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A known analogue of the Pitt compactness theorem for function spaces
asserts that if 1 ≤ p < 2 and p < r < ∞, then every operator T : Lp → Lr is
narrow. Using a technique developed by M.I. Kadets and A. PeÃlczyński, we
prove a similar result. More precisely, if 1 ≤ p ≤ 2 and F is a Köthe–Banach
space on [0, 1] with an absolutely continuous norm containing no isomorph
of Lp such that F ⊂ Lp, then every regular operator T : Lp → F is narrow.
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To the memory of M.I. Kadets

1. Introduction

Narrow operators were introduced and studied by A.M. Plichko and the se-
cond named author in [11]. Let us recall the definition for function spaces on
the Lebesgue measure space ([0, 1], Σ, µ). Let L0 denote the linear space of all
equivalence classes of Σ-measurable functions x : [0, 1] → R, and Lp = Lp[0, 1]
for 1 ≤ p ≤ ∞. By 1A we denote the characteristic function of a set A ∈ Σ.
We set Σ(A) = {B ∈ Σ : B ⊆ A}, Σ+(A) = {B ∈ Σ(A) : µ(B) > 0} and, as a
partial case, Σ+ = Σ+([0, 1]). The notation A = B t C means that A = B ∪ C
and B ∩ C = 0. By a sign we mean any {−1, 0, 1}-valued element x ∈ L0. More
precisely, a sign x is called a sign on a set A ∈ Σ provided that suppx = A.
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A sign x is said to be of mean zero if
∫
[0,1] x dµ = 0. Observe that x ∈ L0 is a

sign on A ∈ Σ if and only if x = 1B − 1C for some B,C ∈ Σ with A = B t C,
and, in addition, µ(B) = µ(C) means that x is of mean zero. A Banach space
E ⊂ L1 is called a Köthe–Banach space on [0, 1] if the following conditions hold:

(1) 1[0,1] ∈ E;

(2) for each x ∈ L0 and y ∈ E the condition |x| ≤ |y| implies x ∈ E and
‖x‖ ≤ ‖y‖.

Note that, in the terminology of Lindenstrauss–Tzafriri [10, p. 28], a Köthe
function space is a somewhat general notion which concerns the linear subspaces
E of L0, because we additionally assume the inclusion E ⊆ L1. Using this inclu-
sion and the closed graph theorem, one can show that the inclusion embedding
of E to L1 is continuous. A further convenience of the integrability assumption
E ⊆ L1 is shown in the following useful observation. Let E and F be Köthe–
Banach spaces on [0, 1] with E ⊆ F . Then the inclusion embedding J : E → F ,
Jx = x for all x ∈ E, is continuous. Indeed, given any Köthe–Banach space G on
[0, 1], by continuity of the inclusions G ⊆ L1 ⊆ L0 where the convergence in L0 is
equivalent to the convergence in measure, we have that every convergent sequence
in G converges in measure. Using this fact and the closed graph theorem, one
can easily prove that any inclusion of Köthe–Banach spaces is continuous.

A Köthe–Banach space E on [0, 1] is said to have an absolutely continuous
norm if limµ(A)→0 ‖x · 1A‖ = 0 for every x ∈ E.

By L(X, Y ) we denote the set of all linear bounded operators from a Banach
space X to a Banach space Y , and set L(X) = L(X,X). Let E be a Köthe-
Banach space on [0, 1] and let X be a Banach space. An operator T ∈ L(E, X) is
called narrow if for every A ∈ Σ and every ε > 0 there is a mean zero sign x on A
with ‖Tx‖ < ε. It is not very hard to show that if E has an absolutely continuous
norm, then every compact operator T ∈ L(E,X) is narrow [11]. Thus, narrow
operators generalize compact operators (as well as some other natural classes
of “small” operators). Some properties of compact operators inherit by narrow
operators, but not all of them (see [11], a recent survey [12] and a forthcoming
book [13]).

The classical Pitt theorem [9, p. 76] asserts that for any 1 ≤ p < r < ∞ every
operator T ∈ L(`r, `p) is compact. Using the notion of infratype for Banach
spaces, the following result was obtained in [8].

Theorem 1.1. If 1 ≤ p < 2 and p < r < ∞, then every operator T ∈
L(Lp, Lr) is narrow.

Theorem 1.1 can be considered as an analogue of the Pitt compactness the-
orem in the setting of function spaces. We remark that Theorem 1.1 is false for
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any other values of p and r. If p ≥ 2, then the composition Jr ◦ Ip of the identity
embedding Ip : Lp → L2 and the isomorphic embedding Jr : L2 → Lr is evidently
not narrow. And if 1 ≤ p < 2 and 1 ≤ r ≤ p, then the identity embedding of Lp

into Lr is not narrow.
Recall that a linear operator T : E → F between Köthe–Banach spaces (more

general, between vector lattices) E and F is called positive if Tx ≥ 0 for every
x ∈ E with x ≥ 0. Here and in sequel x ≤ y for elements of L1 means that
x(t) ≤ y(t) holds a.e. on [0, 1]. A linear operator T : E → F is called regular if
it is a difference of two positive linear operators from E to F .

The main result of the paper is the following theorem.

Theorem 1.2. Let 1 ≤ p ≤ 2 and let F be a Köthe–Banach space on [0, 1]
with an absolutely continuous norm containing no subspace isomorphic to Lp such
that F ⊂ Lp. Then every regular operator T ∈ L(Lp, F ) is narrow.

Theorems 1.2 and 1.1 are incomparable: Theorem 1.2 covers much more range
spaces, however it is restricted to regular operators.

2. Kadets–PeÃlczyński Sets

In seminal paper [7] (1962), which became one of the most cited classical
papers on the geometric theory of Banach spaces, M.I. Kadets and A. PeÃlczyński
introduced special sets Mp

ε in the space Lp, 1 ≤ p < ∞ depending on a positive
parameter ε > 0 and consisting of all elements x ∈ Lp such that the subgraph of
the decreasing rearrangement of |x| contains a square with sides ε. Let us give a
precise definition for the general setting of the Köthe–Banach spaces on [0, 1].

Definition 2.1. Let E be a Köthe–Banach space on [0, 1] and ε > 0. Set

ME
ε =

{
x ∈ E : µ

{
t ∈ [0, 1] : |x(t)| ≥ ε‖x‖E

} ≥ ε
}

.

Obviously, ME
ε′ ⊆ ME

ε′′ whenever ε′ ≥ ε′′ and
⋃

ε>0 ME
ε = E.

Remark that the sets ME
ε for the setting of the Köthe–Banach spaces were

used by various authors, see, e.g., [10, Proposition 1, p. 8], [4, 5]. The idea of
using these sets can be explained as follows. Given a normalized sequence (xn)
in E, either it is contained in some universal set ME

ε , or for every ε > 0 there
is n such that xn /∈ ME

ε . In the first case, the norm of E and the L1-norm
are equivalent on (xn), and in the second case, (xn) contains subsequences with
arbitrarily “narrow” elements. This leads to different interesting alternatives for
the sequences and subspaces of E. One of the alternatives which we will need
later is obtained in the following lemma (see [13, Lemma 10.63]; we provide its
proof below for the sake of completeness).
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Lemma 2.2. Let E be a Köthe–Banach space on [0, 1] with an absolutely
continuous norm. Let (xn) be an order bounded sequence from E such that for
every ε > 0 there exist n ∈ N such that xn /∈ ME

ε . Then there exists a subsequence
(yn) of (xn) and a disjoint sequence (zn) in E such that |zn| ≤ |yn| for all n, and
‖yn − zn‖ → 0.

Before the proof, we recall some lattice definitions. A subset X of a Köthe–
Banach space E is called order bounded provided there exists y ∈ E such that
|x| ≤ y for each x ∈ X. A linear operator T : E → F between Köthe–Banach
spaces E and F is called order bounded if T sends order bounded sets from E
to order bounded sets in F . Evidently, any positive operator (hence, any regular
operator) is order bounded. By E+ we denote the positive cone of E, that is,
E+ = {x ∈ E : x ≥ 0}.

P r o o f. Let e ∈ E+ be such that |xn| ≤ e for all n ∈ N. Choose a
subsequence (x′n) of (xn) so that x′n /∈ ME

2−n for all n. For every n ∈ N, let
An = {t ∈ [0, 1] : |x′n(t)| ≥ 2−n‖x′n‖} and Bn =

⋃∞
k=n Ak.

Note that µ(An) < 2−n, Bn+1 ⊆ Bn, and µ(Bn) ≤ 2−n+1 for each n. Choose
a strictly increasing sequence of the integers (ni)i such that ‖e · 1Bni+1

‖ ≤ 1/i

(this is possible because of the absolute continuity of the norm).
Observe that the sets Ci = Ani \ Bni+1 are disjoint. Let yi = x′ni

and zi =
yi · 1Ci for i = 1, 2, . . .. Then (zi) is a disjoint sequence, |zi| ≤ |yi|, and

‖yi − zi‖ = ‖x′ni
· 1[0,1]\Ci

‖ ≤ ‖x′ni
· 1[0,1]\Ani

‖+ ‖x′ni
· 1Bni+1

‖
≤ ‖2−ni‖x′ni

‖ · 1[0,1]\Ani
‖+ ‖e · 1Bni+1

‖
≤ 2−ni‖e‖‖1[0,1]‖+ 1/i → 0 as i →∞.

We need the following lemma which in a certain degree develops the previous
one.

Lemma 2.3. Let E be a Köthe–Banach space on [0, 1] with an absolutely
continuous norm. Let (xn) be an order bounded sequence from E such that ‖xn‖ ≥
δ for some δ > 0 and all n ∈ N. Then there exists ε > 0 such that xn ∈ ME

ε for
all n.

P r o o f. Let y ∈ E be such that |xn| ≤ y for all n ∈ N. Supposing the lemma
is false, choose by Lemma 2.2 a subsequence (yn) of (xn) and a disjoint sequence
(zn) in E such that |zn| ≤ |yn| for all n, and ‖yn − zn‖ → 0. Set An = supp zn

for each n ∈ N. Then |zn| ≤ |yn| · 1An ≤ z · 1An and hence

δ ≤ ‖yn‖ ≤ ‖zn‖+ ‖yn − zn‖ ≤
∥∥z · 1An

∥∥ + ‖yn − zn‖
for all n. This is impossible, because ‖yn − zn‖ → 0 and

∥∥z · 1An

∥∥ → 0 by the
absolute continuity of the norm in E.
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3. Enflo Operators and Proof of the Main Result

Let X be a Banach space. An operator T ∈ L(X) is called an Enflo operator
if there is a subspace Y of X isomorphic to X such that the restriction T |Y of
T to Y is an isomorphic embedding. The name “Enflo operator” is due to the
following famous Enflo theorem on primarity of Lp: if the space Lp, 1 ≤ p < ∞,
is decomposed into a direct sum of closed subspaces Lp = X ⊕ Y , then at least
one of X,Y is isomorphic to Lp (see [10, p. 179]).

One of the peculiarities of the spaces Lp with 1 ≤ p < 2, which will be used
later, is described in the following deep theorem due to varios authors.

Theorem 3.1. Let 1 ≤ p ≤ 2. Then any non-Enflo operator T ∈ L(Lp) is
narrow.

Theorem 3.1 for p = 1 can be deduced from the results of [3]. Moreover,
the following remarkable result of Rosenthal (the equivalence of (c) and (d) in
Theorem 1.5 of [14]) gives much more — necessary and sufficient conditions for
an operator T ∈ L(L1) to be narrow.

Theorem 3.2. An operator T ∈ L(L1) is narrow if and only if for each A ∈ Σ
the restriction T

∣∣
L1(A)

is not an isomorphic embedding, where L1(A) = {x ∈ L1 :
suppx ⊆ A}.

Theorem 3.1 in the case 1 < p < 2 was announced by J. Bourgain [1, The-
orem 4.12, item 2, p. 54] without a proof, accompanied with a citation to [6].
Formally, Theorem 3.1 cannot be deduced from [6], however an involved proof
can be written by using the ideas and methods of [6] (such a proof is to be found
in [13, Section 7.3]). Another proof of Theorem 3.1 in the case 1 < p < 2 is
given in [2]. The last our comment is that for p = 2 Theorem 3.1 holds trivially,
because in this case a non-Enflo operator must be compact and hence narrow.

Now we are ready to prove the main result.
P r o o f of Theorem 1.2. Denote by J ∈ L(F, Lp) the inclusion embedding,

Jx = x for all x ∈ F . Consider any T ∈ L(Lp, F ) and assume, on the contrary,
that T is not narrow. Choose A ∈ Σ+ and δ > 0 such that ‖Tx‖ ≥ δ for each
mean zero sign x on A.

Set S = J ◦ T ∈ L(Lp) and show that S is non-narrow as well. Assuming,
on the contrary, that S is narrow, we find a sequence (xn) of mean zero signs on
A such that ‖Sxn‖ → 0. Since (xn) is order bounded by 1[0,1] and T is regular,
(Txn) is an order bounded sequence. And since ‖Txn‖ ≥ δ for all n ∈ N, by
Lemma 2.3, there exists ε > 0 such that Txn ∈ MF

ε for all n. Thus,

‖Sxn‖p
p =

∫

[0,1]

|Txn|pdµ ≥ εp+1,
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which contradicts the condition ‖Sxn‖ → 0. Thus, S is non-narrow. By The-
orem 1.2, S is an Enflo operator. Let E be a subspace of Lp isomorphic to Lp

such that ‖Sx‖ ≥ α‖x‖ for some α > 0 and all x ∈ E. Then

‖Tx‖ ≥ ‖J‖−1‖Sx‖ ≥ α‖J‖−1‖x‖
for all x ∈ E which contradicts the assumption that F contains no subspace
isomorphic to Lp.

We do not know whether the assumption of the regularity of T is essential in
Theorem 1.2.

References

[1] J. Bourgain, New Classes of Lp-spaces. — Lect. Notes Math. 889 (1981), 1–143.

[2] D. Dosev, W.B. Johnson, and G. Schechtman, Commutators on Lp, 1 ≤ p < ∞. —
J. Amer. Math. Soc. 26 (2013), No. 1, 101–127.

[3] P. Enflo and T. Starbird, Subspaces of L1 Containing L1. — Studia Math. 65
(1979), No. 2, 203–225.

[4] J. Flores, F.L. Hernández, and P. Tradacete, Domination Problems for Strictly
Singular Operators and Other Related Classes. — Positivity 15 (2011), No. 4,
595–616.

[5] J. Flores and C. Ruiz, Domination by Positive Narrow Operators. — Positivity 7
(2003), No. 4, 303–321.

[6] W.B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric Structures
in Banach Spaces. — Mem. Amer. Math. Soc. 19 (217) (1979).
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