Rate of Decay of the Bernstein Numbers

A. Plichko
Department of Mathematics, Cracow University of Technology
Cracow, Poland
E-mail: aplichko@pk.edu.pl

Received August 2, 2012
We show that if a Banach space X contains uniformly complemented ℓ_{2}^{n} 's then there exists a universal constant $b=b(X)>0$ such that for each Banach space Y, and any sequence $d_{n} \downarrow 0$ there is a bounded linear operator $T: X \rightarrow Y$ with the Bernstein numbers $b_{n}(T)$ of T satisfying $b^{-1} d_{n} \leq b_{n}(T) \leq b d_{n}$ for all n.

Key words: B-convex space, Bernstein numbers, Bernstein pair, uniformly complemented ℓ_{2}^{n}, superstrictly singular operator.

Mathematics Subject Classification 2010: 47B06, 47B10.
To the memory of M.I. Kadets

1. Introduction and Main Result

Let X, Y be Banach spaces and let $\mathcal{L}(X, Y)$ be the space of all bounded linear operators from X to Y. Notationally, all spaces are infinite dimensional real Banach spaces unless otherwise specified.

Definition 1. An operator $T \in \mathcal{L}(X, Y)$ is called superstrictly singular (SSS for short; finitely strictly singular in other terminology) if there are no number $c>0$ and no sequence of subspaces $E_{n} \subset X, \operatorname{dim} E_{n}=n$, such that

$$
\begin{equation*}
\|T x\| \geq c\|x\| \quad \text { for all } x \text { in } \cup_{n} E_{n} . \tag{1}
\end{equation*}
$$

Put for an operator T

$$
\begin{equation*}
b_{n}(T)=\sup \min _{x \in S_{E}}\|T x\| \tag{2}
\end{equation*}
$$

where supremum is taken over all n-dimensional subspaces $E \subset X$ and S_{E} is the unit sphere of E. Evidently,

$$
\|T\|=b_{1}(T) \geq b_{2}(T) \geq \cdots \geq 0
$$

[^0]T is SSS if and only if
$$
b_{n}(T) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$
and the greatest constant c for which (1) is satisfied, is equal to $\lim _{n \rightarrow \infty} b_{n}(T)$.
Obviously, every compact operator is SSS and T has finite rank if and only if $b_{n}(T)=0$ beginning with some integer n. Observe, that if T has infinite rank then for each n the set $\mathcal{I}_{n}(T)$ of all n-dimensional subspaces E such that $\left.T\right|_{E}$ are injective, is dense in the set of all n-dimensional subspaces. Then the formula (2) turns into the following one
\[

$$
\begin{equation*}
b_{n}(T)=\sup _{E \in \mathcal{I}_{n}(T)} \frac{1}{\left\|\left(\left.T\right|_{E}\right)^{-1}\right\|} \tag{3}
\end{equation*}
$$

\]

The $b_{n}(T)$, which are called the Bernstein numbers, were considered in Approximation and Operator Theory. The constants $b_{n}(T)$ show how small is the T-image of the unit sphere S_{X}. For a compact operator T in a Hilbert space H they coincide with s-numbers which are defined as eigenvalues of the operator $\left(T^{*} T\right)^{1 / 2}$. There are several generalizations of s-numbers to Banach spaces (see below for details).

The Bernstein numbers take origin (see Whitley [26]) in the following classical inequalities:

If p_{n} is a polynomial of degree at most n, then for its derivative

$$
\left\|p_{n}^{\prime}\right\| \leq n^{2}\left\|p_{n}\right\|
$$

the norm being the supremum norm on $[-1,1]$ (Markov [13]).
If q_{n} is a complex trigonometric polynomial of degree at most n, then

$$
\left\|q_{n}^{\prime}\right\| \leq n\left\|q_{n}\right\|
$$

the norm being the supremum norm on the unite circle (Bernstein [2]).
Both of these inequalities have the same form: A Banach space, a derivation operator D and an $(n+1)$-dimensional subspace F are given. The conclusion estimates the value of $\left\|\left.D\right|_{F}\right\|$. From this point of view it is natural to ask to what extent the norm depend on F. In particular, what improvement is possible, i.e. what is the best possible constant

$$
\inf \left\{\left\|\left.D\right|_{F}\right\|: \operatorname{dim} F=n\right\} ?
$$

It appears that this constant is equal to n [26]. Considering the inverse of D we arrive to the notion of the Bernstein numbers. We find $b_{n}(T)$ as far as in (Krein/Krasnoselskiŭ/Milman [11]). After (Mitiagin/Henkin [16]), SSS operators
were introduced implicitly by Mitiagin and Petczyński [17] and explicitly, under the name "operators of the class $C_{0}^{* "}$, by Milman [15].

The important role has been played by Pietsch's paper [19] where systematic theory of abstract s-numbers in Banach spaces was developed (see also [20]). In particular, Pietsch noted the importance of duality and of the principle of local reflexivity. The term "superstrictly singular operator" was introduced in (Hinrichs/Pietsch [7]), where this class was investigated by machinery of superideals, and by Mascioni [14]. For further progress in the theory of SSS operators in general Banach spaces see e.g. (Plichko [24]) and (Flores/Hernández/Raynaud [6]).

As we noted, an operator T is SSS if and only if $b_{n}(T) \downarrow 0$. One can pose an "inverse" problem. Let X, Y be Banach spaces and $d_{n} \downarrow 0$. Does there exist $T \in \mathcal{L}(X, Y)$ such that $b_{n}(T)=d_{n}$ for every n ? We have a little chance to obtain a positive answer. So, we will consider a weaker question which is natural in a more general setting.

According to Pietsch [21], a map s which assigns to each bounded linear operator T between Banach spaces a unique sequence $\left(s_{n}(T)\right)$, is called an s-function if for all Banach spaces W, X, Y, Z :

1. $\|T\|=s_{1}(T) \geq s_{2}(T) \geq \cdots \geq 0$ for all $T \in \mathcal{L}(X, Y)$.
2. $s_{n}(S+T) \leq s_{n}(S)+\|T\|$ for all $S, T \in \mathcal{L}(X, Y)$ and all n.
3. $s_{n}(R S T) \leq\|R\| s_{n}(S)\|T\|$ for all $T \in \mathcal{L}(X, Y), S \in \mathcal{L}(Y, Z)$ and $R \in \mathcal{L}(Z, W)$.
4. If $T \in \mathcal{L}(X, Y)$ and $\operatorname{rank} T<n$, then $s_{n}(T)=0$.
5. $s_{n}(I)=1$ for all n, where I is the identity map of ℓ_{2}^{n}.

The scalar $s_{n}(T)$ is called the nth s-number of the operator T. The Bernstein numbers are s-numbers. Another example of s-numbers are the approximation numbers defined by the formula

$$
a_{n}(T)=\inf \{\|T-L\|: L \in \mathcal{L}(X, Y), \operatorname{rank} L<n\} .
$$

These numbers are connected with the well known approximation property of Banach spaces and characterize the ideal of approximable operators: $a_{n}(T) \rightarrow 0$ if and only if T is approximable. The approximation numbers are the largest s-numbers [19].

Aksoy and Lewicki [1] have introduced the following general concept.

Definition 2. Banach spaces X and Y are said to form a Bernstein pair with respect to s-numbers s_{n} if for any sequence $d_{n} \downarrow 0$, there exists $T \in \mathcal{L}(X, Y)$ such
that $\left(s_{n}(T)\right)$ is equivalent to $\left(d_{n}\right)$, i.e. there is a constant b depending only on T such that for every n

$$
b^{-1} d_{n} \leq s_{n}(T) \leq b d_{n}
$$

This definition was motivated by well known Bernstein's "lethargy" theorem [4] and is a generalization of Bernstein pair with respect to the approximation numbers (see Hutton/Morell/Retherforsd [8, 9]). Note that Hutton, Morell and Retherforsd implicitly refereed Bernstein's lethargy theorem to [3]. In [8, 9] it was proved that many pairs of classical Banach spaces form the Bernstein pair with respect to the approximation numbers. The authors advanced a hypothesis that all couples of Banach spaces form Bernstein pairs (with respect to approximation numbers). Aksoy and Lewicki [1] showed that many classical Banach spaces form Bernstein pairs with respect to all s-numbers. Detailed investigations of "rate of decay" of many s-numbers (Kolmogorov, Gelfand, Weyl, Hilbert,. . . numbers) was carried out by Oikhberg [18]. We consider a similar question for the Bernstein numbers. Ideal properties of the Bernstein numbers was considered by Samarskiĭ [25] and Pietsch [21].

First, we present simple examples of pairs (X, Y) which are not Bernstein with respect to the Bernstein numbers. They are, in fact, well known (see e.g. Mitiagin/Pełczyński [17]).

For a subspace E of a Banach space X denote by $\lambda(E, X)$ the relative projection constant

$$
\lambda(E, X)=\inf \|P\|
$$

where inf is taken over all projections P of X onto E. Given a Banach space X put

$$
p_{n}(X)=\inf \{\lambda(E, X): E \subset X, \operatorname{dim} E=n\}
$$

Note that one can take infimum here only over a dense subset of all n-dimensional subspaces.

Proposition 1. Let $T \in \mathcal{L}(X, H)$, where H is a Hilbert space and $\operatorname{dim} T(X)$ $=\infty$. Then for every n

$$
b_{n}(T) \leq \frac{1}{p_{n}(X)}\|T\|
$$

Proof. Let $b>1$ and $E_{b} \in \mathcal{I}_{n}(T)$ be such that $\left\|\left(\left.T\right|_{E_{b}}\right)^{-1}\right\|<b b_{n}(T)$ (see (3)). Take the orthogonal projection Q of H onto $T\left(E_{b}\right)$. Then $P=\left(\left.T\right|_{E_{b}}\right)^{-1} Q T$ is a projection of X onto E_{b}. So

$$
\lambda\left(E_{b}, X\right) \leq\|P\| \leq\left\|\left(\left.T\right|_{E_{b}}\right)^{-1}\right\| \cdot\|Q\| \cdot\|T\|<b b_{n}(T)^{-1}\|T\|
$$

Hence

$$
p_{n}(X)=\inf _{\operatorname{dim} E=n} \lambda(E, X) \leq \lambda\left(E_{b}, X\right) \leq b b_{n}(T)^{-1}\|T\|
$$

Since $b>1$ is arbitrary, this implies Proposition 1.

Corollary 1. Let an operator $T \in \mathcal{L}(X, Y)$ can be factored through a Hilbert space $H: T=R S, R \in \mathcal{L}(X, H), S \in \mathcal{L}(H, Y)$ and $\operatorname{dim} T(X)=\infty$. Then for every n

$$
b_{n}(T) \leq \frac{1}{p_{n}(X)}\|R\|\|S\|
$$

Proof. Indeed, by Proposition 1,

$$
b_{n}(T) \leq b_{n}(R)\|S\| \leq \frac{1}{p_{n}(X)}\|R\|\|S\|
$$

For operators, factored through Hilbert spaces see [12].
Definition 3. We say that a Banach space X contains no uniformly complemented finite-dimensional subspaces if $p_{n}(X) \rightarrow \infty$ as $n \rightarrow \infty$.

The well known Pisier space $\mathcal{P}[22,23]$ contains no uniformly complemented finite-dimensional subspaces. Moreover, there exists $\lambda>0$ such that $p_{n}(\mathcal{P}) \geq$ $\lambda \sqrt{n}$ for all n.

Corollary 2. Every operator from a Banach space X, containing no uniformly complemented finite-dimensional subspaces, into a Hilbert space H is SSS.

Corollary 3. There is $\lambda>0$ such that for every operator $T \in \mathcal{L}(\mathcal{P}, H)$ and every n

$$
b_{n}(T) \leq \frac{1}{\lambda \sqrt{n}}\|T\|
$$

R e m a r k 1. Since every n-dimensional subspace $E \subset X$ is a range of a projection $P: X \rightarrow E$ with $\|P\| \leq \sqrt{n}$ (Kadets/Snobar [10]), one cannot obtain a better estimation of $b_{n}(T)$ with using of projections. A similar estimation for operators from $C(K)$ into H, but with constants $\sqrt[4]{n}$ instead of \sqrt{n}, was noted in [17].

Proposition 1 implies
Corollary 4. Assume X contains no uniformly complemented finite-dimensional subspaces and H is a Hilbert space. Then the pair (X, H) is not Bernstein with respect to the Bernstein numbers.

Proof. Indeed, by Proposition 1 , for every $T \in \mathcal{L}(X, H)$ the sequence $b_{n}(T)$ cannot go to 0 "more slowly" than $1 / p_{n}(c)$.

An n-dimensional normed space $(E,\| \|)$ is said to be a-isomorphic to ℓ_{2}^{n} (write $E \stackrel{a}{\sim} \ell_{2}^{n}$), $a>1$, if there exists an Euclidean norm $\left\|\|_{2}\right.$ on E such that for every $e \in E$

$$
a^{-1}\|e\| \leq\|e\|_{2} \leq a\|e\| .
$$

If in this definition the constants a and n are inessential, we say simply about almost Euclidean subspaces.

Remark 2. If $E \stackrel{a}{\sim} \ell_{2}^{n}$ then for every subspace $F \subset E$ there is a projection $P: E \rightarrow F$ with $\|P\| \leq a^{2}$.

If $E \stackrel{a}{\sim} \ell_{2}^{n}$ then it have an a-orthonormal basis, i.e. a system $\left(e_{i}\right)_{1}^{n}$ such that $\left\|e_{i}\right\|=1$ for all i and for all scalars $\left(a_{i}\right)$

$$
a^{-1}\left(\sum_{1}^{n} a_{i}^{2}\right)^{1 / 2} \leq\left\|\sum_{1}^{n} a_{i} e_{i}\right\| \leq a\left(\sum_{1}^{n} a_{i}^{2}\right)^{1 / 2}
$$

Remark 3. For an a-orthonormal basis, the norm of each projection P_{i}, $i<n$, of E onto $\operatorname{lin}\left(e_{j}\right)_{1}^{i}$ along to $\operatorname{lin}\left(e_{j}\right)_{i+1}^{n}$ is not greater than a^{2}.

Definition 4. (see e.g. [22, p. 215]). A Banach space X contains uniformly complemented ℓ_{2}^{n} 's $i f$ there is a constant d such that for every $\varepsilon>0$ and for each n there is a subspace $E \subset X$ and a projection $P: X \rightarrow E$ such that $E \stackrel{1+\varepsilon}{\sim} \ell_{2}^{n}$ and $\|P\|<d$.

Note that by Dvoretzky's theorem, if this holds for some ε, then it automatically holds for all ε.

We will show that uniformly complemented almost Euclidean subspaces play a crucial role in constructing of Bernstein pairs.

Theorem 1. If a Banach space X contains uniformly complemented ℓ_{2}^{n} 's then there exists a universal constant $b=b(X)>0$ such that for each Banach space Y, and any sequence $d_{n} \downarrow 0$ there exist a bounded linear operator $T: X \rightarrow Y$ such that for all n

$$
b^{-1} d_{n} \leq b_{n}(T) \leq b d_{n} .
$$

Corollary 5. Let a Banach space X contain uniformly complemented ℓ_{2}^{n} 's. Then for every Banach space Y the pair (X, Y) is Bernstein with respect to the Bernstein numbers.

A Banach space X is B-convex if it does not contain ℓ_{1}^{n} 's uniformly. Since every B-convex Banach space contains uniformly complemented ℓ_{2}^{n} 's (see e.g. [22, pp. 208, 215]), we have

Corollary 6. Let X be a B-convex Banach space. Then for every Banach space Y the pair (X, Y) is Bernstein with respect to the Bernstein numbers.

This corollary recalls us the well known Davis-Johnson compact non-nuclear operator in a B-convex Banach space [5].

Problem. Does (X, X) form a Bernstein pair with respect to the Bernstein numbers for every Banach space X ?

2. Proof of the Main Result

To prove Theorem 1 we construct a "bounded minimal system" consisting of almost Euclidean subspaces of arbitrary large dimensions in an arbitrary Banach space containing uniformly complemented ℓ_{2}^{n} 's.

Lemma 1. Let X contain uniformly complemented ℓ_{2}^{n} 's, with corresponding ε and d and let $d^{\prime}>(1+\varepsilon)^{4} d$. Then for each finite codimensional subspace $X^{\prime} \subset X$, each finite dimensional subspace $E \subset X$ and each m there exists a subspace $E^{\prime} \subset X^{\prime}, E^{\prime} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m}$ and a projection $P^{\prime}: X \rightarrow E^{\prime}$ with $\left\|P^{\prime}\right\|<d^{\prime}$ and $\operatorname{ker} P^{\prime} \supset E$.

Proof. By definition, one can find an almost Euclidean subspace $E_{0} \subset X$, $\operatorname{dim} E_{0}>m+\operatorname{dim} E+\operatorname{dim} X / X_{0}$ and a projection $P_{0}: X \rightarrow E_{0}$ with $\left\|P_{0}\right\|<d$. Since E_{0} is almost Euclidean, by Remark 2, there exists a projection $Q_{0}: E_{0} \rightarrow$ $E_{1}:=E_{0} \cap X_{0}$ with $\left\|Q_{0}\right\| \leq(1+\varepsilon)^{2}$. Obviously, $\operatorname{dim} E_{1} \geq m+\operatorname{dim} E$. Put $P_{1}=Q_{0} P_{0}$. Then P_{1} is a projection of X onto E_{1} and $\left\|P_{1}\right\| \leq(1+\varepsilon)^{2} d$.

Since E_{1} is almost Euclidean, by Remark 2, there exists a subspace $E^{\prime} \subset E_{1}$, $\operatorname{dim} E^{\prime}=m$, and a projection $Q_{1}: E_{1} \rightarrow E^{\prime}$ with $\left\|Q_{1}\right\| \leq(1+\varepsilon)^{2}$ and $\operatorname{ker} Q_{1} \supset$ $P(E)$. Then $P^{\prime}=Q_{1} P_{1}$ is the desired projection.

Lemma 2. Let X contain uniformly complemented ℓ_{2}^{n} 's, with corresponding ε and d. Then for any subsequence $\left(m_{k}\right)_{k=1}^{\infty}$ of integers there are subspaces $E_{k} \subset X$, each $E_{k} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m_{k}}$, with projections $P_{k}: X \rightarrow E_{k},\left\|P_{k}\right\| \leq d$, such that each E_{i}, $i \neq k$, belongs to $\operatorname{ker} P_{k}$.

Proof. Of course, one must write $\left\|P_{k}\right\| \leq d^{\prime}$, where d^{\prime} is from the previous lemma, but the exact value of the constant d is non-essential here. We present a construction only.

Take, by definition, a subspace $E_{1} \subset X, E_{1} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m_{1}}$, and a projection $P_{1}: X \rightarrow E_{1}$ with $\left\|P_{1}\right\| \leq d$.

Then take, by Lemma 1, a subspace $E_{2} \subset \operatorname{ker} P_{1}, E_{2} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m_{2}}$, and a projection $P_{2}: X \rightarrow E_{2}$ with $\left\|P_{2}\right\| \leq d$ and ker $P_{2} \supset E_{1}$.

Next take, by Lemma 1, a subspace $E_{3} \subset \operatorname{ker} P_{1} \cap \operatorname{ker} P_{2}, E_{3} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m_{3}}$, and a projection $P_{3}: X \rightarrow E_{3}$ with $\left\|P_{3}\right\| \leq d$ and ker $P_{3} \supset\left(E_{1} \cup E_{2}\right)$, and so on.

Remark 4. Let (E_{k}) be subspaces from Lemma 2. Then for every $k \geq 1$

$$
X=E_{1} \oplus E_{2} \oplus \cdots E_{k} \oplus\left(\cap_{i=1}^{k} \operatorname{ker} P_{i}\right) .
$$

Next, using the Dvoretzky theorem, we construct in an arbitrary Banach space a subspace with "bounded minimal system" consisting of almost Euclidean subspaces of arbitrary large dimensions. Denote by $[A]$ the closed linear span of the set A.

Lemma 3. Let Y be a Banach space, $\varepsilon>0$, and $\left(m_{k}\right)_{k=1}^{\infty}$ be a sequence of integers. Then there exist subspaces $F_{k} \subset Y$, each $F_{k} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m_{k}}$, and projections $Q_{k}:\left[F_{i}\right]_{1}^{\infty} \rightarrow \operatorname{lin}\left(F_{i}\right)_{1}^{k}$ along $\left[F_{i}\right]_{k+1}^{\infty}$ with $\left\|Q_{k}\right\| \leq 1+\varepsilon$.

Proof. Lemma 3 is a standard combination of the Dvoretzky and Mazur theorems. We present a construction only. Recall that a subset $\Phi \subset Y^{*} \lambda$-norms a subspace $F \subset Y$ if for every $y \in S_{F}$ there is $\varphi \in \Phi$ such that $\varphi(y) \geq \lambda$. For each finite-dimensional subspace $F \subset Y$ and $0<\lambda<1$ there is a finite set $\Phi \subset S_{Y^{*}}$ which λ-norms F.

So, take a subspace $F_{1} \subset Y, F_{1} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m_{1}}$, and a finite subset $\Phi_{1} \subset S_{X^{*}}$ which $(1+\varepsilon)^{-1}$-norms F_{1}.

Then take a subspace

$$
F_{2} \subset \Phi_{1}^{\top}:=\left\{y \in Y: \varphi(y)=0 \text { for all } \varphi \in \Phi_{1}\right\}
$$

$F_{2} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m_{2}}$, and a finite subset $\Phi_{2} \subset S_{X^{*}}$ which $(1+\varepsilon)^{-1}$-norms $F_{1}+F_{2}$.
Next, take a subspace $F_{3} \subset \Phi_{2}^{\top}, F_{3} \stackrel{1+\varepsilon}{\sim} \ell_{2}^{m_{3}}$, and a finite subset $\Phi_{3} \subset S_{X^{*}}$ which $(1+\varepsilon)^{-1}$-norms $F_{1}+F_{2}+F_{3}$, and so on.

In the proof we use diagonal operators in Euclidean spaces whose Bernstein numbers are well known.

Definition 5. Let E and F be linear spaces with bases $\left(e_{n}\right)_{1}^{m}$ and $\left(f_{n}\right)_{1}^{m}$. Let $\left(d_{n}\right)_{1}^{m}$ be scalars. A map

$$
D\left(\sum_{1}^{m} a_{n} e_{n}\right)=\sum_{1}^{m} d_{n} a_{n} f_{n}
$$

is called the diagonal operator corresponding to $\left(e_{n}\right),\left(f_{n}\right)$ and $\left(d_{n}\right)$.

Proposition 2. (sf. [19, Th. 7.1]). Let $\left(e_{n}\right)_{1}^{m}$ be the standard basis of ℓ_{2}^{m}, $d_{1} \geq d_{2} \geq \cdots \geq d_{m} \geq 0$ and
D be the diagonal operator in ℓ_{2}^{m} corresponding to $\left(e_{n}\right)_{1}^{m}$ and $\left(d_{n}\right)_{1}^{m}$.
Then for all $n \leq m$

$$
\begin{aligned}
& \min \left\{\|D x\|: x \in \operatorname{lin}\left(e_{j}\right)_{1}^{n},\|x\|=1\right\}=d_{n} \text { and } \\
& \max \left\{\|D x\|: x \in \operatorname{lin}\left(e_{j}\right)_{n}^{m},\|x\|=1\right\}=d_{n}
\end{aligned}
$$

Corollary 7. Assume m-dimensional normed spaces E and F have a-orthonormal bases $\left(e_{n}\right)_{1}^{m}$ and $\left(f_{n}\right)_{1}^{m}$,
$d_{1} \geq d_{2} \geq \cdots \geq d_{m} \geq 0$ and
D is the diagonal operator corresponding to $\left(e_{n}\right),\left(f_{n}\right),\left(d_{n}\right)$.
Then there is $c>1$, depending only on a, such that for all $n \leq m$

$$
\begin{aligned}
& \min \left\{\|D x\|: x \in \operatorname{lin}\left(e_{j}\right)_{1}^{n},\|x\|=1\right\} \geq \frac{d_{n}}{c} \quad \text { and } \\
& \max \left\{\|D x\|: x \in \operatorname{lin}\left(e_{j}\right)_{n}^{m},\|x\|=1\right\} \leq c d_{n}
\end{aligned}
$$

Proof of Theorem 1. Let $d_{n} \downarrow 0$. Take a subsequence $\left(n_{k}\right)_{k=1}^{\infty}$ of integers which approach to ∞ so quickly that for all $k \geq 1$

$$
\begin{equation*}
d_{n_{k+1}}<\frac{1}{4} d_{n_{k}} \tag{4}
\end{equation*}
$$

Hence, for every $k \geq 1$

$$
\begin{equation*}
\sum_{i=k+1}^{\infty} d_{n_{i}}<\frac{1}{2} d_{n_{k}} \tag{5}
\end{equation*}
$$

Let $0<\varepsilon<1, E_{k}$ be subspaces from Lemma 2 and $F_{k}, k \geq 1$, be subspaces from Lemma 3 with $m_{k}:=n_{k}-n_{k-1}$ (and $n_{0}=0$). Take in each E_{k} and each F_{k} some $(1+\varepsilon)$-orthonormal bases. Rearrange these bases in the natural way, putting first the basis $e_{1}, \ldots, e_{n_{1}}$ of E_{1}, then the basis $e_{n_{1}+1}, \ldots, e_{n_{2}}$ of E_{2} and so on; and similarly for Y. We obtain systems $\left(e_{n}\right)_{1}^{\infty}$ in X and $\left(f_{n}\right)_{1}^{\infty}$ in Y.

Put $N_{k}=\left\{n: n_{k-1}<n \leq n_{k}\right\}$. Using Corollary 7, (with c from this corollary) we construct for every $k \geq 1$ the diagonal operator $D_{k}: E_{k} \rightarrow F_{k}$ corresponding to the bases $\left(e_{n}\right),\left(f_{n}\right)$ and scalars $\left(d_{n}\right), n \in N_{k}$, such that for all $n \in N_{k}$

$$
\begin{align*}
& \min \left\{\left\|D_{k} x\right\|: x \in\left[e_{j}\right]_{n_{k-1}+1}^{n},\|x\|=1\right\} \geq \frac{d_{n}}{c} \text { and } \tag{6}\\
& \max \left\{\left\|D_{k} x\right\|: x \in\left[e_{j}\right]_{n}^{n_{k}},\|x\|=1\right\} \leq c d_{n} \tag{7}
\end{align*}
$$

Let P_{k} be the projections from Lemma 2. For every $x \in X$ put

$$
\begin{equation*}
T x=\sum_{i=1}^{\infty} D_{i} P_{i} x \tag{8}
\end{equation*}
$$

(bellow we will show that the series (8) converges for each $x \in X$).

We make forth estimations. Let d be from Lemma 2 and c be from Corollary 7 .

1. For every $k \geq 1$ and $x \in X,\|x\|=1$,

$$
\sum_{i=k+1}^{\infty}\left\|D_{i} P_{i} x\right\|<2 c d d_{n_{k}} .
$$

Indeed, $P_{i} x \in E_{i}$ and $\left\|P_{i} x\right\| \leq\left\|P_{i}\right\|\|x\| \leq d$ for all i, so

$$
\begin{aligned}
\sum_{i=k+1}^{\infty}\left\|D_{i} P_{i} x\right\| \leq \text { by }(7) & \leq c d d_{n_{k}+1}+\sum_{i=k+2}^{\infty} c d d_{n_{i}+1} \\
& \leq \text { by }(5) \leq c d d_{n_{k}}+\frac{c}{2} d d_{n_{k+1}}<2 c d d_{n_{k}}
\end{aligned}
$$

In particular, this inequality shows that series (8) converges for each $x \in X$, so T is well defined.
2. For every $k \geq 1$ and $n \in N_{k}$

$$
\sup \left\{\|T x\|: x \in\left[e_{j}\right]_{n}^{n_{k}} \oplus \cap_{i=1}^{k} \operatorname{ker} P_{i},\|x\|=1\right\} \leq 3 c d d_{n}
$$

(by Remark 4, the sum here is direct).
Indeed, take $x \in\left[e_{j}\right]_{n}^{n_{k}} \oplus \cap_{i=1}^{k}$ ker $P_{i},\|x\|=1$. Then, by definition of P_{i}, $T x=\sum_{i=k}^{\infty} D_{i} P_{i} x$, so

$$
\begin{aligned}
\|T x\| & \leq\left\|D_{k} P_{k} x\right\|+\sum_{i=k+1}^{\infty}\left\|D_{i} P_{i} x\right\| \leq(\text { by } \mathbf{1}) \leq\left\|D_{k} P_{k} x\right\|+2 c d d_{n_{k}} \\
& \leq\left(\text { since }\left\|P_{k}\right\| \leq d, \text { by }(7)\right) \leq c d d_{n}+2 c d d_{n}=3 c d d_{n}
\end{aligned}
$$

3. For every $k \geq 1$ and $x \in \operatorname{lin}\left(E_{i}\right)_{1}^{k},\|x\|=1$,

$$
\|T x\| \geq \frac{1}{4(1+\varepsilon)} \cdot \frac{d_{n_{k}}}{c}
$$

We prove estimation $\mathbf{3}$ by induction. For $k=1$, $T x=D_{1} x$, so $\mathbf{3}$ is followed from (6) if we take in (6) $n=n_{1}$. Suppose $k>1$, estimation $\mathbf{3}$ is proved for $k-1$, and $x \in \operatorname{lin}\left(E_{i}\right)_{1}^{k},\|x\|=1$. Then

$$
x=x_{1}+x_{2}, \quad x_{1} \in \operatorname{lin}\left(E_{i}\right)_{1}^{k-1}, \quad x_{2} \in E_{k}
$$

and, by the construction of P_{i},

$$
T x_{1}=\sum_{i=1}^{k-1} D_{i} P_{i} x_{1} \quad \text { and } \quad T x_{2}=D_{k} P_{k} x_{2}
$$

Hence, by the construction of D_{i},

$$
T x_{1} \in \operatorname{lin}\left(F_{i}\right)_{1}^{k-1} \quad \text { and } \quad T x_{2} \in F_{k}
$$

By the construction of projections Q_{i} from Lemma 3,

$$
Q_{k-1} T x=Q_{k-1} T x_{1}+Q_{k-1} T x_{2}=T x_{1}
$$

and

$$
\left(Q_{k}-Q_{k-1}\right) T x=\left(Q_{k}-Q_{k-1}\right) T x_{1}+\left(Q_{k}-Q_{k-1}\right) T x_{2}=T x_{2} .
$$

Since $\left\|Q_{i}\right\| \leq 1+\varepsilon$, hence $\left\|Q_{i}-Q_{i-1}\right\| \leq 2(1+\varepsilon)$. So,

$$
\begin{equation*}
\|T x\| \geq \frac{1}{1+\varepsilon}\left\|Q_{k-1} T x\right\|=\frac{1}{1+\varepsilon}\left\|T x_{1}\right\| \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\|T x\| \geq \frac{1}{2(1+\varepsilon)}\left\|\left(Q_{k}-Q_{k-1}\right) T x\right\|=\frac{1}{2(1+\varepsilon)}\left\|T x_{2}\right\| . \tag{10}
\end{equation*}
$$

Since $\|x\|=1$, we have that

$$
\text { either }\left\|x_{1}\right\| \geq \frac{1}{2} \text { or }\left\|x_{2}\right\| \geq \frac{1}{2} .
$$

If $\left\|x_{1}\right\| \geq \frac{1}{2}$, then by the induction assumption

$$
\begin{aligned}
& \|T x\| \stackrel{\text { by }(9)}{\geq} \frac{1}{1+\varepsilon}\left\|T x_{1}\right\| \geq \frac{1}{1+\varepsilon} \cdot \frac{1}{2} \cdot \frac{1}{4(1+\varepsilon)} \cdot \frac{d_{n_{k-1}}}{c} \\
& \quad \stackrel{\text { by }(4)}{\geq} \frac{1}{2(1+\varepsilon)^{2}} \cdot \frac{1}{4} \cdot \frac{4 d_{n_{k}}}{c} \stackrel{\text { since } \varepsilon<1}{\geq} \frac{1}{4(1+\varepsilon)} \cdot \frac{d_{n_{k}}}{c} .
\end{aligned}
$$

If $\left\|x_{2}\right\| \geq \frac{1}{2}$, then

$$
\|T x\| \stackrel{\text { by }(10)}{\geq} \frac{1}{2(1+\varepsilon)}\left\|T x_{2}\right\| \stackrel{\text { by }(6)}{\geq} \frac{1}{2(1+\varepsilon)} \cdot \frac{1}{2} \cdot \frac{d_{n_{k}}}{c}=\frac{1}{4(1+\varepsilon)} \cdot \frac{d_{n_{k}}}{c} .
$$

Therefore, $\mathbf{3}$ is proved.
4. For every $k \geq 1$ and $n \in N_{k}$

$$
\min \left\{\|T x\|: x \in \operatorname{lin}\left(e_{j}\right)_{1}^{n},\|x\|=1\right\} \geq \frac{1}{4(1+\varepsilon)} \cdot \frac{d_{n}}{c}
$$

Indeed, take $x \in \operatorname{lin}\left(e_{j}\right)_{1}^{n},\|x\|=1$, where $n \in N_{k}$. Then, as in $\mathbf{3}, x=x_{1}+x_{2}$, $x_{1} \in \operatorname{lin}\left(E_{i}\right)_{1}^{k-1}, x_{2} \in E_{k} ;$ either $\left\|x_{1}\right\| \geq \frac{1}{2}$ or $\left\|x_{2}\right\| \geq \frac{1}{2} ; T x_{1} \in \operatorname{lin}\left(F_{i}\right)_{1}^{k-1}$, $T x_{2} \in F_{k}$, and the inequalities (9), (10) hold.

If $\left\|x_{1}\right\| \geq \frac{1}{2}$, then

$$
\|T x\| \geq \text { by } \mathbf{3} \geq \frac{1}{4(1+\varepsilon)} \cdot \frac{d_{n_{k-1}}}{c} \geq \frac{1}{4(1+\varepsilon)} \cdot \frac{d_{n}}{c} .
$$

If $\left\|x_{2}\right\| \geq \frac{1}{2}$, then

$$
\|T x\| \stackrel{\text { by }(10)}{\geq} \frac{1}{2(1+\varepsilon)}\left\|T x_{2}\right\|=\frac{1}{2(1+\varepsilon)}\left\|D_{k} x_{2}\right\| \stackrel{\text { by }(6)}{\geq} \frac{1}{4(1+\varepsilon)} \cdot \frac{d_{n}}{c} .
$$

Therefore, $\mathbf{4}$ is proved.
Put $b=\max \{3 c d, 4(1+\varepsilon) c\}$. Inequality $\mathbf{4}$ shows that for all n

$$
b_{n}(T) \geq b^{-1} d_{n}
$$

Let $G \subset X$ be an n-dimensional subspace and $n \in N_{k}$. Then, by Remark 4 ,

$$
G \cap\left(\left[e_{j}\right]_{n}^{n_{k}} \oplus \cap_{i=1}^{k} \operatorname{ker} P_{i}\right) \neq 0 .
$$

So, the inequality 4 confirms that for all n

$$
\min _{x \in S_{G}}\|T x\| \leq b d_{n},
$$

i.e.

$$
b_{n}(T) \leq b d_{n} .
$$

Acknowledgements. The author express his thanks to T. Oikhberg and M. Popov for valuable consultations.

References

[1] A.G. Aksoy and G. Lewicki, Diagonal Operators, s-Numbers and Bernstein Pairs. - Note Mat. 17 (1999), 209-216.
[2] S. Bernstein, Sur l'ordre de la Meilleure Approximation des Fonctions Continues par des Polynômes de Degré Donné. - Mém. Acad. Roy. Belgique 4 (1912), 1-104.
[3] S. Bernstein, Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle. Paris, Gauthier-Villars, X, 1926, 207 pp., Collection de monographies sur la théorie des fonctions, publ. par E. Borel.
[4] S.N. Bernstein, Sur le Problème Inverse de la Théorie de la Meilleure Approximation des Fonctions Continues. - Comp. Rend. Paris 206 (1938), 1520-1523.
[5] W.J. Davis and W.B. Johnson, Compact, Non-Nuclear Operators. - Studia Math. 51 (1974), 81-85.
[6] J. Flores, F.L. Hernández, and Y. Raynaud, Super Strictly Singular and Cosingular Operators and Related Classes. - J. Operator Theory 67 (2012), 121-152.
[7] A. Hinrichs and A. Pietsch, Closed Ideals and Dvoretzky's Theorem for Operators. (unpublished).
[8] C.V. Hutton, J.S. Morrell, and J.R. Retherford, Approximation Numbers and Kolmogoroff Diameters of Bounded Linear Operators. - Bull. Amer. Math. Soc. 80 (1974), 462-466.
[9] C.V. Hutton, J.S. Morrell, and J.R. Retherford, Diagonal Operators, Approximation Numbers and Kolmogoroff Diameters. - J. Approx. Theory 16 (1976), 48-80.
[10] M.I. Kadets and M.G. Snobar, Certain Functionals on the Minkowski Compactum. - Math. Notes 10 (1971), 694-696.
[11] M.G. Krein, M.A. Krasnoselskǐ, and D.P. Milman, On the Defect Numbers of Linear Operators in Banach Space and on Some Geometric Problems. - Sb. Trud. Inst. Mat. Akad. Nauk USSR 11 (1948), 97-112. (Russian)
[12] J. Lindenstrauss and A. Petczyński, Absolutely Summing Operators on \mathcal{L}_{p}-Spaces and their Applications. - Studia Math. 29 (1968), 275-328.
[13] A.A. Markov, On a Question of D.I. Mendeleev. - Zapiski Imperatorskŏ̆ Akademii Nauk 62 (1889), 1-24. (Russian).
[14] V. Mascioni, A Restriction-Extension Property for Operators on Banach Spaces. - Rocky Mountain J. Math. 24 (1994), 1497-1507.
[15] V.D. Milman, Operators of the Class C_{0} and C_{0}^{*}. - Teor. Funktsii, Funkts. Anal. i Prilozen. 10 (1970), 15-26. (Russian)
[16] B.S. Mitiagin and G.M. Henkin, Inequalities Between Various n-Widths. - Trudy Sem. Funkts. Anal. (Voronezh) 7 (1963), 97-103. (Russian)
[17] B.S. Mitiagin and A. Petczyński, Nuclear Operators and Approximative Dimension. Proceedings of International Congress of Mathematicians. Moscow, 1966, 366-372.
[18] T. Oikhberg, Rate of Decay of s-Numbers. - J. Approx. Theory 163 (2011), 311327.
[19] A. Pietsch, s-Numbers of Operators in Banach Spaces. - Studia Math. 51 (1974), 201-223.
[20] A. Pietsch, Eigenvalues and s-Numbers. Greest and Portig, Leipzig, and Cambridge University Press, Cambridge, 1987.
[21] A. Pietsch, Bad Properties of the Bernstein Numbers. - Studia Math. 184 (2008), 263-269.
[22] G. Pisier, Probability Methods in the Geometry of Banach Spaces. - Lect. Notes Math. 1206 (1986), 167-241.
[23] G. Pisier, Counterexamples to a Conjecture of Grothendieck. - Acta Math. 151 (1983), 181-208.
[24] A. Plichko, Superstrictly Singular and Superstrictly Cosingular Operators. In: Functional Analysis and its Applications. Proc. of the Stefan Banach Conf., (V. Kadets and W. Zelazko, Eds.) Elsevier Sci. Publ., North-Holland Math. Stud. 197 (2004), 239-256.
[25] V.G. Samarskǐ̌, The Construction of an Operator Ideal by Means of Bernšteĭn s-Numbers. - Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1978, vyp. 1, 7780. (Russian)
[26] R.J. Whitley, Markov and Bernstein's Inequalities and Compact and Strictly Singular Operators. - J. Approx. Theory 34 (1982), 277-285.

[^0]: (c) A. Plichko, 2013

