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1. Introduction

Randomized solution of initial value problems for ordinary differential equa-
tions (ODEs) has been studied in various papers [2, 9, 11, 12, 16, 17], all of them
dealing with the Rn-valued case. In this paper we study initial value problems
for Banach space valued ODEs. We develop a randomized algorithm and analyze
its convergence, extending results from [2, 9].

We also prove lower bounds and consider the complexity. It turns out that
the complexity is connected with the type of the underlying Banach space. For
general Banach spaces upper and lower bounds are almost matching in the sense
that an arbitrarily small gap in the exponent remains. For special spaces, in-
cluding the Lp spaces, the bounds are matching and the algorithm is of optimal
order. Furthermore, we show that for arbitrary Banach spaces and for any fixed
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choice of the random parameters the resulting deterministic algorithm is of opti-
mal order in the deterministic setting. This way we generalize complexity results
from [10].

The results of the Banach space valued case are a crucial tool for the com-
plexity analysis of parameter dependent ODEs, a topic which will be treated in
a subsequent paper [4].

2. Preliminaries and the Problem

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. For a Banach space X the closed
unit ball is denoted by BX , the identity operator by IX , and the dual space by
X∗. Given k ∈ N0 and another Banach space Y , we set L0(X, Y ) = Y , while for
k ≥ 1 we let Lk(X,Y ) be the space of bounded multilinear mappings T : Xk → Y
endowed with the canonical norm

‖T‖Lk(X,Y ) = sup
x1,...,xk∈BX

‖T (x1, . . . , xk)‖.

If k = 1, this is the space of bounded linear operators, for which we write
L (X,Y ). If X = Y , we write Lk(X) instead of Lk(X,X) and L (X) instead of
L (X,X).

Let 1 ≤ p ≤ 2. A Banach space X is said to be of (Rademacher) type p (see
[13, 14]), if there is a constant c > 0 such that for all n ∈ N and x1, . . . , xn ∈ X

E
∥∥∥

n∑

i=1

εixi

∥∥∥
p
≤ cp

n∑

k=1

‖xi‖p, (1)

where (εi)n
i=1 is a sequence of independent Bernoulli random variables with P{εi =

−1} = P{εi = +1} = 1/2. The smallest constant satisfying (1) is called the type
p constant if X and is denoted by τp(X). If there is no such c > 0, we put
τp(X) = ∞. The space Lp1(N , ν) with (N , ν) an arbitrary measure space and
p1 < ∞ is of type p with p = min(p1, 2). We will use the following result (see
[13], Prop. 9.11).

Lemma 2.1. Let 1 ≤ p ≤ 2, let X be a Banach space, n ∈ N and (θi)n
i=1

be a sequence of independent X-valued random variables with E‖θi‖p < ∞ and
E θi = 0 (i = 1, . . . , n). Then

(
E

∥∥∥
n∑

i=1

θi

∥∥∥
p
)1/p

≤ 2τp(X)

(
n∑

k=1

E ‖θi‖p

)1/p

.

We will work in the setting of information-based complexity theory (IBC),
see [15, 18]. For the notation used here we also refer to [7, 8]. Let us first explain
the general approach, later we specify everything for the initial value problems.
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An abstract numerical problem is given by a tuple P = (F, G, S, K,Λ), where
F is a non-empty set — the set of inputs, G a normed space, S : F → G an
arbitrary mapping — the solution operator, which maps the input ψ ∈ F to
the exact solution of the problem S(ψ) ∈ G. Furthermore, K is another non-
empty set and Λ is any set of mappings from F to K — the set of information
functionals.

Next we define classes of algorithms for P. In this paper we consider adap-
tive deterministic and randomized algorithms of fixed cardinality (all algorithms
developed later on will be of this type). For the respective notions of algorithms
with varying cardinality see [7, 8].

First we consider the deterministic case and introduce the class Adet
n (F, G) of

deterministic algorithms for P which use n information functionals, where n ∈ N.
An element A ∈ Adet

n (F, G) is a tuple A = ((µi)n
i=1, ϕ), where µ1 ∈ Λ and

µi : Ki−1 → Λ, i = 2, 3, . . . , n
ϕ : Kn → G

are arbitrary mappings. Given ψ ∈ F , we define λ1 = µ1,

λi = µi(λ1(ψ), . . . , λi−1(ψ)), i = 2, 3, . . . , n,

and the output A(ψ) of algorithm A at input ψ by

A(ψ) = ϕ(λ1(ψ), . . . , λn(ψ)).

The error of A is defined as

e(S, A, F ) = sup
ψ∈F

‖S(ψ)−A(ψ)‖G.

Thus we measure the error in the norm of G. The central notion of IBC is the
n-th minimal error, which is defined for n ∈ N as

edet
n (S, F ) = inf

A∈Adet
n (F,G)

e(S, A, F ).

So edet
n (S, F ) is the minimal possible error among all deterministic algorithms

that use n information functionals.
Next we introduce the respective class of randomized algorithms. An ele-

ment A ∈ Aran
n (F, G) is a tuple A = ((Ω, Σ,P), (Aω)ω∈Ω), where (Ω, Σ,P) is a

probability space,
Aω ∈ Adet

n (F,G), ω ∈ Ω,

and for each ψ ∈ F the mapping

ω ∈ Ω → Aω(ψ) ∈ G
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is Σ-to-Borel measurable and essentially separably valued, that is, there is a
separable subspace G0 ⊆ G such that

Aω(ψ) ∈ G0 for P-almost all ω ∈ Ω.

Thus, the output A(ψ) of algorithm A at input ψ ∈ F is the G-valued random
variable Aω(ψ) on (Ω, Σ,P). The error of A is given by

e(S,A, F ) = sup
ψ∈F

E ‖S(ψ)−Aω(ψ)‖G

and the n-th minimal error for n ∈ N by

eran
n (S, F ) = inf

A∈Aran
n (F,G)

e(S, A, F ).

Consequently, eran
n (S, F ) is the minimal possible error among all randomized al-

gorithms that use n information functionals.
The minimal errors edet

n (S, F ) and eran
n (S, F ) describe the intrinsic difficulty

of approximating the solution of problem P in the deterministic and randomized
setting, respectively. In this connection let us mention closely related quantities.
The information complexity in the deterministic setting (set = det) and in the
randomized setting (set = ran) is defined for ε > 0 by

compset
ε (S, F )

= min{n ∈ N : there is an A ∈ Aset
n (F,G) with e(S,A, F ) ≤ ε},

where we put compset
ε (S, F ) = +∞ if there is no such n ∈ N. So compset

ε (S, F ) is
the minimal number of information functionals needed to reach an error ≤ ε, and
thus, is a way of assessing the complexity of problem P. It is readily checked that
eset
n (S, F ) and compset

ε (S, F ) are inverse to each other in the following sense: For
all n ∈ N and ε > 0, eset

n (S, F ) ≤ ε if and only if compset
ε1

(S, F ) ≤ n for all ε1 > ε.
Hence it suffices to determine one of them. We shall study minimal errors.

Now we describe the Banach space valued initial value problems and specify
the abstract notions. Let X be a Banach space over the reals. (We make this
assumption since below we consider only real differentiation. The results can
also be applied to complex Banach spaces by just regarding them as spaces over
the reals.) Throughout the paper ‖ · ‖ denotes the norm of X. Other norms
are distinguished by subscripts. For −∞ < a < b < +∞, U ⊆ [a, b] × X open,
κ,L > 0, r ∈ N0, 0 ≤ % ≤ 1 we consider the following class

C r,%(U, κ, L) of continuous functions f : U → X

having continuous partial (Fréchet-)derivatives Dα with α = (α0, α1) ∈ N2
0 of

order |α| = α0 + α1 ≤ r

Dαf(t, x) =
∂|α|f(t, x)
∂tα0∂xα1

∈ Lα1(X)
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satisfying for (s, x), (t, y), (t, z) ∈ U

‖Dαf(s, x)‖Lα1 (X) ≤ κ, 0 ≤ |α| ≤ r, (2)
‖Dαf(s, x)−Dαf(t, y)‖Lα1 (X) ≤ κ(|s− t|% + ‖x− y‖%), |α| = r, (3)

‖f(t, y)− f(t, z)‖ ≤ L‖y − z‖. (4)

We consider initial value problems for ODEs with values in X

u′(t) = f(t, u(t)), t ∈ [a, b], u(a) = u0, (5)

with f ∈ C r,%(U, κ, L) and u0 ∈ X. A function u : [a, b] → X is called a solution,
if u is continuously differentiable and satisfies (5). For background on Banach
space valued differential calculus and ODE we refer to [1]. Let U0 ⊆ X, V ⊆ U
be any subsets. For t ∈ [a, b] denote V (t) = {x ∈ X : (t, x) ∈ V } and define

F = F r,%(U, κ, L, U0, V ) = {(f, u0) : f ∈ C r,%(U, κ, L), u0 ∈ U0, and
there is a solution u of (5) with u(t) ∈ V (t) (t ∈ [a, b])}. (6)

To avoid trivial cases, throughout the paper we assume

F = F r,%(U, κ, L, U0, V ) 6= ∅. (7)

Note that due to (4), the solution u is unique. The solution operator S : F → G
is defined for (f, u0) ∈ F by S(f, u0) = u, where u is the solution of the initial
value problem (5) and G = B([a, b], X) is the space of all X-valued, bounded on
[a, b] functions, equipped with the supremum norm

‖g‖B([a,b],X) = sup
x∈[a,b]

‖g(t)‖.

Observe that, if
U0 + κ(t− a)BX ⊆ V (t), t ∈ [a, b] (8)

(which is satisfied, in particular, if V = [a, b]×X), then it follows from (2) that for
all f ∈ C r,%(U, κ, L) and u0 ∈ U0 there is a solution u(t) of (5) with u(t) ∈ V (t)
(t ∈ [a, b]), and consequently,

F r,%(U, κ, L, U0, V ) = C r,%(U, κ, L)× U0. (9)

We have chosen this type (6) of F to cover two typical situations. In the
first case we demand that for all f ∈ C r,%(U, κ, L), u0 ∈ U0 the solution of (5)
exists on [a, b], which usually amounts to restricing the size of b− a. This is the
local situation (8) treated in Theorem 3.2. In the second case we assume that
we have some solution u of (5) (or a set of solutions) and the function f satisfies
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(2)–(4) in some neighbourhood of the solution. This is the global approach with
no restriction on b− a, which is considered in Theorem 3.3.

The class of information functionals Λ is defined as

Λ = {δ(t,x) : (t, x) ∈ U} ∪ {δ},

where δ(t,x)(f, u0) = f(t, x) and δ(f, u0) = u0 for (f, u0) ∈ F . So here we consider
X-valued information functionals, that is K = X. This defines our problem
P = (F,G, S, K,Λ).

Previous results on the complexity of the initial value problem (5) were all
concerned with the case X = Rd and U = V = [a, b]× Rd. For the deterministic
setting Kacewicz showed in [10] (see also the comments on p. 827 of [11]) that
there are constants c1, c2 > 0 such that for all n ∈ N

c1n
−r−% ≤ edet

n (S, F ) ≤ c2n
−r−%.

For the randomized setting it is proved in [2, 9] that there are constants c1, c2 > 0
such that for all n ∈ N

c1n
−r−%−1/2 ≤ eran

n (S, F ) ≤ c2n
−r−%−1/2

(with an aditional arbitrarily small ε > 0 in the exponent of the upper estimate
this was already shown in [12]).

It is the goal of this paper to prove appropriate generalizations of these results
for the case of Banach space valued ODEs. Moreover, we consider more general
set U, V than just U = V = [a, b]×X. In the case of X = Rd this can be done in
a standard fashion by using sufficiently smooth bump functions on X = Rd. For
arbitrary Banach spaces this requires a different approach since such functions,
in general, do not exist, see [6]. In Sec. 3 we define the algorithm (which slightly
extends that in [2]) and present error estimates. In Section 4 we prove lower
bounds.

Constants c, c1, c2, . . . appearing in the paper may depend on the class F and
related parameters like r, %, κ, L, etc., but are independent of the discretization
parameters n, k, randomness ω ∈ Ω, and the input (f, u0). Moreover, in Sec. 3
constants are even independent of X and the related sets U,U0, V . In all basic
statements like theorems etc. this is made clear anyway by the order of quantifiers.
Note also that the same symbol may denote different constants, even in a sequence
of relations.

3. The Algorithm and its Analysis

Let r1 ∈ N0, n ∈ N, put h = (b − a)/n and tk = a + kh (k = 0, 1, . . . , n).
To define the needed random variables, let Ω = [t0, t1] × · · · × [tn−1, tn], let Σ
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be the sigma-algebra of Lebesgue measurable subsets of Ω, and P the normalized
Lebesgue measure on Ω. Define ξk : Ω → [tk−1, tk] (k = 1, . . . , n) by setting
ξk(ω) = sk for ω = (s1, . . . , sn) ∈ Ω. Then (ξk)n

k=1 are independent random
variables on (Ω,Σ,P) such that each ξk is uniformly distributed on [tk−1, tk].

Given f ∈ C r,%(U, κ, L) and u0 ∈ U0, we inductively define (uk)n
k=1 ⊂ X

and X-valued polynomials pkj(t) for k = 0, . . . , n − 1, j = 0, . . . , r1 as follows.
Suppose uk is already defined and satisfies

uk ∈ U(tk) (10)

(note that u0 is the initial value). Then we set for t ∈ [tk, tk+1]

pk0(t) = uk + f(tk, uk)(t− tk). (11)

Furthermore, suppose r1 ≥ 1, 0 ≤ j < r1, and pkj is already defined. Let Pk,j+1

be the Lagrange interpolation operator of degree j + 1 on the equidistant grid
tk,j+1,i = tk + ih/(j + 1) (i = 0, . . . , j + 1) on [tk, tk+1]. If

pkj(tk,j+1,i) ∈ U(tk,j+1,i), i = 0, . . . , j + 1, (12)

we put

qkj = (f(tk,j+1,i, pkj(tk,j+1,i)))
j+1
i=0 (13)

and define pk,j+1 by setting

pk,j+1(t) = uk +

t∫

tk

(Pk,j+1qkj) (s)ds. (14)

Finally, if pkr1 is defined and

pkr1(t) ∈ U(t) (t ∈ [tk, tk+1]), (15)

we set
uk+1 = pkr1(tk+1) + h

(
f(ξk+1, pkr1(ξk+1))− p′kr1

(ξk+1)
)
. (16)

The latter choice is motivated by the following. First we approximate

u(tk+1) = u(tk) +

tk+1∫

tk

f(s, u(s))ds ≈ uk +

tk+1∫

tk

f(s, pkr1(s))ds.

Then the integral is approximated by the Monte Carlo method with one sample
and with variance reduction by separation of the main part. As such we use the
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function p′kr1
(s), which is close to u′(s) = f(s, u(s)), the latter, in turn, being

near to the integrand f(s, pkr1(s)). This gives

uk +

tk+1∫

tk

f(s, pkr1(s))ds

≈ uk +

tk+1∫

tk

p′kr1
(s)ds + h

(
f(ξk+1, pkr1(ξk+1))− p′kr1

(ξk+1)
)

= pkr1(tk+1) + h
(
f(ξk+1, pkr1(ξk+1))− p′kr1

(ξk+1)
)
,

explaining (16).
The full approximate solution v(t) on [a, b] is defined as

v(t) =
{

pkr1(t) if t ∈ [tk, tk+1) and 0 ≤ k ≤ n− 1,
un if t = tn,

(17)

so we put
Ar1

n,ω(f, u0) = v ∈ B([a, b], X) (18)

and Ar1
n = (Ar1

n,ω)ω∈Ω. We say that Ar1
n (f, u0) is defined (or, more precisely,

defined on U) if for all ω ∈ Ω this definition goes through till (18), that is, (10),
(12), (15) are satisfied at all stages. If for some ω, at some stage k, any of
the conditions (10), (12), (15) is violated (in particular, if u0 6∈ U(a)), we leave
Ar1

n (f, u0) undefined.
Note that, as far as the definition of Ar1

n,ω is concerned, fixing any ω ∈ Ω is the
same as fixing any values of ξk ∈ [tk−1, tk] (k = 1, . . . , n). This way the algorithm
becomes deterministic.

First we show that Ar1
n is indeed a randomized algorithm in the sense of the

general notion introduced in Section .

Lemma 3.1. Let (f, u0) ∈ F . If Ar1
n (f, u0) is defined, then Ar1

n (f, u0) is a
B([a, b], X)-valued random variable.

P r o o f. For the purposes of this proof we include the dependence on
ξ1, . . . , ξk into the notation and write uk(ξ1, . . . , ξk), pkj(ξ1, . . . , ξk, t), etc. We
shall show that uk(s1, . . . , sk) (0 ≤ k ≤ n) and pkj(s1, . . . , sk, t) (0 ≤ k ≤ n−1, t ∈
[tk, tk+1]) depend continuously on (s1, . . . , sk) ∈ [t0, t1]× · · · × [tk−1, tk].

First note that Ar1
n (f, u0) being defined means, in particular, that these func-

tions are defined for all possible values of the si. To prove continuity, we argue
by induction. For k = 0 the statement is trivial, since there is no dependence.
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Now assume the statement holds for some k with 0 ≤ k < n. Then by (16), with
s̄ = (s1, . . . , sk) and sk+1 ∈ [tk, tk+1]

uk+1(s̄, sk+1) = pkr1(s̄, tk+1) + h
(
f(sk+1, pkr1(s̄, sk+1))− p′kr1

(s̄, sk+1)
)
.

Since pkr1(s̄, t) is a polynomial in t, continuity with respect to s̄ for each t ∈
[tk, tk+1] implies continuity with respect to (s̄, t). Therefore uk+1 depends con-
tinuously on (s̄, sk+1). Now assume k < n − 1. To prove the statement about
pk+1,j we argue by induction over j. For j = 0 we have by (11), with s̃ =
(s1, . . . , sk, sk+1)

pk+1,0(s̃, t) = uk+1(s̃) + f(tk+1, uk+1(s̃))(t− tk+1),

which shows the continuous dependence. Now assume that pk+1,j(s̃, t) depends
continuously on s̃ and hence, also on (s̃, t). Then by (13), (14)

qk+1,j(s̃) = (f(tk+1,j+1,i, pk+1,j(s̃, tk+1,j+1,i)))
j+1
i=0

and therefore also

pk+1,j+1(s̃, t) = uk+1(s̃) +

t∫

tk+1

(Pk+1,j+1qk+1,j(s̃)) (τ)dτ

have the required continuous dependencies. This completes the induction over j
and also that over k. From (17) we infer

z(s1, . . . , sn, t) =
{

pkr1(s1, . . . , sk, t), if t ∈ [tk, tk+1) and 0 ≤ k ≤ n− 1,
un(s1, . . . , sn), if t = tn,

hence z(s1, . . . , sn) ∈ B([a, b], X) depends continuously on s1, . . . , sn. This im-
plies that the mapping ω → Ar1

n,ω(f, u0) is Σ-to-Borel measurable and essentially
separably valued.

In the rest of this section all constants c, c1, . . . are even independent of X, U0,
V , and U , which is also made clear by the order of quantifiers in the statements.
Moreover, let us introduce the following constants depending only on r1 ∈ N0

c0(0) = 1, c0(r1) = max
1≤j≤r1

‖Pj‖L (C([0,1],R)) ≥ 1, r1 ≥ 1,

c(r1) = 2c0(r1) + 1,

where Pj is the operator of Lagrange interpolation of degree j on [0, 1] and
C([0, 1], X) denotes the space of continuous, X-valued functions, endowed with
the supremum norm. Observe that if we consider Pj (without change of notation)
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as interpolation operator of X-valued functions in C([0, 1], X), then the constant
remains the same for an arbitrary Banach space X, i.e., we have

max
1≤j≤r1

‖Pj‖L (C([0,1],X)) = c0(r1). (19)

Indeed, the upper bound follows by taking linear functionals, the lower bound by
the fact that, trivially, X contains an isometric copy of R.

Now we estimate the error of the algorithm.

Theorem 3.2. Given r, r1, %, a, b, κ, L as above and 1 ≤ p ≤ 2, there are
constants c1, c2 > 0 such that the following holds. Let X be a Banach space,
∅ 6= U0 ⊆ X, V ⊆ U ⊆ [a, b]×X, U open, satisfying (8) and

U0 + c(r1)κ(t− a)BX ⊆ U(t), t ∈ [a, b] (20)

(which holds, in particular, if U = [a, b]×X). Then F 6= ∅ and for all n ∈ N and
(f, u0) ∈ F , Ar1

n (f, u0) is defined on U and satisfies

sup
(f,u0)∈F

‖S(f, u0)−Ar1
n,ω(f, u0)‖B([a,b],X) ≤ c1n

−min(r+%,r1+1) (ω ∈ Ω) (21)

and

sup
(f,u0)∈F

(
E ‖S(f, u0)−Ar1

n,ω(f, u0)‖p
B([a,b],X)

)1/p

≤ c2τp(X)n−min(r+%,r1+1)−1+1/p. (22)

In the previous statement we imposed a certain relationship on κ, a, b, U0, U
and V . Now we drop this assumption while assuming something on V and U as
well as a minimal smoothness (r + % > 0).

Theorem 3.3. Let r, r1, %, a, b, κ, L be as above, 1 ≤ p ≤ 2, δ0 > 0 and assume
that r+% > 0. Then there are constants c1, c2 > 0, n0 ∈ N, such that the following
holds. Let X be a Banach space, U0 ⊆ X, V ⊆ U ⊆ [a, b]×X, U open, such that
F 6= ∅ and

V (t) + δ0BX ⊆ U(t), t ∈ [a, b]. (23)

Then for all n ∈ N with n ≥ n0 and (f, u0) ∈ F , Ar1
n (f, u0) is defined on U and

the estimates (21) and (22) hold.

We prove these theorems in the following way. With Proposition 3.4 below
we show a respective statement under a stronger assumption. This is the key
part of the proof, which is different from the analysis in [9] and [2]. The latter
would require a martingale type property instead of the type assumption. Then
the proofs of Theorems 3.2 and 3.3 will be a reduction to this proposition.
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For n ∈ N we define

H r,%(U, κ, L, U0, V, r1, n)
= {(f, u0) ∈ F r,%(U, κ, L, U0, V ) : If u = S(f, u0), then

u(tk) + c0(r1)κ(t− tk)BX ⊆ U(t), t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1
and Ar1

n (f, u0) is defined on U}. (24)

Let us note that, if U = [a, b]×X, then for all r1 ∈ N0 and n ∈ N the sets defined
in (6) and (24) coincide:

H r,%(U, κ, L, U0, V, r1, n) = F r,%(U, κ, L, U0, V ). (25)

Proposition 3.4. Given r, r1, %, a, b, κ, L as above and 1 ≤ p ≤ 2, there are
constants c1, c2 > 0 such that the following holds. Let X be a Banach space, U0 ⊆
X, V ⊆ U ⊆ [a, b]×X, U open, n ∈ N be such that H r,%(U, κ, L, U0, V, r1, n) 6= ∅.
Then for all (f, u0) ∈ H r,%(U, κ, L, U0, V, r1, n)

‖S(f, u0)−Ar1
n,ω(f, u0)‖B([a,b],X) ≤ c1n

−min(r+%,r1+1), ω ∈ Ω (26)

and
(
E ‖S(f, u0)−Ar1

n,ω(f, u0)‖p
B([a,b],X)

)1/p
≤ c2τp(X)n−min(r+%,r1+1)−1+1/p. (27)

P r o o f. Differentiating Eq. (5) and using the assumptions on f it
follows that u = S(f, u0) is (r + 1)-times continuously differentiable and there
are constants c1, c2 > 0 such that

‖u(j)(t)‖ ≤ c1, t ∈ [tk, tk+1], 1 ≤ j ≤ r + 1, (28)
‖u(r+1)(s)− u(r+1)(t)‖ ≤ c2|t− t|%, s, t ∈ [tk, tk+1]. (29)

Indeed, we show by induction over j that for 0 ≤ j ≤ r there exist constants
κj , Lj such that for each f ∈ C r,%(U, κ, L) there is an

fj ∈ C r−j,%(U, κj , Lj) (30)

such that
u(j+1)(t) = fj(t, u(t)), t ∈ [a, b]. (31)

For j = 0 we just set f0 = f , κ0 = κ, L0 = L. Now assume (30), (31) hold for
some j with 0 ≤ j < r. Differentiating (31), we obtain for t ∈ [a, b]

u(j+2)(t) =
∂fj

∂t
(t, u(t)) +

∂fj

∂x
(t, u(t))u′(t)

=
∂fj

∂t
(t, u(t)) +

∂fj

∂x
(t, u(t))f(t, u(t)).
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Setting for (t, x) ∈ U

fj+1(t, x) =
∂fj

∂t
(t, x) +

∂fj

∂x
(t, x)f(t, x),

it follows that (31) holds for j + 1. Moreover, from (30) we conclude that fj ∈
C r−j−1,%(U, κj+1, Lj+1) for some constants κj+1, Lj+1 > 0. This completes the
induction and proves (30), (31). Relation (28) follows directly from (30), (31),
while (29) is a consequence of (3), (30), (31), and the Lipschitz continuity of u
implied by (28).

Observe that for j ≥ 1

‖Pkj‖L (C([tk,tk+1],X)) = ‖Pj‖L (C([0,1],X)) ≤ c0(r1). (32)

For k = 0, . . . , n − 1, j = 0, . . . , r1 let p̃kj and q̃kj be defined by (10)–(14) with
uk replaced by u(tk). We show by induction over j that there are constants
c1−4,j > 0 such that for all j with 0 ≤ j ≤ r1 the following hold:

p̃kj is defined and ‖p̃kj(t)− u(tk)‖ ≤ c0(r1)κ(t− tk), t ∈ [tk−1, tk], (33)

sup
t∈[tk,tk+1]

‖u(t)− p̃kj(t)‖ ≤ c1,jh
min(r+%,j+1)+1, (34)

sup
t∈[tk,tk+1]

‖u′(t)− p̃′kj(t)‖ ≤ c2,jh
min(r+%,j+1), (35)

sup
t∈[tk,tk+1]

‖p̃kj(t)− pkj(t)‖ ≤ c3,j‖u(tk)− uk‖, (36)

sup
t∈[tk,tk+1]

‖p̃′kj(t)− p′kj(t)‖ ≤ c4,j‖u(tk)− uk‖. (37)

Note that, since u(tk) = p̃kj(tk), (34) follows with c1,j = c2,j from (35) by inte-
gration. Similarly, because of uk = pkj(tk), (36) is a consequence of (37), with
c3,j ≤ 1 + hc4,j ≤ 1 + (b− a)c4,j .

Let j = 0. By (6), u(tk) ∈ U(tk), so p̃k0 is defined. Moreover, for t ∈ [tk, tk+1]

‖p̃k0(t)− u(tk)‖ = ‖f(tk, u(tk))(t− tk)‖ ≤ κ(t− tk),

which gives (33). Furthermore,

‖u′(t)− p̃′k0(t)‖ = ‖f(t, u(t))− f(tk, u(tk))‖. (38)

If r = 0, it follows from (2), (3) and (5) that

‖f(t, u(t))− f(tk, u(tk))‖ ≤ κ(|t− tk|% + ‖u(t)− u(tk)‖%) ≤ κ(1 + κ%)h%.
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This together with (38) gives (35). If r ≥ 1, we have

‖f(t, u(t))− f(tk, u(tk))‖

=

∥∥∥∥∥∥

t∫

tk

(
∂f

∂t
(s, u(s)) +

∂f

∂x
(s, u(s))f(s, u(s))

)
ds

∥∥∥∥∥∥
≤ (κ + κ2)h,

which, combined with (38) gives (35) also for this case. Finally, we have by (4)

‖p̃′k0(t)− p′k0(t)‖ = ‖f(tk, u(tk))− f(tk, uk)‖ ≤ L‖u(tk)− uk‖,
showing (37) and completing the proof of (33)–(37) for j = 0.

Now we assume that r1 ≥ 1 and (33)–(37) hold for some j with 0 ≤ j < r1.
It follows from (33) and (24) that p̃kj(tk,j+1,i) ∈ U(tk,j+1,i), so p̃k,j+1 is defined.
Furthermore, using (32), we get for t ∈ [tk, tk+1]

‖p̃k,j+1(t)− u(tk)‖ =

∥∥∥∥∥∥

t∫

tk

(Pk,j+1q̃kj) (s)ds

∥∥∥∥∥∥
≤ c0(r1)κ(t− tk),

which shows (33) for j + 1. We have

‖u′(t)− p̃′k,j+1(t)‖ = ‖u′(t)− (Pk,j+1q̃kj)(t)‖
≤ ‖u′(t)− (Pk,j+1u

′)(t)‖+ ‖(Pk,j+1u
′)(t)− (Pk,j+1q̃kj)(t)‖. (39)

Setting l = min(r, j +1), (28) and the Taylor series with integral remainder term
give

u′(t) =
l∑

i=0

u(i+1)(tk)
i!

(t− tk)i + R(t), t ∈ [tk, tk+1] (40)

with

R(t) =





1
(l − 1)!

t∫

tk

(t− s)l−1
(
u(l+1)(s)− u(l+1)(tk)

)
ds if l ≥ 1

u′(t)− u′(tk) if l = 0.

(41)

Since Pk,j+1 is exact on (X-valued) polynomials of degree ≤ j +1, (32) and (40),
(41) give

sup
t∈[tk,tk+1]

‖u′(t)− (Pk,j+1u
′)(t)‖

≤ c0(r1) + 1
l!

hl sup
t∈[tk,tk+1]

‖u(l+1)(t)− u(l+1)(tk)‖. (42)
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For j + 1 ≥ r we have l = r and by (29),

sup
t∈[tk,tk+1]

‖u(l+1)(t)− u(l+1)(tk)‖ ≤ ch%. (43)

If j + 1 < r, meaning that l = j + 1 and l + 2 ≤ r + 1, we have by (28)

sup
t∈[tk,tk+1]

‖u(l+1)(t)− u(l+1)(tk)‖ ≤
tk+1∫

tk

‖u(l+2)(s)‖ds ≤ ch. (44)

Using (32) and the induction assumption (34), we obtain

sup
t∈[tk,tk+1]

‖(Pk,j+1u
′)(t)− (Pk,j+1q̃kj)(t)‖

≤ c0(r1) max
0≤i≤j+1

‖u′(tk,j+1,i)− f(tk,j+1,i, p̃kj(tk,j+1,i))‖
= c0(r1) max

0≤i≤j+1
‖f(tk,j+1,i, u(tk,j+1,i))− f(tk,j+1,i, p̃kj(tk,j+1,i))‖

≤ c0(r1)L sup
t∈[tk,tk+1]

‖u(t)− p̃kj(t)‖ ≤ c0(r1)Lc1,jh
min(r+%+1,j+2). (45)

Combining (39) and (42)–(45) proves (35) for j + 1. Finally, we have for t ∈
[tk, tk+1]

‖p̃′k,j+1(t)− p′k,j+1(t)‖ = ‖(Pk,j+1q̃kj)(t)− (Pk,j+1qkj)(t)‖
≤ c0(r1) max

0≤i≤j+1
‖f(tk,j+1,i, p̃kj(tk,j+1,i))− f(tk,j+1,i, pkj(tk,j+1,i))‖

≤ c0(r1)L max
0≤i≤j+1

‖p̃kj(tk,j+1,i))− pkj(tk,j+1,i)‖

≤ c0(r1)Lc3,j‖u(tk)− uk‖,
where in the last step we used the induction assumption (36). This shows (37)
for j + 1, completes the induction step and thus the proof of (33)–(37).

Note that (24) and (33) ensure p̃kr1(t) ∈ U(t) (t ∈ [tk, tk+1]). From (4), (34),
and (35) we get

sup
t∈[tk,tk+1]

‖f(t, p̃kr1(t))− p̃′kr1
(t)‖

= sup
t∈[tk,tk+1]

(‖f(t, p̃kr1(t))− f(t, u(t))‖+ ‖u′(t)− p̃′kr1
(t)‖)

≤ chmin(r+%,r1+1). (46)

We define for 0 ≤ k ≤ n− 1

wk+1 = p̃kr1(tk+1) + h(f(ξk+1, p̃kr1(ξk+1))− p̃′kr1
(ξk+1)). (47)
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Let
ek = u(tk)− uk

denote the error at point tk. Then we have e0 = 0 and for 0 ≤ k ≤ n− 1

ek+1 − ek = u(tk+1)− u(tk)− (uk+1 − uk) = dk+1 + gk+1 + ηk+1, (48)

where

dk+1 =

tk+1∫

tk

(f(t, u(t))− f(t, p̃kr1(t))) dt, (49)

gk+1 = wk+1 − u(tk)− (uk+1 − uk), (50)

ηk+1 =

tk+1∫

tk

f(t, p̃kr1(t))dt− (wk+1 − u(tk)). (51)

We have by (16)

uk+1 − uk =

tk+1∫

tk

p′kr1
(t)dt + h(f(ξk+1, pkr1(ξk+1))− p′kr1

(ξk+1)), (52)

and, similarly, from (47)

wk+1 − u(tk) =

tk+1∫

tk

p̃′kr1
(t)dt + h(f(ξk+1, p̃kr1(ξk+1))− p̃′kr1

(ξk+1)). (53)

Since p̃kr1 does not depend on ω, taking the expectation in (53) gives

Ewk+1 − u(tk) =

tk+1∫

tk

f(t, p̃kr1(t))dt. (54)

By (51), (53), and (54),

ηk+1 =

tk+1∫

tk

(
f(t, p̃kr1(t))− p̃′kr1

(t)
)
dt

−h(f(ξk+1, p̃kr1(ξk+1))− p̃′kr1
(ξk+1)) (55)

= Ewk+1 − wk+1. (56)
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Relations (46) and (55) imply

‖ηk+1‖ ≤ chmin(r+%,r1+1)+1. (57)

Moreover, from (4), (34), and (49) we get

‖dk+1‖ ≤ chmin(r+%,r1+1)+2. (58)

Subtracting (52) from (53) and using (4), (36), and (37) gives

‖gk+1‖ ≤ ch‖ek‖. (59)

Denote

θ =
n∑

j=1

‖dj‖+ max
1≤j≤n

∥∥∥
j∑

i=1

ηi

∥∥∥. (60)

Since e0 = 0, we obtain from (48) and (59) for 1 ≤ k ≤ n

‖ek‖ =

∥∥∥∥∥∥

k∑

j=1

(gj + dj + ηj)

∥∥∥∥∥∥
≤

k∑

j=1

‖gj‖+ θ ≤ ch
k−1∑

j=1

‖ej‖+ θ. (61)

Using (61) recursively, we get

k−1∑

j=1

‖ej‖ ≤
k−2∑

j=1

‖ej‖+ ch

k−2∑

j=1

‖ej‖+ θ = (1 + ch)
k−2∑

j=1

‖ej‖+ θ

≤ (1 + ch)2
k−3∑

j=1

‖ej‖+ θ + (1 + ch)θ ≤ · · · ≤ (1 + ch)k−1 − 1
ch

θ.

Inserting this into (61) yields

‖ek‖ ≤ (1 + ch)k−1θ ≤ ec(k−1)hθ ≤ ec(b−a)θ,

and, with (58) and (60),

max
0≤k≤n

‖ek‖ ≤ chmin(r+%,r1+1)+1 + c max
1≤k≤n

∥∥∥
k∑

i=1

ηi

∥∥∥. (62)

With v given by (17) we have

sup
t∈[a,b]

‖u(t)− v(t)‖

= max
(

max
0≤k≤n−1

sup
t∈[tk,tk+1]

‖u(t)− pkr1(t)‖, ‖u(tn)− un‖
)
. (63)
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Moreover, using (34) and (36),

sup
t∈[tk,tk+1]

‖u(t)− pkr1(t)‖ ≤ sup
t∈[tk,tk+1]

(‖u(t)− p̃kr1(t)‖+ ‖p̃kr1(t)− pkr1(t)‖)

≤ chmin(r+%,r1+1)+1 + c‖ek‖,
which together with (62) and (63) gives

‖S(f, u0)−Ar1
n,ω(f, u0)‖B([a,b],X) ≤ chmin(r+%,r1+1)+1 + c max

1≤k≤n

∥∥∥
k∑

i=1

ηi

∥∥∥. (64)

Now (26) is a consequence of (57) and (64). The case p = 1 of (27), in turn,
follows from (26). Now we assume 1 < p ≤ 2. From (64) we get

E ‖S(f, u0)−Ar1
n,ω(f, u0)‖p

B([a,b],X)

≤ chp min(r+%,r1+1)+p + cE max
1≤k≤n

∥∥∥
k∑

i=1

ηi

∥∥∥
p
. (65)

By (55), (56), (ηk)n
k=1 is a sequence of independent X-valued random variables

of mean zero. Consequently,
(∥∥∥∑k

i=1 ηi

∥∥∥
)n

k=1
is a non-negative submartingale.

From Doob’s inequality ([5], Ch. VII, Th. 3.4) we obtain

E max
1≤k≤n

∥∥∥
k∑

i=1

ηi

∥∥∥
p
≤ pp

(p− 1)p
E

∥∥∥
n∑

i=1

ηi

∥∥∥
p
. (66)

On the other hand, from Lemma 2.1 we get

E
∥∥∥

n∑

i=1

ηi

∥∥∥
p
≤ 2pτp(X)p

n∑

i=1

E‖ηi‖p . (67)

Combining (57), (66), and (67) gives

E max
1≤k≤n

∥∥∥
k∑

i=1

ηi

∥∥∥
p
≤ cτp(X)php min(r+%,r1+1)+p−1.

Inserting this into (65) gives (27) for 1 < p ≤ 2.

P r o o f of Theorem 3.2. By assumption, (8) and hence (9) is valid, so
F 6= ∅. Let (f, u0) ∈ F . Using (10)–(16) and (20), we show by induction that for
0 ≤ k ≤ n the following hold:

uk is defined and ‖uk − u0‖ ≤ c(r1)κkh, (68)
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and, if k ≤ n− 1, then for all j with 0 ≤ j ≤ r1

pkj is defined and ‖pkj(t)− uk‖ ≤ c0(r1)κ(t− tk) (t ∈ [tk, tk+1]). (69)

First we show that for 0 ≤ k ≤ n − 1 (68) implies (69). So suppose (68) holds
for some 0 ≤ k ≤ n− 1. To derive (69), we argue by induction over j. Let j = 0.
By (20) and (68), uk ∈ U(tk), so pk0 is defined and we have

‖pk0(t)− uk‖ = ‖f(tk, uk)(t− tk)‖ ≤ κ(t− tk), t ∈ [tk, tk+1].

Now we assume that (69) holds for some j with 0 ≤ j < r1. It follows that for
t ∈ [tk, tk+1]

‖pkj(t)− u0‖ ≤ ‖pkj(t)− uk‖+ ‖uk − u0‖ ≤ c(r1)κ(t− a),

hence pkj(tk,j+1,i) ∈ U(tk,j+1,i) for i = 0, . . . , j + 1, so pk,j+1 is defined. Further-
more, using (32), we get

‖pk,j+1(t)− uk‖ =

∥∥∥∥∥∥

t∫

tk

(Pk,j+1qkj) (s)ds

∥∥∥∥∥∥
≤ c0(r1)κ(t− tk),

showing (69) for j + 1, completing the induction over j and thus, the proof that
(68) implies (69).

Next we prove (68) by induction over k. For k = 0, (68) holds by definition.
Now suppose (68) and hence (69) hold for some k with 0 ≤ k ≤ n− 1. It follows
that for t ∈ [tk, tk+1]

‖pkr1(t)− u0‖ ≤ ‖pkr1(t)− uk‖+ ‖uk − u0‖ ≤ c(r1)κ(t− a),

and therefore, pkr1(t) ∈ U(t). This shows that uk+1 is defined. Note that

‖p′kr1
(t)‖ ≤ c0(r1)κ (t ∈ [tk, tk+1]),

which is a consequence of (11) if r1 = 0 and of (14) if r1 ≥ 1. We have

‖uk+1 − uk‖ ≤ ‖pkr1(tk+1)− uk‖+ h
∥∥f(ξk+1, pkr1(ξk+1))− p′kr1

(ξk+1)
∥∥

≤ c0(r1)κh + (c0(r1) + 1)κh = c(r1)κh,

hence
‖uk+1 − u0‖ ≤ c(r1)κ(k + 1)h.

This shows (68) for k + 1, completes the induction over k and the proof of (68),
(69).
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It follows that Ar1
n (f, u0) is defined. Moreover, with u = S(f, u0) we get

from (5)
u(tk) ∈ U0 + κ(tk − a)BX ,

and therefore, using (20), for t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1

u(tk) + c0(r1)κ(t− tk)BX ⊆ U0 + c0(r1)κ(t− a)BX ⊆ U(t).

This shows that (f, u0) ∈ H r,%(U, κ, L, U0, V, r1, n), therefore

F r,%(U, κ, L, U0, V ) = H r,%(U, κ, L, U0, V, r1, n),

and the result follows from Proposition 3.4.

P r o o f of Theorem 3.3. We set

W = {(t, u(t)) : t ∈ [a, b], u = S(f, u0) for some (f, u0) ∈ F}. (70)

Then W ⊆ V and W (t) 6= ∅ (t ∈ [a, b]). Define the function ψ : [0, +∞) → [0, 1]
by

ψ(t) =





1 if 0 ≤ t ≤ 2δ0/3
3(1− t/δ0) if 2δ0/3 < t < δ0

0 if δ0 ≤ t.

Given (f, u0) ∈ F r,%(U, κ, L, U0, V ) we define f̃ : [a, b]×X → X by

f̃(t, x) =
{

ψ(d(x,W (t)))f(t, x) if x ∈ U(t)
0 otherwise,

where d(x,W (t)) = inf{‖x − y‖ : y ∈ W (t)} is the distance of x to W (t).
Consequently,

f̃(t, x) = f(t, x), t ∈ [a, b], x ∈ X, d(x,W (t)) ≤ 2δ0

3
. (71)

Put

%̃ =
{

1, if r ≥ 1
%, if r = 0,

thus, 0 < %̃ ≤ 1. We show that

f̃ ∈ C 0,%̃([a, b]×X, κ1, L1) (72)

for some κ1, L1 > 0 depending only on κ,L and δ0.
By assumption, d(x,W (t)) < δ0 implies x ∈ U(t), therefore

sup
t∈[a,b],x∈X

‖f̃(t, x)‖ ≤ sup
(t,x)∈U

‖f(t, x)‖ ≤ κ. (73)
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Now fix s, t ∈ [a, b], x, y ∈ X. Let v = S(g, v0) for some
(g, v0) ∈ F r,%(U, κ, L, U0, V ). Then

d(x,W (s)) ≤ d(x, v(s)) ≤ d(x, v(t)) + ‖v(s)− v(t)‖
≤ d(x, v(t)) + κ|s− t|.

Taking the infimum over v and using (70), we get

d(x,W (s)) ≤ d(x,W (t)) + κ|s− t|,

and, exchanging s and t and combining both estimates, we arrive at

|d(x,W (s))− d(x,W (t))| ≤ κ|s− t|. (74)

Using this, we derive

|ψ(d(x, W (s)))− ψ(d(y, W (t)))|
≤ |ψ(d(x,W (s)))− ψ(d(x,W (t)))|+ |ψ(d(x,W (t)))− ψ(d(y, W (t)))|
≤ 3δ−1

0

(|d(x,W (s))− d(x,W (t))|+ |d(x,W (t))− d(y, W (t))|)

≤ 3δ−1
0 (κ|s− t|+ ‖x− y‖). (75)

Now we verify that f̃ satisfies the %̃-Hölder condition. We can assume d(x,W (s)) ≤
d(y, W (t)). If d(x,W (s)) ≥ δ0, we have

f̃(s, x) = f̃(t, y) = 0. (76)

If d(x, W (s)) < δ0 ≤ d(y,W (t)), then ψ(d(y, W (t))) = 0, and therefore f̃(t, y) =
0. Taking into account (75), we conclude

‖f̃(s, x)− f̃(t, y)‖ =
∥∥ψ(d(x,W (s)))f(s, x)

∥∥
=

∣∣ψ(d(x,W (s)))− ψ(d(y,W (t)))
∣∣‖f(s, x)‖

≤ 3δ−1
0 κ(κ|s− t|+ ‖x− y‖). (77)

Finally, we assume d(x,W (s)) < δ0 and d(y, W (t)) < δ0. Then, using again (75),

‖f̃(s, x)− f̃(t, y)‖
≤ |ψ(d(x,W (s)))− ψ(d(y, W (t)))|‖f(s, x)‖

+ψ(d(y,W (t)))‖f(s, x)− f(t, y)‖
≤ 3δ−1

0 κ(κ|s− t|+ ‖x− y‖) + ‖f(s, x)− f(t, y)‖. (78)

Now (3), (73), and (76)–(78) imply the %̃-Hölder condition for f̃ . Finally, Lip-
schitz continuity of f̃ follows from (4) and (76)–(78) with s = t, which completes
the proof of (72).
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Let u = S(f, u0). Then, by (70), for all t ∈ [a, b] we have u(t) ∈ W (t) and
therefore, by (71),

u′(t) = f(t, u(t)) = f̃(t, u(t)).

It follows that
S(f̃ , u0) = S(f, u0). (79)

Let ω ∈ Ω, n ∈ N, and let ũk (0 ≤ k ≤ n), p̃kj and q̃kj (0 ≤ k ≤ n − 1, 0 ≤
j ≤ r1) be the resulting sequences from the definition (10–16) of Ar1

n,ω(f̃ , u0). By
(25), (72), and Proposition 3.4,

‖S(f̃ , u0)−Ar1
n,ω(f̃ , u0)‖B([a,b],X) ≤ c1n

−%̃ ≤ δ0/3, (80)

provided n ≥ n1, where n1 = d(3c1/δ0)1/%̃e. Taking into account (70) and (79),
it follows from (80) that for 0 ≤ k ≤ n− 1, t ∈ [tk, tk+1]

d(p̃kr1(t),W (t)) ≤ ‖p̃kr1(t)−
(
S(f, u0)

)
(t)‖

= ‖p̃kr1(t)−
(
S(f̃ , u0)

)
(t)‖ ≤ δ0

3
,

and hence, also

d(ũk, W (tk)) ≤ δ0

3
. (81)

By (11) and (13), (14), for 0 ≤ j ≤ r1

‖p̃kj(t)− ũk‖ ≤ c0(r1)κ1h. (82)

Using (74), (81), and (82), we conclude

d(p̃kj(t),W (t)) ≤ c0(r1)κ1h +
δ0

3
+ κh ≤ 2δ0

3
, t ∈ [tk, tk+1], (83)

provided n ≥ n2, with a suitably chosen n2 ≥ n1.
Next we consider algorithm Ar1

n,ω for (f, u0). Let uk (0 ≤ k ≤ n), pkj , and qkj

(0 ≤ k ≤ n − 1, 0 ≤ j ≤ r1) be the corresponding sequences from the definition
(10)–(16), as far as they are defined (compare conditions (10), (12), and (15)).
We show by induction that for 0 ≤ k ≤ n the following holds:

uk is defined and uk = ũk, (84)

and, if k ≤ n− 1, then for all j with 0 ≤ j ≤ r1

pkj is defined and pkj = p̃kj . (85)
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First we prove that (84) implies (85). So assume that (84) holds for some 0 ≤
k ≤ n− 1. We show (85) by induction over j. Let j = 0. By (84), (81), and (71),
uk ∈ U(tk) and

f(tk, uk) = f(tk, ũk) = f̃(tk, ũk),

therefore pk0 is defined and

pk0(t) = uk + f(tk, uk)(t− tk) = ũk + f̃(tk, ũk)(t− tk) = p̃k0(t).

Now we assume that (85) holds for some j with 0 ≤ j < r1. Then

pkj(tk,j+1,i) = p̃(tk,j+1,i), i = 0, . . . , j + 1, (86)

hence, by (83),

d(pkj(tk,j+1,i),W (tk,j+1,i)) ≤ 2δ0

3
. (87)

In particular, pkj(tk,j+1,i) ∈ U(tk,j+1,i) for i = 0, . . . , j + 1, so pk,j+1 is defined.
Moreover, by (86) and (87)

f(tk,j+1,i, pkj(tk,j+1,i)) = f̃(tk,j+1,i, p̃kj(tk,j+1,i)),

so, compare (13), qkj = q̃kj , and therefore,

pk,j+1(t) = uk +

t∫

tk

(Pk,j+1qk,j+1)(s)ds

= ũk +

t∫

tk

(Pk,j+1q̃k,j+1)(s)ds = p̃k,j+1(t).

This completes the induction over j and the proof that (84) implies (85).
Next we show (84) by induction over k. For k = 0 it holds by definition. Now

suppose (84) and thus (85) hold for some k with 0 ≤ k ≤ n − 1. Since by (83)
and (85)

d(pkr1(t),W (t)) = d(p̃kr1(t),W (t)) ≤ 2δ0

3
, t ∈ [tk, tk+1],

it follows that uk+1 is defined and

uk+1 = pkr1(tk+1) + h
(
f(ξk+1, pkr1(ξk+1))− p′kr1

(ξk+1)
)

= p̃kr1(tk+1) + h
(
f̃(ξk+1, p̃kr1(ξk+1))− p̃′kr1

(ξk+1)
)

= ũk+1.

This shows (84) for k + 1, completes the induction over k, and proves (84), (85).
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It follows that Ar1
n (f, u0) is defined. Setting S(f, u0) = u, we have for 0 ≤

k ≤ n− 1 and t ∈ [tk, tk+1]

‖u(t)− u(tk)‖ ≤ κ(t− tk)

and therefore, using (23) and (19)

u(tk) + c0(r1)κ(t− tk)BX ⊆ u(t) + (c0(r1) + 1)κ(t− tk)BX ⊆ U(t)

provided n ≥ n0, with n0 ≥ n2 suitably chosen. Recalling (24), it follows that
for n ≥ n0 we have (f, u0) ∈ H r,%(U, κ, L, U0, V, r1, n), consequently

F r,%(U, κ, L, U0, V ) = H r,%(U, κ, L, U0, V, r1, n).

Now Theorem 3.3 follows from Proposition 3.4.

4. Lower Bounds, Banach Space Valued Integration,
and Complexity

To prove lower bounds we shall exploit that Banach space valued integration
is a special case of the initial value problem. While complexity of integration
in the scalar case is well-studied, the Banach space case has been investigated
only recently in [3]. This paper covered the case Cr, while here we need the case
Cr,%. The (short) proof of the lower bound is analogous, we include it though
for the sake of completeness. Since algorithms for the initial value problem lead
to algorithms for integration, we can use the algorithm from above to get upper
bounds. Furthermore, it is informative to see what this algorithm means for
integration.

For −∞ < a < b < ∞, r ∈ N0, 0 ≤ % ≤ 1 let F0 = C r,%([a, b], 1) be the set
of all r-times continuously differentiable functions f : [a, b] → X satisfying for
s, t ∈ [a, b]

‖f (j)(t)‖ ≤ 1, 0 ≤ j ≤ r,

‖f (r)(s)− f (r)(t)‖ ≤ |s− t|%,

let G0 = X and define S0 : F0 → G0 by

S0(f) =

b∫

a

f(t)dt.

Moreover, let K0 = X and Λ0 = {δs : s ∈ [a, b]} with δs(f) = f(s). This defines
the integration problem P0 = (F0, G0, S0,K0, Λ0).
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Let, as before, U0 ⊆ X, V ⊆ U ⊆ [a, b] × X, U open, κ,L > 0. We assume
that there is a u0 ∈ U0 and a δ1 > 0 such that

u0 + δ1(t− a)BX ⊆ V (t), t ∈ [a, b]. (88)

In particular, these conditions are satisfied if

U0 6= ∅ and V = U = [a, b]×X. (89)

Then we can reduce the integration problem to the initial value problem. For
this purpose, set σ0 = min(κ, δ1) and define

R : F0 → C r,%(U, κ, L)× U0, R(f) = (σ0f̄ , u0),

where f̄ is given by f̄(t, x) = f(t) ((t, x) ∈ U). Then the solution of the system

u′(t) = σ0f̄(t, u(t)) (t ∈ [a, b]), u(a) = u0,

is

u(t) = u0 + σ0

t∫

a

f(s)ds,

which, by (88), satisfies u(t) ∈ V (t) (t ∈ [a, b]). Therefore by (6),

R(f) ∈ F = F r,%(U, κ, L, U0, V ), f ∈ F0.

Define
Ψ : B([a, b], X) → X, Ψ(g) = σ−1

0 (g(b)− u0). (90)

Obviously, we have
S0 = Ψ ◦ S ◦R.

This shows that the integration problem P0 = (F0, G0, S0,K0, Λ0) reduces to P
(see [8] for the formal definition and additional details like the requirements on
R, which are easily seen to be satisfied here). Consequently, with eset

n standing
for edet

n or eran
n , we have for all n

eset
n (S0, F0) ≤ ‖Ψ‖Lipe

set
n (S, F ) = σ−1

0 eset
n (S, F ), (91)

where ‖Ψ‖Lip denotes the Lipschitz constant of Ψ. Next let us see how algorithm
Ar1

n,ω transforms into an algorithm for S0. Considering Ar1
n,ω, applied to (σ0f̄ , u0),

we have by (11) and (13–14) for t ∈ [tk, tk+1]

pkr1(t) = uk + σ0

t∫

tk

(Pkr1f)(s)ds.
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Here Pkr1f stands for Pkr1(f(tk,r1,i))r1
i=0 with tk,r1,i = tk + ih/r1 if r1 ≥ 1, while

Pk0f is given by (Pk0f)(t) ≡ f(tk). It follows that

uk+1 = uk + σ0

tk+1∫

tk

(Pkr1f)(t)dt + σ0h (f(ξk+1)− (Pkr1f)(ξk+1)) ,

and therefore

un = u0 + σ0

n−1∑

k=0

tk+1∫

tk

(Pkr1f)(t)dt + σ0h

n−1∑

k=0

(f(ξk+1)− (Pkr1f)(ξk+1)) .

Together with (17) and (90) this gives

A(0)
n,ω(f) := Ψ ◦Ar1

n,ω ◦R(f) = σ−1
0 (un − u0)

=
n−1∑

k=0




tk+1∫

tk

(Pkr1f)(t)dt +
b− a

n
(f(ξk+1)− (Pkr1f)(ξk+1))


 , (92)

which is Monte Carlo integration with stratified sampling and separation of the
main part. Moreover, for f ∈ F0

‖S0(f)−A(0)
n,ω(f)‖ = ‖Ψ ◦ S ◦R(f)−Ψ ◦Ar1

n,ω ◦R(f)‖
≤ σ−1

0 ‖S(σ0f̄ , u0)−Ar1
n,ω(σ0f̄ , u0)‖B([a,b],X). (93)

Taking, e.g., the choice (89), the conditions of Theorem 3.2 are satisfied, which
together with (93) yields that for any ω ∈ Ω

sup
f∈F0

‖S0(f)−A(0)
n,ω(f)‖ ≤ σ−1

0 sup
f∈F0

‖S(σ0f̄ , u0)−Ar1
n,ω(σ0f̄ , u0)‖B([a,b],X)

≤ σ−1
0 sup

(g,v0)∈F
‖S(g, v0)−Ar1

n,ω(g, v0)‖B([a,b],X)

≤ cn−min(r+%,r1+1) (94)

and similarly

sup
f∈F0

(
E ‖S0(f)−A(0)

n,ω(f)‖p
)1/p

≤ cτp(X)n−min(r+%,r1+1)−1+1/p. (95)

Let us mention that (95) could also be derived directly from (92), Lemma 2.1,
and

sup
t∈[tk,tk+1]

‖f(t)− (Pkr1f)(t)‖ ≤ cn−min(r+%,r1+1),

which is just (35) for the present situation.
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Proposition 4.1. Let r, %, a, b, X be as above. Then there are constants
c1, c2 > 0 such that for all n ∈ N the deterministic n-th minimal error of the
integration problem satisfies

c1n
−r−% ≤ edet

n (S0, F0) ≤ c2n
−r−%.

Let, in addition, 1 ≤ p ≤ 2 and assume that X is of type p. Let pX be the
supremum of all p1 such that X is of type p1. Then there are constants c3, c4 > 0
such that for all n ∈ N the randomized n-th minimal error fulfills

c3n
−r−%−1+1/pX ≤ eran

n (S0, F0) ≤ c4n
−r−%−1+1/p.

P r o o f. Choosing r1 ≥ r, the upper bounds follow from (94) and (95),
since algorithm A

(0)
n,ω uses not more than cn values of f . Let us turn to the lower

bounds. Since every Banach space X contains an isometric copy X0 of R, scalar
problems reduce to the Banach case by considering problems such that all values
of f are in X0. Therefore the lower bounds in the deterministic setting and in
the randomized setting with pX = 2 follow from the respective scalar results.

Now we assume pX < 2 and consider the randomized setting. Since a finite
dimensional space Z always satisfies pZ = 2, the space X must be infinite dimen-
sional. By the Maurey–Pisier Theorem (see [14], Th. 2.3) for every n ∈ N there
is a subspace En ⊂ X of dimension 8n and an isomorphism T : `8n

pX
→ En with

‖T‖ ≤ 1 and ‖T−1‖ ≤ 2. Let xi = Tei, where (ei)8n−1
i=0 is the unit vector basis of

`8n
pX

. Let ψ ∈ C∞(R) be such that ψ(t) > 0 for t ∈ (0, 1) and suppψ ⊂ [0, 1], let
n ∈ N and define for t ∈ R, i = 0, . . . , 8n− 1

ψi(t) = ψ(8n(t− ti)), ti = a + i
(b− a)

8n
.

There is a constant c0 > 0 such that for all n ∈ N and (αi)8n−1
i=0 ⊂ [−1, 1]8n

c0n
−r−%

8n−1∑

i=0

αiψixi ∈ F0.

Setting fi = c0n
−r−%ψixi and σ1 =

∫ 1
0 ψ(t)dt, we get for all (αi)8n−1

i=0 ⊂ R8n

∥∥∥
8n−1∑

i=0

αiS0fi

∥∥∥ = c0n
−r−%

∥∥∥
8n−1∑

i=0

αixi

b∫

a

ψi(t)dt
∥∥∥

=
1
8
c0(b− a)σ1n

−r−%−1
∥∥∥

8n−1∑

i=0

αixi

∥∥∥ ≥ cn−r−%−1

(
8n−1∑

i=0

|αi|pX

)1/pX

.
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Using Lemma 5 and 6 of [7] with K = X (Lemma 6 is formulated for K = R,
but is easily seen to hold also for K = X), we conclude

eran
n (S0, F0) ≥ 1

4
min

I⊆{0,...,4n−1},|I|≥4n
E

∥∥∥
∑

i∈I

εiS0fi

∥∥∥ ≥ cn−r−%−1+1/pX ,

with (εi)8n−1
i=0 being a sequence of independent Bernoulli random variables with

P{εi = −1} = P{εi = +1} = 1/2.

Now we consider the initial value problem.

Theorem 4.2. Let r, %, a, b, κ, L be as above, let X be a Banach space, ∅ 6=
U0 ⊆ X, V ⊆ U ⊆ [a, b] ×X, and U open. Assume that one of the following is
fulfilled:
1. Conditions (8) and (20) hold or
2. r + % > 0 and there are δ0, δ1 > 0 and u0 ∈ U0 such that conditions (23) and
(88) hold.

Then there are constants c1, c2 > 0 such that for all n ∈ N the deterministic
n-th minimal error of the initial value problem satisfies

c1n
−r−% ≤ edet

n (S, F ) ≤ c2n
−r−%.

Let, moreover, 1 ≤ p ≤ 2 and assume that X is of type p. Let pX be the supremum
of all p1 such that X is of type p1. Then there are constants c3, c4 > 0 such that
for all n ∈ N the randomized n-th minimal error fulfills

c3n
−r−%−1+1/pX ≤ eran

n (S, F ) ≤ c4n
−r−%−1+1/p.

P r o o f. The upper bounds follow directly from Theorems 3.2 and 3.3
and the fact that the algorithm needs not more than cn values of f . The lower
bounds follow from Proposition 4.1 and (91).

Note that the bounds in the randomized cases of Proposition 4.1 and Theorem
4.2 are matching up to an arbitrarily small gap in the exponent. In some cases,
they are even of matching order.

Corollary 4.3. Assume that the conditions of Theorem 4.2 hold. Let pX be
the supremum of all p1 such that X is of type p1. Then for each ε > 0 there are
constants c1, c2 > 0 such that for all n ∈ N

c1n
−r−%−1+1/pX ≤ eran

n (S, F ) ≤ c2n
−r−%−1+1/pX+ε.

If, moreover, the supremum of types is attained, that is, X is of type pX , then
there are constants c3, c4 > 0 such that for all n ∈ N

c3n
−r−%−1+1/pX ≤ eran

n (S, F ) ≤ c4n
−r−%−1+1/pX .
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The latter holds, in particular, for spaces of type 2 and, if 1 ≤ p1 < ∞, for spaces
X = Lp1(N , ν), where (N , ν) is some measure space.

Under the conditions of Proposition 4.1 the same results hold with eran
n (S, F )

replaced by eran
n (S0, F0).

The lower bounds in Proposition 4.1, Theorem 4.2, and Corollary 4.3 remain
true for algorithms of varying cardinality (see [7, 8] for the definition), since
the results from [7] used in proof of Proposition 4.1 are valid for this class of
algorithms, as well.

For general Banach spaces X upper and lower bounds of matching order of
eran
n (S, F ) and eran

n (S0, F0) remain an open problem.
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