width (or number) da
n(K) of K is de�ned by da

n(K) =
infX dn(K,X ), where the inf is over all Banach spaces X containing Y as a sub-
space.

Absolute widths were studied in [Ism74], [Koc90], [Oik95], and [Ost10]. Our
main purpose in this paper is to study the asymptotic behavior of the quotients
dn(K,Y)/da

n(K) under di�erent assumptions. We start with the following natural
open problem: characterize Banach spaces Y for which dn(K,Y) = da

n(K) for all
compacts K ⊂ Y.

We present a class of Banach spaces having this property. The following
de�nition goes back to [LP68]: Let 1 ≤ λ < ∞. A Banach space Y is called
an L∞,λ-space if for every �nite-dimensional subspace S ⊂ Y there is a �nite-
dimensional subspace F ⊂ Y such that S ⊂ F and d(F, `m∞) ≤ λ, where m =
dimF . A Banach space is called an L∞,λ+-space if it is a L∞,ν-space for each
ν > λ. See [Bou81] and [LT73] for theory of Lp-spaces.
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More generally, a Banach space X is called an Nλ-space if, for every �nite
dimensional subspace E of X, there exists a �nite dimensional subspace F , sat-
isfying E ⊂ F ⊂ X and λ(F ) ≤ λ. Here, following [Tom89], we de�ne λ(F ) the
(absolute) projection constant of F as follows: for a superspace G ⊃ F , de�ne
the relative projection constant λ(F, G) as the in�mum of ‖P‖, where P is the
projection from G onto F . Then λ(F ) = supλ(F, G), with the supremum taken
over all superspaces G.

A Banach space X is called an Nλ+-space if it is a Nν-space for each ν > λ,
and an N -space if it is a Nλ-space for some 1 ≤ λ < ∞.

It is easy to see that each L∞,λ-space is an Nλ-space. However, the converse
is false, see e.g. [Sza90]. It is not known whether each N -space is an L∞,λ-space
for some λ < ∞. This problem is a version of the well-known Pλ-problem (see
[LP68, Problem 7, p. 323]), which is still open. However, it is known [LL66] that,
for a real Banach space X , the following are equivalent: (i) X is a N1+-space; (i)
X is a L∞,1+-space; (iii) X ∗ = L1(µ), for some measure µ.

Proposition 2.2. Let K be a compact in an N∞,λ+-space Y. Then dn(K,Y) ≤
λda

n(K) for all n ∈ N.
P r o o f. It su�ces to show that for each C > λ and n ∈ N we have

dn(K,Y) ≤ Cda
n(K). Pick ε > 0 so that (1 + 3ε + ε2)λ < C. By the de�nition of

da
n there exists a Banach space X ⊃ Y and an n-dimensional subspace Xn ⊂ X

such that E(x,Xn) ≤ (1+ ε)da
n(K) for any x ∈ K. Let {ki} ⊂ K be an ελda

n(K)-
net in K. Find a �nite dimensional subspace F ⊂ Y, containing {ki}, so that
there exists a projection P : X → F satisfying ‖P‖ ≤ λ(1 + ε). Let Yn = P (Xn).
Then E(ki,Yn) = E(Pki, PXn) ≤ (1+ε)λE(ki,Xn) ≤ (1+ε)2λda

n(K). Let k ∈ K
and ki be such that ||k − ki|| ≤ ελda

n(K), we have

E(k,Yn) ≤ ||k − ki||+ E(ki,Yn) ≤ ((1 + ε)2 + ε)λda
n(K) ≤ Cda

n(K).

Corollary 2.3. Let K be a compact in an L∞,1+-space Y. Then dn(K,Y) =
da

n(K) for all n ∈ N.
In this connection it is worth mentioning that all spaces of continuous functions

on compacts with their sup-norms are L∞,1+-spaces, see [LT73].

R e m a r k 2.4. Corollary 2.3 can be regarded as a generalization of the
following result of Ismagilov [Ism74, Corollary of Theorem 2]: Let K be a compact
in a Banach space X and B be the Banach space of all bounded functions on B(X ∗)
(the unit ball of X ∗) with the sup-norm. Let i be the natural isometric embedding
of X into B. Then da

n(K) = d(i(K),B). To get this result from Corollary 2.3 it
su�ces to combine the corollary with the well-known fact that B is an L∞,1+-space
(see [LT73]).
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Do Proposition 2.2 and Corollary 2.3 characterize the N spaces and L∞,1+

spaces, respectively?

Problem 2.5. Let a Banach space Y be such that for some 1 ≤ λ < ∞ the
condition dn(K,Y) ≤ λda

n(K) holds for each compact K ⊂ Y and each n ∈ N.
Does it follow that Y is an N -space?

Problem 2.6. Let a Banach space Y be such that da
n(K) = dn(K,Y) for each

compact K ⊂ Y and each n ∈ N. Does it follow that Y is an L∞,1+-space?

Approaches to these questions may rely on Zippin's solution [Zip81a, Zip81b,
Zip84] to the close-to-isometric version of the Pλ-problem. (See [Tom89] for a
presentation of this result of Zippin and [Zip00] for further results related to the
Pλ-problem.)

Corollary 2.3 can be used to estimate from above the quotient dk(K)/da
k(K)

for an n-dimensional compact K.

Proposition 2.7. Let K be an n-dimensional compact in a Banach space Y.
Then dk(K,Y) ≤ √

nda
k(K) for all k ∈ N.

P r o o f. We may assume that Y is separable and so we may consider Y as
a subspace of `∞. It is easy to see that `∞ is an L∞,1+-space. By Corollary 2.3,
da

n(K) = dn(K, `∞).
The inequality dk(K,Y) ≤ √

nda
k(K) is trivially true for k ≥ n. So let k ∈

{0, . . . , n− 1}. Consider an arbitrary ε > 0. Let Xk be a k-dimensional subspace
of `∞ such that E(x,Xk) ≤ (1 + ε)da

k(K) for all x ∈ K. Let P : `∞ → span[K]
be a linear projection with norm ≤ √

n, existing by the Kadets�Snobar theorem
[KS71] and let Yk = PXk. Then for all x ∈ K we have E(x,Yk) = E(Px, PXk) ≤
||P ||E(x,Xk) ≤

√
n(1 + ε)da

k(K).

As we already mentioned in Remark 1.3, the estimate of Proposition 2.7 is
optimal up to a multiplicative constant.

As a step towards the solution of Problems 2.6 and 2.5 we �nd a wide class of
spaces X for which the quotients dn(K,X)/da

n(K) can be arbitrarily large. This
is the subject of Sections 5 and 6.

3. A�ne Widths, Geometry, and Injectivity
While dealing with arbitrary convex (not necessarily centrally symmetric) sets,

it is convenient to use a�ne subspaces for approximation (see, e.g., [AO10]).
De�nition 3.1. Let K be a compact in a Banach space Y and n ∈ N ∪ {0}.

The n-th a�ne width d̃n(K) of K is set to be infZ supx∈K E(x,Z), where the
in�mum runs over all a�ne subspaces of Z ⊂ Y of dimension not exceeding n.
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The n-th absolute a�ne width d̃a
n(K) of K is de�ned by d̃a

n(K) = infX d̃n(K, X),
where the inf is over all Banach spaces X containing Y as a subspace.

It is clear that d̃a
n(K) ≤ d̃n(K,X), and the equality is attained if X is 1-

injective. Moreover (see [AO10, Section 6.2]),

dn(K) ≥ d̃n(K) ≥ dn+1(K ∪ (−K)).

Furthermore, dn(K) = d̃n(K) if K is centrally symmetric. The a�ne widths d̃0

have been considered previously. To summarize the existing knowledge on them,
recall a few de�nitions.

De�nition 3.2. For a bounded subset K of a Banach space Y, de�ne its
diameter D(K) and radius R(K) by setting

D(K) = sup
a,b∈K

‖a− b‖, R(K) = inf
y∈Y

sup
a∈K

‖a− y‖

(that is, R(K) is the in�mum of the radii of balls containing K). The Jung
constant J(Y) of a Banach space Y is de�ned as the supremum (over bounded
sets K ⊂ Y) of 2R(K)/D(K). Note that, in our notation, R(K) = d̃0(K).

Clearly, 2 ≥ J(Y) ≥ 1. The spaces Y with J(Y) = 1 were described in
[Dav77].

Theorem 3.3 ([Dav77]). For a real Banach space Y, the following are equi-
valent:

1. For any compact K ⊂ Y, there exists y ∈ Y such that K ⊂ B(y,D(K)/2).

2. Y is 1-injective.

3. J(Y) = 1.

The equivalence (1) ⇔ (2) in the above theorem precedes [Dav77] � it is due
to [Nac50]. For certain Banach spaces, the Jung constant is known. For instance,
[Bal87, Pic88] show that, for 1 ≤ p < ∞, J(Lp(µ)) = max{21/p, 2(p−1)/p}. By
[FS98], for any rearrangement invariant space Y which is not injective, J(Y) ≥ √

2,
and the equality holds i� Y is isometric to the Hilbert space. [AFS00] estab-
lishes the Jung constant for some classes of Banach lattices (such as Lorentz
spaces). One is referred to the bibliography of the latter paper for additional
information. In our notation, Theorem 3.3 implies that, for any bounded K
in a 1-injective Banach space Y, d̃a

0(K) = D(K)/2. For any Banach space Y,
J(Y) = supK⊂Y bounded d̃0(K)/d̃a

0(K). This leads to:
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Proposition 3.4. Suppose a real Banach space X is not 1-injective. Then
X̃ = R⊕1X contains a bounded centrally symmetric subset K, such that da

1(K) <
d1(K).

P r o o f. By Theorem 3.3, X contains a bounded set A, such that D(A) = 1/2,
while R(A) = c ∈ (1/4, 1/2]. By translation, we may assume that ‖x‖ ≤ 1/2 for
any x ∈ A. Consider the �skew cylinder�

K = conv
(
1⊕A, (−1)⊕(−A)

)
=

{
t⊕

(1 + t

2
a1−1− t

2
a2

)
: −1 ≤ t ≤ 1, a1, a2 ∈ A

}
.

We shall show that d1(K) ≥ c, while da
1(K) ≤ 1/4 (in fact, equalities hold in

both cases, but we do not need this for our purposes). We handle da
1(K) �rst.

Embed X into a 1-injective space X̃ . By the discussion above, there exists x̃ ∈ X̃
such that ‖x̃ − a‖ ≤ 1/4 for any a ∈ A. Consider the 1-dimensional space
F = span[1⊕ x̃] ⊂ R⊕1 X̃ , and show that, for any y ∈ K, E(y, F ) ≤ 1/4. Indeed,
write y = t⊕ a, where t ∈ [−1, 1], and

a =
1 + t

2
a1 − 1− t

2
a2 (a1, a2 ∈ A).

Then t⊕ tx̃ ∈ F , hence

E(y, F ) ≤ ‖y − t⊕ tx̃‖ = ‖a− tx̃‖ =
∥∥∥1 + t

2
(a1 − x̃)− 1− t

2
(a2x̃)

∥∥∥

≤ 1
4

(1 + t

2
+

1− t

2

)
=

1
4

.

Turning to d1(K), we have to show that, for any 1-dimensional subspace F
of R ⊕ X , we have supa∈A E(1 ⊕ a, F ) ≥ c. If F = span[0 ⊕ x] ⊂ R ⊕1 X , the
previous inequality holds for every a. Now consider F = span[1 ⊕ x] ⊂ R ⊕1 X .
Note that, for a ∈ A, E(1⊕ a, F ) = inft∈R(|1− t|+ ‖tx− a‖). Consider the cases
of ‖x‖ ≤ 1 and ‖x‖ > 1 separately.

(i) If ‖x‖ ≤ 1,

|1−t|+‖tx−a‖ = |1−t|+‖(x−a)−(1−t)x‖ ≥ |1−t|+‖x−a‖−|1−t|‖x‖ ≥ ‖x−a‖,

hence supa∈A E(1⊕ a, F ) ≥ supa∈A ‖x− a‖ ≥ c.
(ii) If ‖x‖ > 1,

|1− t|+ ‖tx− a‖ ≥ 1− |t|+ |t|‖x‖ − ‖a‖ ≥ 1− ‖a‖ ≥ 1
2
.

As c ≤ 1/2, we are done.

We obtain a sharper result for X = L1(µ).
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Proposition 3.5. Suppose the real Banach space L1(µ) (µ is a σ-�nite mea-
sure) has dimension at least n = 2k + 1, k ≥ 2. Then L1(µ) contains a closed
�nite dimensional centrally symmetric subset K, satisfying da

1(K) ≤ 1/4, and
d1(K) ≥ (n− 1)/(2n).

This result is asymptotically optimal: by Proposition 4.3, d1(K) ≤ 2da
1(K).

P r o o f. By assumption, L1(µ) contains a contractively complemented
copy of `n

1 . Thus, it su�ces to prove the existence of a set K ⊂ `n
1 with desired

properties. Write `n
1 = R ⊕1 `n−1

1 . By [Dol87], J(`n−1
1 ) = 2(n − 1)/n. By the

compactness of the set of bounded compacts in a �nite dimensional space (with
respect to the Hausdor� distance), `n−1

1 contains a set A with diameter 1/2, and
radius (n− 1)/(2n). We construct K as in the proof of Proposition 3.4.

R e m a r k 3.6. In fact, [Dol87] shows that J(`n−1
1 ) = 2(n−1)/n i� there exists

a Hadamard matrix of order n. Walsh matrices are clearly Hadamard matrices
of order 2k. The existence of Hadamard matrices of order 4k for any k ∈ N is a
long-standing conjecture.

4. Relations with Other Sequences of s-numbers
In this section, we consider the relations between Kolmogorov and absolute

numbers of operators, on one hand, and other sequences of s-numbers, on the
other hand. For general properties of s-numbers (or s-sequences), we refer to
[Pie87]. We de�ne the Kolmogorov and absolute widths (numbers) of an operator
T ∈ B(X ,Y) by setting dn(T ) = dn(T (B(X )), and da

n(T ) = da
n(T (B(X )). We

also need to de�ne the approximation and Gelfand numbers of T , denoted by cn

and an, respectively:

an(T ) = inf{‖T − S‖ : S ∈ B(X ,Y), rankS ≤ n},
cn(T ) = inf{‖T |E‖ : E ⊂ X , codim E ≤ n}.

Note that dn(T ) ≤ an(T ), cn(T ) ≤ an(T ), and dn(T ) = inf ‖qT‖, where the
in�mum runs over all quotient maps q : Y → Y/F , with dimF ≤ n.

By [Pie87], s-numbers (such as an(·), cn(·), and dn(·)) have an ideal property:

sn(ATB) ≤ ‖A‖sn(T )‖B‖

for any three operators A, B, and T .
The following lemma seems to be part of the Banach space lore.
Proposition 4.1. Consider an operator T ∈ B(X ,Y), and n ∈ N.
1. If Y is λ-injective, then an(T ) ≤ λcn(T ).
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2. If X is λ-projective, then an(T ) ≤ λdn(T ).

P r o o f. We only prove (2). Suppose dn(T ) < 1, and show that there exists
an operator u : X → Y, of rank ≤ n, with ‖T − u‖ < λ. To this end, pick a
subspace F ⊂ Y, such that dimF ≤ n, and ‖qF T‖ < 1 (here, qF : Y → Y/F is
the quotient map). As X is λ-projective, qT admits a lifting T0 : X → Y, with
‖T0‖ < λ and qT0 = qT . Let u = T − T0. As qu = 0, the range of u must be
contained in F , hence ranku ≤ dimF ≤ n.

In a similar fashion, one can show:

Proposition 4.2. Consider T ∈ B(X ,Y), and n ∈ N.
1. If X is 1-projective, then da

n(T ) = cn(T ).

2. If Y is 1-injective, then da
n(T ) = dn(T ).

P r o o f. Here, we prove (1). Let J be an embedding of Y into a 1-injective
space Y0. By Proposition 4.1(2), da

n(T ) = dn(JT ) = an(JT ) ≥ cn(JT ) = cn(T ).
Conversely, by Proposition 4.1(1), an(JT ) ≤ cn(JT ).

Proposition 4.3. For any T ∈ B(X ,Y) and k ∈ N, dk(T ) ≤
√

2(k + 1) da
k(T ).

P r o o f. Fix a quotient map Q : X0 → X, where X0 is 1-projective.
Clearly, dk(T ) = dk(TQ) ≤ ak(TQ), and da

k(T ) = da
k(TQ). By Proposition 4.2,

da
k(T ) = ck(TQ). By [CS90, Proposition 2.4.3], ak(TQ) ≤

√
2(k + 1) ck(TQ).

Lemma 4.4. For any operator u, cn(u) ≥ da
n(u).

Some cases of equality are noted in Propositions 4.1 and 4.2.

P r o o f. For u ∈ B(X ,Y), consider an isometric embedding j of Y into `∞(I),
for a su�ciently large index set I. Let E ⊂ X be a subspace of codimension n on
which ‖u|E‖ < λ. We need to show that da

n(u(B(X ))) < λ. It su�ces to show that
dn(ju(B(X ))) < λ. Using the injectivity of `∞(I), we obtain ṽ ∈ B(X , `∞(I)) so
that ṽ|E = ju|E , and ‖ṽ‖ = ‖ju|E‖ < λ. Let w = ṽ − ju. Then ‖ju + w‖ < λ
and rankw ≤ n. This implies that dn(ju(B(X ))) ≤ E(ju(B(X )), w(X ))) < λ.

Finally, we state a well known result, to be used throughout the paper.

Lemma 4.5. Suppose K is a subset of a Banach space X , and T ∈ B(X ,Y).
Then, for any n ∈ N, dn(T (K),Y) ≤ ‖T‖dn(K,X ), and da

n(T (K)) ≤ ‖T‖dn(K).
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Sketch of the p r o o f. (i) For any C > dn(K,X ), there exists F ⊂ X , so that
dimF ≤ n, and E(K, F ) < C. Then dn(T (K),Y) ≤ E(T (K), T (F )) < C‖T‖.
Taking the in�mum over all C's, we conclude that dn(T (K),Y) ≤ ‖T‖dn(K,X ).

(ii) Embed X and Y isometrically into `∞(I) and `∞(J), respectively. Then
T has an extension S : `∞(I) → `∞(J), with ‖T‖ = ‖S‖. We know that da

n(K) =
dn(K, `∞(I)), and da

n(T (K)) = dn(S(K), `∞(J)). By Part (i), dn(S(K), `∞(J)) ≤
‖S‖dn(K, `∞(I)).

5. A Class of Spaces for Which the Ratio Between Widths and
Absolute Widths Can be Arbitrarily Large

Throughout this section, Bm
p stands for the unit ball of `m

p . We use VR(F ) to
denote the volume ratio of a �nite-dimensional normed space F , that is VR(F ) =
vol(B(F ))/vol(E), where E is the maximum volume ellipsoid in B(F ), see [ST80]
or [Pis89] for basic facts about VR. The purpose of this section is to prove the
following result.

Theorem 5.1. Let X be a Banach space containing a sequence {Xn} of uni-
formly complemented subspaces with dimXn → ∞ and such that there exists
γ ∈ [0, 1/2) satisfying

lim inf
n→∞

VR(Xn)
(dimXn)γ

= 0.

Then there exist a sequence of compacts Kn ⊂ X with

lim
n→∞

da
n(Kn)

dn(Kn,X )
= 0.

The proof relies on the following �nite dimensional theorem.

Theorem 5.2. Suppose γ ∈ [0, 1/2) and σ ∈ (γ, 1/2). Let A ≥ 5 be a positive
integer satisfying

A− 2
2(A + 1)

≥ γ
A

A− 1
+ (σ − γ).

Then there exists N0 ∈ N with the following property: if n ≥ N0 is even, and X is
a normed space of dimension An, with VR(X) ≤ nγ, then there exists a compact
symmetric K ⊂ X, so that da

n(K) ≤ C1, and dn(K,X) ≥ nσ−γ, where C1 is a
constant which depends only on A.

Note that, for γ and σ as above, A satisfying the centered identity always
exists. Indeed, as A → ∞, the left hand side tends to 1/2, and the right hand
side � to σ < 1/2.
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Tools which we use in this proof were invented by Gluskin [Glu81] and later
developed by Szarek [Sza81] and [Sza86]. See [MT03] for a survey of related
results. Throughout the proof we use Gaussian random variables. To describe
them, denote an orthonormal basis in RN by (ei). We call a vector

∑N
i=1 giei N -

standard Gaussian if gi are independent standard normal random variables (with
E(|gi|2) = 1). It is well known that the de�nition is actually independent of the
choice of an orthonormal basis in RN . If P is an orthogonal projection on an M -
dimensional subspace of RN , and (g̃j)k

j=1 are independent N -standard Gaussians,
then (P g̃j)k

j=1 are independent M -standard Gaussians (see, e.g., [MT03, Fact 1]).
Proving Theorem 5.2 we identify X with RAn, and naturally embed it into

X̃ = R(1+A)n, with the basis (ei)
(1+A)n
i=1 . We may and shall assume that the

maximal volume ellipsoid, inscribed in B(X), is the Euclidean ball BAn
2 . Let PX

be the orthogonal projection of X̃ onto X. Let g̃i = g̃i,ω (1 ≤ i ≤ (1+A)n, ω ∈ Ω)
be independent (1+A)n-standard Gaussian vectors in X̃. Then gi = gi,ω = PX g̃i

are An-standard Gaussian vectors in X. We show that the set K = Kω =
absconv(g1, . . . , g(1+A)n) has the desired properties with probability (relative to ω)
of at least 1/2, for su�ciently large n. We use the notationG = Gω = (g̃i,ω)(1+A)n

i=1 .
Let K̃ = K̃ω = absconv(g̃1, . . . , g̃(1+A)n).

Lemma 5.3. There exists a constant C1, depending only on A, such that for
each su�ciently large even number n

Pω(S1) ≥ 1− 3 · exp(−n/2),

where S1 is the set of those ω for which K̃ω ∩X ⊂ C1BAn
2 .

P r o o f. Let U be the group of unitary operators on R(1+A)n, with its
normalized Haar measure. For G = (g̃i), let UG = (Ug̃i). It is well known
(see, e.g., [MP81, Proposition V.1.1]) that the distributions (UGω)U∈U ,ω∈Ω and
(Gω)ω∈Ω are the same. De�ne the set S ′1 of all pairs (U, ω) for which K̃ω∩U(X) ⊂
C1BAn

2 . Then Pω(S1) = Pω,U (S ′1). For any ω, let S ′1ω be the set of all U ∈ U for
which (ω, U) ∈ S ′1. It su�ces to show that

Pω

(
PU (S ′1ω) ≥ 1− 2 · exp(−n/2)

) ≥ 1− 2−n. (1)

Consider the set F of all ω for which there exists a subspace F of codimension
n/2 in R(1+A)n, so that

F ∩ K̃ω ⊂ F ∩ C ′
1B

(1+A)n
2 ,

where C ′
1 is a constant (depending only on A). By [LPT06, Theorem 2.4], if

ω ∈ F , then PU (S ′1ω) ≥ 1 − 2 · exp(−n/2) if C1 = C ′
1(κA)3/2, where κ is a

universal constant. To prove (1), we need to show that Pω(F) ≥ 1− 2−n.
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To establish the last inequality, consider the (random) operator Γω, mapping
ei (1 ≤ i ≤ (1+A)n) to g̃i,ω. It is well known (see [Sza90, Lemma 2.8]) that there
exists an absolute constant λ > 0 so that

Pω(‖Γω‖ ≥ λ
√

(1 + A)n) ≤ exp(−(1 + A)n)

for su�ciently large n (here we consider Γω as an operator `
(1+A)n
2 7→ `

(1+A)n
2 ).

On the other hand, by the well-known Kashin decomposition [Kas77] (see
also [Sza78] and [Pis89, Theorem 6.1]), there exists a subspace G ⊂ R(1+A)n, of
codimension n/2, so that

√
(1 + A)n B(1+A)n

1 ∩G ⊂ 202(1+A)B(1+A)n
2 .

In fact, most subspaces of given (proportional) codimension have this property,
but one subspace is enough for us. If ω satis�es ‖Γω‖ ≤ λ

√
(A + 1)n, we let

F = Γω(G). Note that Γω maps B(1+A)n
1 onto K̃ω, hence F ∩K̃ω ⊂ F ∩C ′

1B
(1+A)n
2

for C ′
1 = λ202(1+A).

Keeping the notation of Lemma 5.3, we obtain:

Corollary 5.4. For any ω ∈ S1, da
n(Kω) ≤ C1, where C1 is the constant from

Lemma 5.3.

P r o o f. Let X̃ be the normed space de�ned as R(1+A)n with the norm
whose unit ball is B(X̃) = conv(C−1

1 K̃ω ∪ B(X)). Clearly, B(X̃) ∩ X = B(X),
hence the embedding of X into X̃ is isometric.

On the other hand, dn(C−1
1 Kω, X̃) ≤ 1. In fact, the space X⊥ = kerPX

(the orthogonal complement of X in X̃) is n-dimensional. In addition, for any
x ∈ C−1

1 Kω there exists x̃ ∈ C−1
1 K̃ω ∩ P−1

X (x). Therefore, x − x̃ ∈ X⊥, and
‖x̃‖X̃ ≤ 1. Thus, dn(C−1

1 Kω, X̃) ≤ 1.

Thus, with overwhelming probability, da
n(Kω) ≤ C1. We shall show that, with

overwhelming probability, dn(Kω, X) ≥ 4nσ−γ .
The following easy observation provides a useful tool for us. If E is a subspace

of X, denote by PE the orthogonal projection from X (or X̃) onto E. We shall
view E as equipped with the norm whose unit ball B(E) = PE(B(X)).

Lemma 5.5. Suppose S is a subset of X. Then dm(S,X) ≥ c if and only if
for every E ⊂ X with codimE = m, we have PE(S) * cB(E).

P r o o f. The proof can be viewed as a standard exercise: the orthogonal com-
plement of E satisfying PE(S) ⊆ cB(E) is a subspace witnessing dm(S, X) ≤ c.
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We have to show that, with high probability, PE(K̃ω) * C2n
σ−γB(E) holds

for any E of dimension (A − 1)n and some C2, when n is large enough. Note
that PE(K̃ω) is the absolute convex hull of the vectors gE,i := PEgi = PE g̃i

(1 ≤ i ≤ (1 + A)n), which are independent (A− 1)n-standard Gaussians.
Our next auxiliary result is well known. For the sake of brevity, set V =

VR(X).

Lemma 5.6. For any t ∈ (0, 1], B(X) contains a set (xi)N
i=1, with N ≤

((1+2t−1)V)An, so that, for every x ∈ B(X), there exists i satisfying ‖x−xi‖2 ≤ t.

P r o o f. Suppose (xi)N
i=1 is a maximal subset of B(X) with the property

that ‖xi − xj‖2 > t whenever i 6= j. Consider S = ∪i{xi + t/2BAn
2 } (a disjoint

union of N balls). Then S ⊂ B(X) + t/2BAn
2 ⊂ (1 + t/2)B(X), hence

N(t/2)Anvol(BAn
2 ) = vol(S) ≤ (1 + t/2)Anvol(B(X)) ≤ (1 + t/2)AnVAnvol(BAn

2 ),

yielding the desired inequality.

Corollary 5.7. If E is a subspace of X of dimension (A−1)n, then vol(B(E)) ≤
3AnVAnvol(B(A−1)n

2 ).

P r o o f. Suppose (xi)N
i=1 is as in the statement of Lemma 5.6, with t = 1

(hence N ≤ 3AnVAn). Then B(X) ⊂ ∪N
i=1{xi + BAn

2 }, hence

B(E) = PE(B(X)) ⊂ ∪N
i=1{PExi + B(A−1)n

2 }.

Therefore, vol(B(E)) ≤ Nvol(B(A−1)n
2 ).

Lemma 5.8. For any λ > 0, we have: for any E ⊂ X of dimension (A− 1)n,

P
(
PE(Kω) ⊂ λB(E)

) ≤
( V ′√

(A− 1)n
λ
)(A−1)(A+1)n2

,

where V ′ = (3V)A/(A−1)√e.
P r o o f. Recall that PE(Kω) is the absolute convex hull of (1 + A)n

independent (A− 1)n-standard Gaussian vectors gE,i. Thus,

P
(
PE(Kω) ⊂ λB(E)

)
=

(
P
(
g ∈ λB(E)

))(1+A)n
,

where g is a (A− 1)n-standard Gaussian vector. By [MT03, Fact 1],

P(g ∈ λB(E)) ≤ e(A−1)n/2vol
(
((A− 1)n)−1/2λB(E)

)
/vol(B(A−1)n

2 )

≤
( e

(A− 1)n

)(A−1)n/2
(3V)Anλ(A−1)n.
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Therefore,

P
(
PE(Kω) ⊂ λB(E)

) ≤
( V ′√

(A− 1)n
λ
)(A−1)(A+1)n2

.

Denote by E the set of all subspaces of X of dimension (A − 1)n, equipped
with the distance dist(E, F ) = ‖PE − PF ‖2. Here, for an operator T on X, we
denote by ‖ · ‖2 its operator norm on `An

2 .

Lemma 5.9. For any E, F ∈ E, and x ∈ X,

‖PF x‖F ≤ ‖PEx‖E + (‖PEx‖E

√
An + ‖x‖2)‖PE − PF ‖2.

P r o o f. For simplicity, let a = ‖PEx‖E , and b = ‖x‖2. By the de�nition of
the norm on E, we can write x = x1 +x2, with x1 ∈ aB(X), and x2 ∈ E⊥. Recall
that BAn

2 is the maximal volume ellipsoid contained in B(X), hence, by the well
known theorem of F. John (see [MS86, p. 10]), B(X) ⊂ √

An BAn
2 . Therefore,

‖x2‖2 ≤ ‖x1‖2 + ‖x‖2 ≤ a
√

An + b. We have

PF x = PF x1 + PF x2 = PF x1 + (PF − PE)x2.

Thus,
‖PF x‖F ≤ ‖PF x1‖F + ‖(PF − PE)x2‖2

≤ a+‖PF−PE‖2‖x2‖2 ≤ a+‖PF−PE‖2(a
√

An+b).

Corollary 5.10. Suppose E ∈ E and ω are such that

PE(Kω) ⊂ aB(E),

and
max

1≤i≤(A+1)n
‖g̃i‖2 ≤ b

√
An.

Then, for any F ∈ E,

PF (Kω) ⊂ (
a + ‖PF − PE‖2(a + b)

√
An

)
B(F ).

P r o o f of Theorem 5.2. Consider the set S2 of all ω for which ‖gi‖2 ≤
4
√

(A− 1)n for every i. By [MT03, Fact 1], if g is an An-standard Gaussian,
then

P
(‖g‖2 > 4

√
(A− 1)n

) ≤ (√
2e−4(A−1)/A

)An
,
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hence
P(S2) ≥ 1− (A + 1)n

(√
2e−4(A−1)/A

)An ≥ 1− e−2(A+1)n (2)
for n large enough (recall that A ≥ 5).

We shall prove that, for n large enough, there exists ω ∈ S1 ∩ S2, with the
property that PE(Kω) * CB(E) for any E ∈ E , where C = 4nσ−γ (S1 is de�ned
as in Lemma 5.3).

Let t = (An)−1/2. By [Sza81] (see also [Paj99, Proposition 6]), E has a t-net
E†, of cardinality not exceeding (C3/t)(A−1)n2 , where C3 is a universal constant.
Suppose PE(Kω) ⊂ CB(E), for some E. Find F ∈ E† so that ‖PE − PF ‖2 ≤ t.
By Corollary 5.10, PF (Kω) ⊂ (2C + 4)B(F ).

Denote by S3,F the set of all ω ∈ S2 for which PF (Kω) ⊂ (2C + 4)B(F ), and
let S3 = ∪F∈E†S3,F . For a given F , Lemma 5.8 yields

P(S3,F ) ≤
( V ′√

(A− 1)n
(2C + 4)

)(A−1)(A+1)n2

≤
( V ′√

An
3C

)(A−1)(A+1)n2

.

Thus,
P(S3) ≤ |E†|

( V ′√
An

3C
)(A−1)(A+1)n2

≤ (
C3

√
An

)(A−1)n2
( V ′√

An
3C

)(A−1)(A+1)n2

=
(
C3(An)−A/2

(
3V ′C)A+1

)(A−1)n2

.

Note that CA+1 = 4A+1n(σ−γ)(A+1), and V ′(A+1) ≤ nγA(A+1)/(A−1). By our choice
of A,

A

2
> (σ − γ)(A + 1) + γ

A(A + 1)
A− 1

,

and therefore, P(S3) ≤ (C4n)−C5n2 , where C4 and C5 are positive constants.
On the other hand, combining Lemma 5.3 with (2), we obtain, for n large

enough,
P(S1 ∩ S2) ≥ 1− 3e−n/2 − e−2(A+1)n.

Thus, for large n, P(S3) < P(S1 ∩ S2). Thus, there exists ω ∈ S1 ∩ S2, so that
PE(Kω) * CB(E), for any E. By Lemma 5.5, we are done.

To prove Theorem 5.1, we need also the following lemma.

Lemma 5.11. Suppose X is an m-dimensional space. Then, for any k ≤
m, there exists a k-dimensional subspace Y , so that dimY = k, and VR(Y ) ≤
VR(X).
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P r o o f. Denote the norm of X by ‖ · ‖. Without loss of generality, the
maximal volume ellipsoid inscribed into B(X) is the Euclidean ball. By, e.g.,
[Pis89, Section 6],

VR(X) =
∫

Sm−1

‖x‖−m dσm−1,

where σm−1 is the uniform probability measure on the unit sphere Sm−1. As
explained in, e.g., [MS86, 1.6], we can write

VR(X) =
∫

G

∫

Sk−1(Y )

‖x‖−m dσk−1 dµ,

where µ is the rotation invariant probability measure on the Grassman manifold
G of k-dimensional subspaces Y ⊂ X, and σk−1 is the probability measure on the
unit sphere of Y . Clearly, for some Y ∈ G,

∫

Sk−1(Y )

‖x‖−m dσk−1 ≤ VR(X).

Then

VR(Y ) =
∫

Sk−1(Y )

‖x‖−k dσk−1 ≤
∫

Sk−1(Y )

‖x‖−m dσk−1 ≤ VR(X).

P r o o f of Theorem 5.1. Pick σ ∈ (γ, 1/2). As in Theorem 5.2, �nd a
positive integer A ≥ 5, so that

A− 2
2(A + 1)

≥ γ
A

A− 1
+ (σ − γ).

Now we use Lemma 5.11 to obtain a sequence {Xn}∞n=1 of uniformly comple-
mented subspaces so that dimXn = Akn, where kn is even, limn→∞ kn = ∞), and
VR(Xn) ≤ kγ

n. Theorem 5.2 yields, for n large enough, compact sets Kn ⊂ Xn,
so that supn da

kn
(Kn) < ∞, and limn dkn(Kn, X) = ∞.

Can we use the techniques of Theorem 5.1 for other spaces? Below, we out-
line a possible approach. As in Section 2, we use the notation λ(F ) and λ(F, G)
for absolute and relative projection constants. On the �rst step, �nd (when
possible) a sequence of uniformly complemented subspaces Xn ⊂ X such that
λ(Xn) →∞. The second step consists of picking a sequence {Yn} of superspaces
Yn ⊃ Xn such that limn λ(Xn, Yn) = ∞, and kn = dim (Yn/Xn) = dimXn/2
(or more generally, limn

(
dim (Yn/Xn)/dimXn

)
= α ∈ (0, 1)). The third step

40 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1



Dependence of Kolmogorov Widths on the Ambient Space

proceeds as in the proof Theorem 1.2 � namely, by selecting projections Pn :
Yn → Xn so that limn dkn(Pn(B(Yn)), Xn) = ∞. Then we would also have
limn dkn(Pn(B(Yn)), X) = ∞ (due to the uniform complementability of Xn's),
and da

kn
(Kn) ≤ 1. We believe that the possibility of implementing the second

step of this program is an interesting problem, which can �nd other applications
as well:

Problem 5.12. Suppose that �nite-dimensional spaces Xn are such that
λ(Xn) →∞. Does this imply that there exist Yn ⊃ Xn such that

dim (Yn/Xn) ≤ dimXn/2 and λ(Xn, Yn) →∞?

The problem is of interest if we replace 2 by any positive constant.

Problem 5.12 can be considered as a problem on possibility to generalize the
isometric, one-codimensional result of Davis [Dav77].

The possibility of making the third step is still a problem (even if we assume
that Problem 5.12 has a positive answer): Can Yn and Pn be chosen in such a
way that Pn(B(Yn)) has large k-width in Xn, where k = dim (Yn/Xn)?

R e m a r k 5.13. There exist non-L∞-spaces for which the scheme above
cannot be realized because they do not contain uniformly complemented �nite-
dimensional spaces with growing dimensions. One example of this type was con-
structed by Pisier [Pis83] (see [Pis86] for a simpler version of the construction).

6. Ratios of Widths to Absolute Widths
In this section, we modify Problem 2.5.
Problem 6.1. (1) Describe the Banach spaces Y which contain compact sub-

sets K so that lim supn dn(K)/da
n(K) = ∞.

(2) What can be said about the Banach spaces Y satisfying a stronger property:
they contain compact subsets K so that lim infn dn(K)/da

n(K) = ∞.

To answer Part (1) of this question, we state:

Proposition 6.2. Suppose a Banach space Y is such that there exist γ > 0 and
σ ∈ [0, 1/2) so that, for in�nitely many positive integers n, there exist operators
An : `n

2 → Y and Bn : Y → `n
2 , so that BnAn = I`n

2
, and ‖An‖‖Bn‖ ≤ γnσ. Then

Y contains a compact subset K, so that

lim sup dn(K)/da
n(K) = ∞.
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If Y is K-convex, then there exists a sequence of projections Pn from Y
onto subspaces Fn, where supn ‖Pn‖ < ∞, and d(Fn, `n

2 ) < 2 (see [Pis82] or
[DJT95, Theorem 19.3]). Thus, K-convex spaces Y satisfy the conditions of this
proposition. By [FLM77, Example 3.5], Proposition 6.2 is also applicable to
Y = (⊕n`n

1 )c0 , (⊕n`n
1 )∞, c0(`1), or `∞(`1).

P r o o f. Find a sequence 4 < n(1) < n(2) < . . . so that, for any j ∈ N,
n(j + 1) > 4n(j), and there exist operators Uj : `

n(j)
2 → Y and Vj : Y → `

n(j)
2 ,

so that ‖Uj‖ ≤ 1, and ‖Vj‖ ≤ γn(j)σ. De�ne m(j) = dn(j)/2e and k(j) =
m(j) − ∑j−1

i=1 m(i) (note that k(j) ≥ 3m(j)/5). Furthermore, set α1 = 1, and
αj+1 = αj/

√
n(j).

Let id
(j)
12 be the formal identity map from `

n(j)
1 to `

n(j)
2 , and set K̃j = id

(j)
12 B(`n(j)

1 ).
By [GG84],

da
k(j)(K̃j) ≤ ck(j)(id

(j)
12 ) < C1n(j)−1/2

(C1 > 0 is an absolute constant). On the other hand, by [Pin85, Theorem VI.2.7],
dm(j)(K̃j) > 1/2.

Let Kj = αjAj(K̃j). Then the set K = conv(K1,K2, . . .) is compact and
convex. We claim that, for any j, dm(j)(K) ≥ αjγ

−1n(j)−σ/2, while da
m(j)(K) ≤

C1αjn(j)−1/2.
To estimate dm(j)(K) from below, note that Vj(K) ⊃ α−1

j K̃j . By Lemma 4.5,

1
2

< dm(j)(K̃j) ≤ α−1
j ‖Vj‖dm(j)(K).

As ‖Vj‖ ≤ γn(j)σ, we obtain dm(j)(K) ≥ αjγ
−1n(j)−σ/2.

Next obtain an upper estimate for da
m(j)(K). Embed Y isometrically into

a 1-injective Banach space Y ′ (we can take, for instance, Y ′ = `∞(I)). Find
F ⊂ Y ′ so that dimF ≤ k(j), and E(Kj , F ) ≤ C1αjn(j)−1/2. Now let G =
span[F, ran V1, . . . , ran Vj−1]. Clearly, dimG ≤ k(j) +

∑j−1
i=1 n(i) ≤ m(j). We

show that E(K,G) ≤ C1αjn(j)−1/2. By convexity, it su�ces to establish the
inequality E(x,G) ≤ C1αjn(j)−1/2 for x ∈ Ks, for s ∈ N. For s < j, we have
x ∈ G, hence E(x,G) = 0. For s = j, E(x,G) ≤ E(x, F ) < C1αjn(j)−1/2, by our
choice of F . For s > j,

E(x,G) ≤ ‖x‖ ≤ αs ≤ αj+1 = αjn(j)−1/2.

Taken together, the results above yield dm(j)(K)/da
m(j)(K) ≥ βm(j)1/2−σ,

where β is a constant.

In [Ost10], a special case of the previous proposition was established: it was
proved that `2 contains an in�nite dimensional compact K for which
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lim supn→∞ dn(K)/da
n(K) = ∞. This result leads to the following question

[Ost10, Problem 4.2]: Does there exist an in�nite-dimensional compact K in
some Banach space Y such that

lim
n→∞ dn(K)/da

n(K) = ∞?

Below, we provide a positive answer.

Proposition 6.3. 1. Suppose 1 < p ≤ 2, and α ∈ (0, 1/q), where 1/p +
1/q = 1. Then there exists an operator up : `1 → `p, so that, for every n,

da
n(up) ≤ cn(up) ≤ βpα(1 + log n)n−1/q and dn(up) ≥ γpαn−α.

2. Suppose 2 < p < ∞, and α ∈ (0, 1/p). Then there exists an operator
up : `1 → `p, so that, for every n,

da
n(up) ≤ cn(up) ≤ βpα(1 + log n)n−1/2 and dn(up) ≥ γpαn1/p−1/2−α.

Here βpα and γpα depend on p and α only.

P r o o f. By Lemma 4.4, da
n(u) ≤ cn(u) for any n, and any operator u.

Throughout the proof, we denote by (e(p)
j )j∈N the canonical basis in `p. The

projection onto the �rst N elements of this basis is denoted by P
(p)
N . For p ≤ q,

idpq (idN
pq) stands for the formal identity from `p to `q (resp. from `N

p to `N
q ). We

identify the range of P
(p)
N with `N

p .
In both (1) and (2), we consider a diagonal operator up, taking e

(1)
j to j−αe

(p)
j .

We make repeated use of the following formula: if v = diag (aj)∞j=1 is a diagonal
operator from `1 to `2, then, by [Pin85, Theorem VI.2.7 on p. 207],

dn(v) = sup
r>n

√
r − n∑r
j=1 a−2

j

. (3)

(1) 1 < p ≤ 2. To estimate dn(up), note that idp2up = u2, hence dn(up) ≥
dn(u2). By (3), dn(u2) ≥ γαn−α. Now let N = dn1/(αq)e. By [GG84],

cn(idN
1p) ≤

cp

αq

(
1 + log n

)1/q
n−1/q,

for some universal constant cp > 1. Thus, there exists a subspace F ⊂ span[e(1)
j :

1 ≤ j ≤ N ], so that

‖id1p|F ‖ ≤ cp

αq

(
1 + log n

)1/q
n−1/q.
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Denote by vp the diagonal operator on `N
p , mapping e

(p)
j to j−αe

(p)
j , and note that

up = vpid1p. Therefore,

‖up|F ‖ ≤ cp

αq

(
1 + log n

)1/q
n−1/q.

Now let G = span[F, e
(1)
N+1, e

(1)
N+2, . . .]. Then dim `1/G ≤ n, and, by our choice of

N ,
cn(up) ≤ ‖up|G‖ ≤ cp

αq

(
1 + log n

)1/q
n−1/q.

As da
n(up) ≤ cn(up), we are done.
(2) 2 ≤ p < ∞. Note that up = id2pu2, and id2p is contractive. Using the

estimates for cn(u2) obtained in Part (1), we get:

cn(up) ≤ ‖id2p‖cn(u2) ≤ β2α

(
1 + log n

)1/2
n−1/2.

On the other hand, dn(up) ≥ dn(upP
(1)
2n ). By (3), dn(u2P

(1)
2n ) ≥ 2γαn−1/α, for

some constant γα. Furthermore, (id2n
2p )−1upP

(1)
2n = u2P

(1)
2n , hence

dn(upP
(1)
2n ) ≥ ‖(id2n

2p )−1‖−1dn(u2P
(1)
2n ) ≥ (2n)−(1/2−1/p)·2γαn−1/α ≥ γαn1/p−1/2−α.

Problem 6.4. Which Banach spaces Y contain a compact K with the property
that

lim
dn(K)
da

n(K)
= ∞?

By Proposition 6.3, the answer is a�rmative if Y contains a complemented
copy of `p, for some p ∈ (1,∞). This occurs, for instance, for Y = Lp(µ). Large
classes of rearrangement invariant function spaces contain complemented copies
of `2, see e.g. [LT79, Theorem 2.b.4].

7. Restricted Widths

The following problem was raised in [Ost10].
Problem 7.1 ([Ost10]). Characterize compacts K for which the absolute widths

do not di�er much from their widths in span[K].

The importance of this problem is illustrated by Lemma 8.2 below.
It is worth mentioning that any Banach space Y contains a compact K whose

widths in span[K] are the same as the absolute widths. To construct an example,
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we use a technique of Tikhomirov [Tik60]. Let {Zn} be a family of subspaces in a
Banach space Y satisfying dimZn = n and Zn ⊂ Zn+1, let Bn be their unit balls
and let {tn} be a decreasing sequence of positive numbers with limn→∞ tn = 0.
Consider the compact

K = conv (∪∞n=1tnBn).

Then dn(K,X ) = tn+1 for each n ∈ N and each Banach space X containing
span[K] as a subspace. The reasons: (1) Estimate from above: K ⊂ Zn +

tn+1B(X ). (2) Estimate from below: K ⊃ tn+1Bn+1 and the result of [KKM48]
saying that the maximal distance from a unit ball of an (n + 1)-dimensional
subspace to an n-dimensional subspace is equal to 1.

There are other classes of K's for which dn(K) = da
n(K) holds. Suppose

1 ≤ q ≤ p ≤ ∞. In [Oik95] it was shown that the natural image of B(`m
p ) in `m

q

satis�es this. Furthermore [Koc90], dn(u) = da
n(u) if u : `m

p → `m
q is a diagonal

map. Another example of a set K with dn(K) = da
n(K) is provided below.

Proposition 7.2. Suppose F is an m-dimensional space with a 1-unconditional
basis (fi)m

i=1, and id : `m∞ → F is the formal identity map, taking δi to fi for every
i (here, (δi)m

i=1 denotes the canonical basis for `m∞). Then dn(id) = da
n(id) for

any n.

P r o o f. If n ≥ m, we have dn(id) = da
n(id) = 0. Now consider n ∈

{1, . . . ,m− 1}. Relabeling if necessary, we can assume that C = ‖∑m−n
i=1 fi‖F ≤

‖∑
i∈F fi‖F whenever |F| = m − n. We claim that dn(id) = da

n(id) = C. First
take G = span[fi : m − n < i ≤ m], and let qG : F → F/G be the quotient
map. By the 1-unconditionality of (fi), dn(id) ≤ ‖qG ◦ id‖ = C. For the opposite
inequality, we apply [Oik95, Lemma 4] in the situation where V is the unit cube.
A direct calculation shows that da

n(id) ≥ C.

8. Widths of Images of Compacts Under Compact Operators
The purpose of this section is to make some comments on the following in-

triguing problem
Problem 8.1. Let K be a compact in a Banach space X and T : X → Y be a

compact operator. Does it follow that dn(TK) = o(dn(K))?

Set d̂n(K) = dn(K, span[K]). [OS09, Lemma 6.1] states:

Lemma 8.2 ([OS09]). Let X and Y be Banach spaces, K be a compact set in
X and T : X → Y be a compact operator. Then d̂n(TK)/d̂n(K) → 0 as n →∞.
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For Hilbert spaces d̂n(K) = dn(K) and so the result of Lemma 8.2 remains
true if we replace d̂n by dn. Problem 8.1 asks whether one can generalize this
result to the Banach space case. Of course, Problem 8.1 would be solved if one
would prove that d̂n(K) ≤ Cdn(K) for some absolute constant C. However, as
we know, for example, from Theorem 1.2 this turned out not to be the case.

If a compact K is such that {dn(K)} decreases more slowly than any geometric
progression, then dn(TK) = o(dn(K)). More precisely:

Proposition 8.3. Suppose a compact K ⊂ X and C ∈ (1,∞) have the follow-
ing property: for any k ∈ N there exists N ∈ N such that dn(K)/dn+k(K) < C for
each n ≥ N . Then dn(TK) = o(dn(K)) for each compact operator T : X → Y.

P r o o f. It su�ces to show that for each δ > 0 there exists M ∈ N such that
dm(TK) ≤ Cδdm(K) for each m ≥ M . To show this we observe that for each
δ > 0 there exists k ∈ N and a k-dimensional subspace Yk ⊂ Y such that

TB(X ) ⊂ Yk + δB(Y). (4)

By the assumption there exists N such that dn(K) < Cdn+k(K) for each n ≥ N .
Let M ≥ N + k and m ≥ M . Then dm−k(K) < Cdm(K) and therefore there is
an (m− k)-dimensional subspace Xm−k ⊂ X such that

K ⊂ Xm−k + Cdm(K)B(X ).

Combining with (4) we get

TK ⊂ TXm−k + Cdm(K)TB(X ) ⊂ TXm−k + Yk + Cδdm(K)B(Y).

The subspace TXm−k+Yk is at most m-dimensional, therefore dm(TK) ≤
Cδdm(K).

Proposition 8.4. Let K be a compact subset of a Banach space X, and T :
X → Y be a compact operator. Let φ : N→ N be a function, satisfying limn(φ(n)−
n) = +∞. Then dφ(n)(TK) = o(dn(K)).

Lemma 8.5. Suppose K is a compact subset of a Banach space X , and (δn)
is a sequence of positive numbers. Then X contains a separable subspace X̃ such
that, for every n ∈ N, dn(K, X̃ ) ≤ (1 + δn)dn(K,X ).

P r o o f. For each n ∈ N �nd an n-dimensional subspace Zn ⊂ X
such that E(K, Zn) ≤ (1 + δn)dn(K,X ). We can take X̃ to be the closure of
span[K,Z1, Z2, . . .] in X .
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P r o o f of Proposition 8.4. By Lemma 8.5, we can assume thatX is separable.
Furthermore, we assume that dn(K) > 0 for every n (otherwise, the conclusion
of the proposition is immediate). Let (xi)∞i=1 be a countable dense subset of the
unit sphere of X. For n ∈ N, let ψ(n) be the smallest positive integer m with the
property that φ(k)−k ≥ n for any k ≥ m. Let K̃ be the closed convex hull of the
union of K and the sequence (dψ(i)(K)xi). Then dφ(n)(K̃) ≤ dn(K). Indeed, �x
c > 1, and �nd an n-dimensional subspace Z in X , such that E(K, Z) < cdn(K).
Let Z̃ be the linear span of Z, and of x1, . . . , xφ(n)−n. Then dim Z̃ ≤ φ(n), and
E(K̃, Z̃) ≤ cdn(K). As c > 1 is arbitrary, we conclude that dφ(n)(K̃) ≤ dn(K).
We conclude the proof by applying Lemma 8.2 to K̃.

It may be tempting to approach Problem 8.1 by �xing C1 > C > 1, �nding
subspaces Zn ↪→ X such that E(K, Zn) ≤ Cdn(K) and dimZn = n, and then con-
sidering K̃ = ∩n(Zn + C1dn(K)B(X )) as a subset of X̃ = span[Zn : n ∈ N] ⊂ X .
Then K ⊂ K̃, and dn(K̃, X̃ ) ≤ C1dn(K,X ). If we had X̃ = span[K̃], we would
then use Lemma 8.2 to conclude that

dn(TK̃)

d̂n(K)
≤ dn(TK)

d̂n(K)
−→
n→∞0

However, the above construction may lead to span[K̃] being a strict subset of X̃ ,
as the following example shows. Let X = `2, and take K to be the set of all
(xi) ∈ `2 s.t. x1 = 0, and |x2|2 +

∑∞
i=3 43−i|xi|2 ≤ 1. By [Pie87], d1(K) = 1,

and dn(K) = 22−n for n ≥ 2. Take Z1 = span[e1], and Zn = span[e3, . . . , en+1]
for n ≥ 2. Then E(K,Zn) = dn(K) for any n. However, Z1 ∩ span[K̃] = {0}.
Indeed, denote by P the orthogonal projection onto span[e1]. Then, for n ≥ 2
and x ∈ Zn + C1dn(K)B(X ), ‖Px‖ ≤ 2n−2C1. Consequently, for x ∈ K̃, we have
Px = 0. In other words, K̃ ⊂ Z⊥1 .
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