Spectrum of Two-Magnon non-Heisenberg Ferromagnetic Model of Arbitrary Spin with Impurity

S.M. Tashpulatov
Institute of Nuclear Physics Academy of Sciences of Republic Uzbekistan Tashkent, Ulugbek, Uzbekistan
E-mail: toshpul@mail.ru; sadullatashpulatov@yandex.ru

Received May 12, 2011, revised June 6, 2012

We consider a two-magnon system in the isotropic non-Heisenberg ferromagnetic model of an arbitrary spin s on a ν-dimensional lattice Z^{ν}. We establish that the essential spectrum of the system consists of the union of at most four intervals. We obtain lower and upper estimates for the number of three-particle bound states, i.e., for the number of points of discrete spectrum of the system.

Key words: non-Heisenberg ferromagnet, essential spectrum, discrete spectrum, three-particle discrete Schrödinger operator, compact operator, finite-dimensional operator, lattice, spin.

Mathematics Subject Classification 2010: 46L60, 47L90, 70H06. 70F05, 81Q10, 45B05, 45C05, 47B25, 47G10, 34L05.

We consider a two-magnon system in the isotropic non-Heisenberg ferromagnetic model of an arbitrary spin s with impurity on a ν-dimensional lattice Z^{ν} and study the discrete and essential spectra of the system. The system consists of three particles: two magnons and an impurity spin.

The Hamiltonian of the system has the form

$$
\begin{align*}
H_{r e g} & =-\sum_{m, \tau} \sum_{n=1}^{2 s} J_{n}\left(S_{m}^{z} S_{m+\tau}^{z}-s^{2}+\frac{1}{2}\left(S_{m}^{+} S_{m+\tau}^{-}+S_{m}^{-} S_{m+\tau}^{+}\right)\right)^{n} \\
& -\sum_{\tau} \sum_{n=1}^{2 s}\left(J_{n}^{0}-J_{n}\right)\left(S_{0}^{z} S_{\tau}^{z}-s^{2}+\frac{1}{2}\left(S_{0}^{+} S_{\tau}^{-}+S_{0}^{-} S_{\tau}^{+}\right)\right)^{n} \tag{1}
\end{align*}
$$

and acts on the symmetric Fock space \mathscr{H}. Here $J_{n}>0$ are the parameters of the multipole exchange interaction between the nearest-neighbor atoms in the lattice $Z^{\nu}, J_{n}^{0} \neq 0$ are the atom-impurity multipole exchange interaction parameters,
$\vec{S}_{m}=\left(S_{m}^{x} ; S_{m}^{y} ; S_{m}^{z}\right)$ is the atomic spin operator of spin s at the lattice site m, and $\tau= \pm e_{j}, j=1,2, \ldots, \nu$, where e_{j} are the unit coordinate vectors. Let φ_{0} denote the vacuum vector uniquely defined by the conditions $S_{m}^{+} \varphi_{0}=0$ and $S_{m}^{z} \varphi_{0}=s \varphi_{0}$, where $\left\|\varphi_{0}\right\|=1$. We set $S_{m}^{ \pm}=S_{m}^{x} \pm i S_{m}^{y}$, where S_{m}^{-}and S_{m}^{+} are the magnon creation and annihilation operators at the site m. The vector $S_{m}^{-} S_{n}^{-} \varphi_{0}$ describes the state of the system of two magnons located at the sites m and n with spin s. The vectors $\left\{\frac{1}{\sqrt{4 s^{2}+\left(4 s^{2}-4 s\right) \delta_{m, n}}} S_{m}^{-} S_{n}^{-} \varphi_{0}\right\}$ form an orthonormal system. Let \mathscr{H}_{2} be the Hilbert space spanned by these vectors. The space is called the two-magnon space of the operator H. We also denote the restriction of H to \mathscr{H}_{2} by H_{2}.

Proposition 1. The space \mathscr{H}_{2} is an invariant subspace of H. The operator $H_{2}=H / \mathscr{H}_{2}$ is a bounded self-adjoint operator generating a bounded self-adjoint operator \bar{H}_{2} whose kernel in the momentum representation, i.e., in $L_{2}\left(T^{\nu}\right)$, is given by the formula

$$
\begin{align*}
\left(\widetilde{H}_{2} f\right)(x ; y)= & h(x ; y) f(x ; y)+\int_{T^{\nu}} h_{1}(x ; y ; t) f(t ; x+y-t) d t+D \int_{T^{\nu}} h_{2}(x ; s) f(s ; y) d s \\
& +E \int_{T^{\nu}} h_{3}(y ; t) f(x ; t) d t+\int_{T^{\nu}} \int_{T^{\nu}} h_{4}(x ; y ; s ; t) f(s ; t) d s d t \tag{2}
\end{align*}
$$

where

$$
h(x ; y)=8 s A \sum_{i=1}^{\nu}\left[1-\cos \frac{x_{k}+y_{k}}{2} \cos \frac{x_{k}-y_{k}}{2}\right]
$$

and

$$
\begin{gathered}
h_{1}(x ; y ; t)=-4 s(2 s-1) B \\
\times \sum_{i=1}^{\nu}\left\{1+\cos \left(x_{k}+y_{k}\right)-2 \cos \frac{x_{k}+y_{k}}{2} \cos \frac{x_{k}-y_{k}}{2}\right\}-4 C \sum_{i=1}^{\nu}\left\{\cos \frac{x_{k}-y_{k}}{2}\right. \\
\left.-\cos \frac{x_{k}+y_{k}}{2}\right\} \cos \left(\frac{x_{k}+y_{k}}{2}-t_{k}\right), x, y, t \in T^{\nu}, h_{2}(x ; s)=\sum_{i=1}^{\nu}\left\{1+\cos \left(x_{i}-s_{i}\right)\right. \\
\left.-\cos s_{i}-\cos x_{i}\right\}, \quad h_{3}(y ; t)=\sum_{i=1}^{\nu}\left\{1+\cos \left(y_{i}-t_{i}\right)-\cos t_{i}-\cos y_{i}\right\},
\end{gathered}
$$

and

$$
h_{4}(x ; y ; s ; t)=F \sum_{i=1}^{\nu}\left[1+\cos \left(x_{i}+y_{i}-s_{i}-t_{i}\right)+\cos \left(s_{i}+t_{i}\right)+\cos \left(x_{i}+y_{i}\right)\right.
$$

$$
\begin{gathered}
\left.-\cos \left(x_{i}-s_{i}-t_{i}\right)-\cos \left(y_{i}-s_{i}-t_{i}\right)-\cos x_{i}-\cos y_{i}\right]+Q \sum_{i=1}^{\nu}\left[\cos \left(x_{i}-t_{i}\right)+\cos \left(y_{i}-s_{i}\right)\right] \\
+M \sum_{i=1}^{\nu}\left[\cos \left(x_{i}-s_{i}\right)+\cos \left(y_{i}-t_{i}\right)\right]+N \sum_{i=1}^{\nu}\left[\cos s_{i}+\cos t_{i}+\cos \left(x_{i}+y_{i}-s_{i}\right)\right. \\
\left.+\cos \left(x_{i}+y_{i}-t_{i}\right)\right]
\end{gathered}
$$

here
$A=J_{1}-2 s J_{2}+(2 s)^{2} J_{3}+\ldots+(-1)^{2 s+1} J_{2 s}, B=J_{2}-(6 s-1) J_{3}+\left(28 s^{2}-10 s+1\right) J_{4}-$ $\left(120 s^{3}-68 s^{2}+14 s-1\right) J_{5}+\ldots, C=J_{1}+\left(4 s^{2}-6 s+1\right) J_{2}-\left(24 s^{3}-32 s^{2}+10 s-1\right) J_{3}+$ $\left(112 s^{4}-160 s^{3}+72 s^{2}-14 s+1\right) J_{4}-\left(480 s^{5}-768 s^{4}+448 s^{3}-128 s^{2}+18 s-1\right) J_{5}+\ldots$, $D=-2 \sum_{k=1}^{2 s}(-2 s)^{k}\left(J_{k}^{0}-J_{k}\right), E=D, F=\left(2 s-4 s^{2}\right)\left(J_{2}^{0}-J_{2}\right)+\left(2 s-16 s^{2}+\right.$ $\left.24 s^{3}\right)\left(J_{3}^{0}-J_{3}\right)+\ldots+\ldots, Q=\left(-4 s^{2}+2 s\right)\left(J_{2}^{0}-J_{2}\right)+\left(-4 s+20 s^{2}-24 s^{3}\right)\left(J_{3}^{0}-\right.$ $\left.J_{3}\right)+\ldots+\ldots, M=2\left[\left(J_{1}^{0}-J_{1}\right)-\left(1+5 s+2 s^{2}\right)\left(J_{2}^{0}-J_{2}\right)+\left(1-8 s+22 s^{2}-\right.\right.$ $\left.\left.12 s^{3}\right)\left(J_{3}^{0}-J_{3}\right)+\ldots+\ldots\right], N=-\left(J_{1}^{0}-J_{1}\right)+\left(1-6 s+4 s^{2}\right)\left(J_{2}^{0}-J_{2}\right)-(1-10 s+$ $\left.\left.32 s^{2}-24 s^{3}\right)\left(J_{3}^{0}-J_{3}\right)+\ldots+\ldots\right]$.

In the isotropic non-Heisenberg ferromagnetic model of an arbitrary spin s with impurity, the spectral properties of the above operator in the two-magnon case are closely related to those of its two-particle subsystems. The initial system is usually called a three-particle system, and the corresponding Hamiltonian is called a three-particle operator. We first study the spectrum and the corresponding eigenvectors, which we call the localized impurity states (LIS) of one-magnon impurity systems, and the spectrum and the corresponding eigenvectors, which we call the bound states (BS) of two-magnon systems.

1. One-Magnon Impurity States

The spectrum and the LIS in the one-magnon case of the isotropic nonHeisenberg ferromagnetic model of arbitrary spin with impurity were studied in [1].

The Hamiltonian of a one-magnon impurity system also has the form (1). The vector $S_{m}^{-} \varphi_{0}$ describes the one magnon state of $\operatorname{spin} s$ located at the site m. The vectors $\left\{\frac{1}{\sqrt{2 s}} S_{m}^{-} \varphi_{0}\right\}$ form an orthonormal system. Let \mathscr{H}_{1} be the Hilbert space spanned by these vectors. It is called the space of one-magnon states of the operator H. Denote by H_{1} the restriction of the operator H to the space \mathscr{H}_{1}.

Proposition 2. The space \mathscr{H}_{1} is an invariant subspace of the operator H. The operator $H_{1}=H / \mathscr{H}_{1}$ is a bounded self-adjoint operator generating a bounded self-adjoint operator \bar{H}_{1} acting on the space $l_{2}\left(Z^{\nu}\right)$ according to the formula

$$
\left(\bar{H}_{1} f\right)(p)=\sum_{k=1}^{\nu}(-1)^{k+1} J_{k} s^{k} \sum_{p, \tau} 2^{k-1}[2 f(p)-f(p+\tau)-f(p-\tau)]
$$

$$
\begin{equation*}
+\sum_{k=1}^{\nu}(-1)^{k+1}\left(J_{k}^{0}-J_{k}\right)(2 s)^{k} \sum_{p, \tau}(f(\tau)-f(0))\left(\delta_{p, \tau}-\delta_{p, 0}\right) \tag{3}
\end{equation*}
$$

where $\delta_{k, j}$ is the Kronecker symbol, and the summation over τ is over the nearest neighbors. The operator H_{1} acts on the vector $\psi=(2 s)^{-1 / 2} \sum_{p} f(p) S_{p}^{-} \varphi_{0} \in \mathscr{H}_{1}$ by the formula

$$
\begin{equation*}
H_{1} \psi=\sum_{p}\left(\bar{H}_{1} f\right)(p) \frac{1}{\sqrt{2 s}} S_{p}^{-} \varphi_{0} \tag{4}
\end{equation*}
$$

Proposition 2 is proved by using the well-known commutation relations for the operators S_{m}^{+}, S_{p}^{-}, and $S_{q}^{z}:\left[S_{m}^{+}, S_{n}^{-}\right]=2 \delta_{m, n} S_{m}^{z}, \quad\left[S_{m}^{z}, S_{n}^{ \pm}\right]= \pm \delta_{m, n} S_{m}^{ \pm}$.

Lemma 1. The spectra of the operators H_{1} and \bar{H}_{1} coincide.
Proof. Because H_{1} and \bar{H}_{1} are bounded self-adjoint operators, it follows that if $\lambda \in \sigma\left(H_{1}\right)$, then the Weyl criterion (see [2]) implies that there is a sequence $\left\{\psi_{n}\right\}_{n=1}^{\infty}$ such that $\left\|\psi_{n}\right\|=1$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|H_{1} \psi_{n}-\lambda \psi_{n}\right\|=0 \tag{5}
\end{equation*}
$$

We set $\psi_{n}=(2 s)^{-1 / 2} \sum_{p} f_{n}(p) S_{p}^{-} \varphi_{0}$.
Then

$$
\begin{gathered}
\left\|H_{1} \psi_{n}-\lambda \psi_{n}\right\|^{2}=\left(H_{1} \psi_{n}-\lambda \psi_{n}, H_{1} \psi_{n}-\lambda \psi_{n}\right) \\
=\sum_{p} \|\left(\bar{H}_{1} f_{n}(p)-\lambda f_{n}(p)\left\|^{2}\left(\frac{1}{\sqrt{2 s}} S_{p}^{-} \varphi_{0}, \frac{1}{\sqrt{2 s}} S_{p}^{-} \varphi_{0}\right)=\right\| \bar{H}_{1} F_{n}-\lambda F_{n} \|^{2}\right. \\
\times\left(\frac{1}{2 s} S_{p}^{+} S_{p}^{-} \varphi_{0}, \varphi_{0}\right)=\left\|\left(\bar{H}_{1}-\lambda\right) F_{n}\right\|^{2}\left(\frac{1}{2 s} 2 s \varphi_{0}, \varphi_{0}\right)=\left\|\left(\bar{H}_{1}-\lambda\right) F_{n}\right\|^{2} \rightarrow 0, n \rightarrow \infty .
\end{gathered}
$$

Here $F_{n}=\left(f_{n}(p)\right)_{p \in Z^{\nu}}$ and $\left\|F_{n}\right\|^{2}=\sum_{p}\left|f_{n}(p)\right|^{2}=\left\|\psi_{n}\right\|^{2}=1$. It follows that $\lambda \in \sigma\left(\bar{H}_{1}\right)$. Consequently, $\sigma\left(H_{1}\right) \subset \sigma\left(\bar{H}_{1}\right)$. Conversely, let $\bar{\lambda} \in \sigma\left(\bar{H}_{1}\right)$. Then, by the Weyl criterion, there is a sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ such that

$$
\begin{equation*}
\left\|F_{n}\right\|=\sqrt{\sum_{p}\left|f_{n}(p)\right|^{2}}=1 \quad \text { and } \quad \|\left(\bar{H}_{1} F_{n}-\bar{\lambda} F_{n} \| \rightarrow 0, \quad n \rightarrow \infty\right. \tag{6}
\end{equation*}
$$

We conclude that $\left\|\psi_{n}\right\|=\left\|F_{n}\right\|=1$ and $\left\|\bar{H}_{1} F_{n}-\bar{\lambda} F_{n}\right\|=\left\|\underline{H_{1}} \psi_{n}-\bar{\lambda} \psi_{n}\right\|$. Thus (6) and the Weyl criterion imply that $\bar{\lambda} \in \sigma\left(H_{1}\right)$ and hence $\sigma\left(\bar{H}_{1}\right) \subset \sigma\left(H_{1}\right)$. These two relations imply that $\sigma\left(\bar{H}_{1}\right)=\sigma\left(H_{1}\right)$.

The spectrum and the LIS of the operator H_{1} can be easily studied in its quasimomentum representation. Denote by \mathscr{F} the Fourier transformation

$$
\mathscr{F}: l_{2}\left(Z^{\nu}\right) \rightarrow L_{2}\left(T^{\nu}\right)
$$

Here T^{ν} is the $\nu-$ dimensional torus endowed with the normalized Lebesgue measure $d \lambda: \lambda\left(T^{\nu}\right)=1$.

Proposition 3. The operator $\widetilde{H}_{1}=\mathscr{F} \bar{H}_{1} \mathscr{F}^{-1}$ acts on the space $L_{2}\left(T^{\nu}\right)$ by the formula

$$
\begin{equation*}
\left(\widetilde{H}_{1} f\right)(x)=p(s) h(x) f(x)+q(s) \int_{T^{\nu}} h_{1}(x ; t) f(t) d t \tag{7}
\end{equation*}
$$

where $h(x)=\nu-\sum_{i=1}^{\nu} \cos x_{i}, h_{1}(x ; t)=\nu+\sum_{i=1}^{\nu}\left[\cos \left(x_{i}-t_{i}\right)-\cos x_{i}-\cos t_{i}\right]$, $p(s)=-2 \sum_{k=1}^{2 s}(-2 s)^{k} J_{k}, \quad q(s)=-2 \sum_{k=1}^{2 s}(-2 s)^{k}\left(J_{k}^{0}-J_{k}\right), t \in T^{\nu}$.

To prove Proposition 3, the Fourier transform of (3) should be considered directly.

It is clear that the continuous spectrum of the operator \widetilde{H}_{1} is independent of $q(s) h_{1}(x ; t)$ and it fills the whole closed interval $\left[m_{\nu} ; M_{\nu}\right]$, where $m_{\nu}=$ $\min _{x \in T^{\nu}} p(s) h(x), M_{\nu}=\max _{x \in T^{\nu}} p(s) h(x)$.

Definition 1. An eigenfunction $\varphi \in L_{2}\left(T^{\nu}\right)$ of the operator \widetilde{H}_{1} corresponding to an eigenvalue $z \notin\left[m_{\nu} ; M_{\nu}\right]$ is called the LIS of the operator \widetilde{H}_{1}, and z is called the energy of this state.

We consider the operator $K_{\nu}(z)$ acting on the space $\widetilde{\mathscr{H}}_{1}$ according to the formula

$$
\left(K_{\nu}(z) f\right)(x)=\int_{T^{\nu}} \frac{h_{1}(x ; t)}{p(s) h(t)-z} f(t) d t, x, t \in T^{\nu}
$$

It is a compact operator in the space $\widetilde{\mathscr{H}}_{1}$ for the values z lying outside the set $G_{\nu}=\left[m_{\nu} ; M_{\nu}\right]$.

Set

$$
\begin{align*}
\Delta_{\nu}(z)=\left(1+q(s) \int_{T^{\nu}}\right. & \left.\frac{\left(1-\cos t_{1}\right)\left(\nu-\sum_{i=1}^{\nu} \cos t_{i}\right) d t}{p(s) h(t)-z}\right) \times\left(1+q(s) \int_{T^{\nu}} \frac{\sin ^{2} t_{1} d t}{p(s) h(t)-z}\right)^{\nu} \\
& \times\left(1+\frac{q(s)}{2} \int_{T^{\nu}} \frac{\left(\cos t_{1}-\cos t_{2}\right)^{2} d t}{p(s) h(t)-z}\right)^{\nu-1} \tag{8}
\end{align*}
$$

where $d t=d t_{1} d t_{2} \ldots d t_{\nu}$.
Lemma 2. A number $z_{0} \notin\left[m_{\nu} ; M_{\nu}\right]$ is an eigenvalue of the operator \widetilde{H}_{1} if and only if it is a zero of the function $\Delta_{\nu}(z)$, i.e., $\Delta_{\nu}\left(z_{0}\right)=0$.

Proof. In the case under consideration, the equation for the eigenvalues is an integral equation with a degenerate kernel. Therefore it is equivalent to a
homogeneous linear system of algebraical equations. A homogeneous linear system of algebraic equations has a nontrivial solution if and only if the determinant of the system is zero. Taking into account that the function $h\left(s_{1} ; s_{2} ; \ldots ; s_{\nu}\right)$ is symmetric and carrying out the corresponding transformations, we present the determinant of the system in the form $\Delta_{\nu}(z)$.

We denote a set of all pairs $\omega=(p(s) ; q(s))$ by Ω and introduce the following subsets in Ω for $\nu=1$:

$$
\begin{gathered}
A_{1}=\{\omega: p(s)>0,-p(s) \leq q(s)<0\}, A_{2}=\{\omega: p(s)>0, q(s)<-p(s)\}, \\
A_{3}=\{\omega: p(s)<0, q(s)<p(s)\}, A_{4}=\{\omega: p(s)>0, p(s)<q(s)\}, \\
A_{5}=\{\omega: p(s)>0,0<q(s) \leq p(s)\}, A_{6}=\{\omega: p(s)<0, q(s) \geq p(s)\}, \\
A_{7}=\{\omega: p(s)<0,0<q(s)<-p(s)\}, A_{8}=\{\omega: p(s)<0, q(s)>-p(s)\} .
\end{gathered}
$$

We write

$$
\begin{gathered}
z_{1}=-\frac{[p(s)+q(s)][p(s)-3 q(s)+\sqrt{D}]}{4 q(s)}, \\
z_{2}=\frac{[p(s)+q(s)]^{2}}{2 q(s)} \\
z_{3}=-\frac{[p(s)+q(s)][p(s)-3 q(s)-\sqrt{D}]}{4 q(s)},
\end{gathered}
$$

where $D=[p(s)+q(s)][p(s)+9 q(s)]$.
The following theorem describes the variation of the energy spectrum of the operator \widetilde{H}_{1} in the one-dimensional case.

Theorem 1. (i) If $\omega \in A_{2} \bigcup A_{3},\left(\omega \in A_{4} \bigcup A_{8}\right)$, then the operator \widetilde{H}_{1} has exactly two LIS's, φ_{1} and φ_{2}, with the respective energies z_{1} and $z_{2}\left(z_{2}\right.$ and $\left.z_{3}\right)$ satisfying the inequalities $z_{1}<z_{2}\left(z_{2}<z_{3}\right)$ and $z_{i}<m_{1}, i=1,2\left(z_{j}>M_{1}\right.$, $j=2,3$).
(ii) If $\omega \in A_{6}\left(\omega \in A_{5}\right)$, then the operator \widetilde{H}_{1} has a single LIS φ with the energy $z=z_{1}\left(z=z_{3}\right)$ satisfying the inequality $z_{1}<m_{1}\left(z_{3}>M_{1}\right)$.
(iii) If $\omega \in A_{1} \cup A_{7}$, then the operator \widetilde{H}_{1} has no LIS.

We sketch the proof of Theorem 1. In the one-dimensional case, the equation $\Delta_{1}(z)=0$ is equivalent to the system of two equations,

$$
\begin{equation*}
1+q(s) \int_{T} \frac{(1-\cos t)^{2} d t}{p(s) h(t)-z}=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
1+q(s) \int_{T} \frac{\sin ^{2} t d t}{p(s) h(t)-z}=0 \tag{10}
\end{equation*}
$$

In the one-dimensional case, the integrals in equations (9) and (10) can be found explicitly for the values $z \notin G_{1}=\left[m_{1} ; M_{1}\right]$. We obtain:
(a) for $z<m_{1}$:

$$
\begin{equation*}
1+\frac{q(s)}{p(s)}+\frac{z q(s)}{p^{2}(s)}+\frac{z^{2} q(s)}{p^{2}(s) \sqrt{z[z-2 p(s)]}}=0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{q(s)}{p(s)}-\frac{z q(s)}{p^{2}(s)}+\frac{z q(s)}{p(s) \sqrt{z[z-2 p(s)]}}-\frac{z q(s)[z-2 p(s)]}{p^{2}(s) \sqrt{z[z-2 p(s)]}}=0, \tag{12}
\end{equation*}
$$

(b) for $z>M_{1}$:

$$
\begin{equation*}
1+\frac{q(s)}{p(s)}+\frac{z q(s)}{p^{2}(s)}-\frac{z^{2} q(s)}{p^{2}(s) \sqrt{z[z-2 p(s)]}}=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{q(s)}{p(s)}-\frac{z q(s)}{p^{2}(s)}-\frac{z q(s)}{p(s) \sqrt{z[z-2 p(s)]}}+\frac{z q(s)[z-2 p(s)]}{p^{2}(s) \sqrt{z[z-2 p(s)]}}=0 . \tag{14}
\end{equation*}
$$

In turn, these equations are equivalent to the next equations:
(a) for $z<m_{1}$:

$$
\begin{equation*}
\left\{p^{2}(s)+p(s) q(s)+z q(s)\right\} \sqrt{z[z-2 p(s)]}+z^{2} q(s)=0 \tag{11'}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{p^{2}(s)+p(s) q(s)-z q(s)\right\} \sqrt{z[z-2 p(s)]}-z q(s)[z-2 p(s)]=0 \tag{12'}
\end{equation*}
$$

(b) for $z>M_{1}$:

$$
\left\{p^{2}(s)+p(s) q(s)+z q(s)\right\} \sqrt{z[z-2 p(s)]}-z^{2} q(s)=0
$$

and

$$
\left\{p^{2}(s)+p(s) q(s)-z q(s)\right\} \sqrt{z[z-2 p(s)]}+z q(s)[z-2 p(s)]=0 .
$$

Solving equation (11^{\prime}), we find the root $z=z_{1}$, and solving equation (12^{\prime}), we find the root $z=z_{2}$. In turn, solving equation (13^{\prime}), we find the root $z=z_{3}$, and solving equation (14'), we find the root $z=z_{2}$. Whence the proof of Theorem 1 immediately follows in view of the existence of conditions for these solutions.

In the case of the dimension $\nu=2$, for the pairs ω, we introduce:
$B_{1}=\{\omega: p(s)>0,-p(s) \leq q(s)<0\}, B_{2}=\{\omega: p(s)<0,0<q(s) \leq-p(s)\}$,
$B_{3}=\left\{\omega: p(s)>0,-\frac{25}{9} p(s) \leq q(s)<-p(s)\right\}, B_{4}=\left\{\omega: p(s)<0, \frac{25}{9} p(s) \leq\right.$ $q(s)<0\}, B_{5}=\left\{\omega: p(s)>0,0<q(s)<\frac{25}{9} p(s)\right\}, B_{6}=\{\omega: p(s)<0$, $\left.-p(s) \leq q(s)<-\frac{25}{9} p(s)\right\}, B_{7}=\left\{\omega: p(s)>0,-\frac{100}{27} p(s) \leq q(s)<-p(s)\right\}$, $B_{8}=\left\{\omega: p(s)<0, \frac{100}{27} p(s) \leq q(s)<\frac{25}{9} p(s)\right\}, B_{9}=\left\{\omega: p(s)>0, \frac{25}{9} p(s) \leq\right.$ $\left.q(s)<\frac{100}{27} p(s)\right\}, B_{10}=\left\{\omega: p(s)<0,-\frac{25}{9} p(s) \leq q(s)<-\frac{100}{27} p(s)\right\}, B_{11}=\{\omega:$ $\left.p(s)>0, q(s) \leq-\frac{100}{27} p(s)\right\}, B_{12}=\left\{\omega: p(s)<0, q(s) \leq \frac{100}{27} p(s)\right\}, B_{13}=\{\omega:$ $\left.p(s)>0, q(s) \geq \frac{100}{27} p(s)\right\}, B_{14}=\left\{\omega: p(s)<0, q(s)>-\frac{100}{27} p(s)\right\}$.

The next theorem describes the variation of the energy spectrum of the operator \widetilde{H}_{1} in the two-dimensional case.

Theorem 2. (i) If $\omega \in B_{1} \bigcup B_{2}$, then the operator \widetilde{H}_{1} has no LIS.
(ii) If $\omega \in B_{3} \bigcup B_{4}\left(\omega \in B_{5} \bigcup B_{6}\right)$, then the operator \widetilde{H}_{1} has a single LIS φ with the energy $z_{1}\left(z_{2}\right)$, where $z_{1}<m_{2}\left(z_{2}>M_{2}\right)$. The energy level is of multiplicity one.
(iii) If $\omega \in B_{7} \bigcup B_{8}\left(\omega \in B_{9} \bigcup B_{10}\right)$ then the operator \widetilde{H}_{1} has exactly two LIS's, φ_{1} and φ_{2}, with the respective energies z_{1} and $z_{2}\left(z_{3}\right.$ and $\left.z_{4}\right)$, where $z_{i}<$ $m_{2}, i=1,2\left(z_{j}>M_{2}, j=3,4\right)$. The energy levels are of multiplicity one.
(iv) If $\omega \in B_{11} \bigcup B_{12}\left(\omega \in B_{13} \bigcup B_{14}\right)$, then the operator \widetilde{H}_{1} has three LIS's, φ_{1}, φ_{2} and φ_{3}, with the respective energies z_{1}, z_{2} and $z_{3}\left(z_{4}, z_{5}\right.$ and $\left.z_{6}\right)$, where $z_{i}<m_{2}, i=1,2,3\left(z_{j}>M_{2}, j=4,5,6\right)$. The energy levels z_{1} and $z_{3}\left(z_{4}\right.$ and $\left.z_{6}\right)$ are of multiplicity one, while $z_{2}\left(z_{5}\right)$ is of multiplicity two.

Proof. The functions

$$
\begin{gathered}
\varphi(z)=\int_{T^{2}} \frac{\left(1-\cos t_{1}\right)\left(2-\cos t_{1}-\cos t_{2}\right) d t}{p(s) h(t)-z}, \quad \psi(z)=\int_{T^{2}} \frac{\sin ^{2} t_{1} d t}{p(s) h(t)-z}, \\
\theta(z)=\int_{T^{2}} \frac{\left(\cos t_{1}-\cos t_{2}\right)^{2} d t}{p(s) h(t)-z}
\end{gathered}
$$

are the monotone increasing functions of z for $z \notin\left[m_{2} ; M_{2}\right]$. Their values can be exactly calculated at the points $z=m_{2}$ and $z=M_{2}$. For $z<m_{2}$ and $p(s)>0$, the function $\varphi(z)$ increases from 0 to $(p(s))^{-1}$, the function $\psi(z)$ increases from 0 to $9(25 p(s))^{-1}$, and the function $\theta(z)$ increases from 0 to $27(50 p(s))^{-1}$. For $z>M_{2}$ and $p(s)>0$, these functions increase from $-\infty$ to 0 , from $-9(25 p(s))^{-1}$ to 0 , and from $-27(50 p(s))^{-1}$ to 0 , respectively. If $p(s)<0$ and $z<m_{2}$, then they increase from 0 to ∞, from 0 to $-9(25 p(s))^{-1}$, and from 0 to $-27(50 p(s))^{-1}$, respectively. For $p(s)<0$ and $z>M_{2}$, the functions $\varphi(z), \psi(z)$, and $\theta(z)$ increase from $(p(s))^{-1}$
to 0 , from $9(25 p(s))^{-1}$ to 0 , and from $27(50 p(s))^{-1}$ to 0 . Investigating the equation $\Delta_{2}(z)=0$ outside the domain of the continuous spectrum, we immediately prove the assertion of Theorem 2.

In the case $\nu=3$, we introduce the notation:

$$
\begin{aligned}
& a=\int_{T^{3}} \frac{\sin ^{2} s_{1} d s_{1} d s_{2} d s_{3}}{3-\cos s_{1}-\cos s_{2}-\cos s_{3}}=\int_{T^{3}} \frac{\sin ^{2} s_{1} d s_{1} d s_{2} d s_{3}}{3+\cos s_{1}+\cos s_{2}+\cos s_{3}} \\
& b=\int_{T^{3}} \frac{\left(\cos s_{1}-\cos s_{2}\right)^{2} d s_{1} d s_{2} d s_{3}}{3-\cos s_{1}-\cos s_{2}-\cos s_{3}}=\int_{T^{3}} \frac{\left(\cos s_{1}-\cos s_{2}\right)^{2} d s_{1} d s_{2} d s_{3}}{3+\cos s_{1}+\cos s_{2}+\cos s_{3}}
\end{aligned}
$$

As it is seen, we have $0<a<b<1$ and $2 a<b$. We now consider the following subsets in Ω for the case $\nu=3$:

$$
\begin{aligned}
& Q_{1}=\{\omega: p(s)>0,-p(s)<q(s)<0\}, \quad Q_{2}=\left\{\omega: p(s)>0, \quad 0<q(s)<\frac{p(s)}{3}\right\}, \\
& Q_{3}=\left\{\omega: p(s)<0, \frac{p(s)}{3}<q(s)<0\right\}, \quad Q_{4}=\{\omega: p(s)<0,0<q(s)<-p(s)\}, \\
& Q_{5}=\left\{\omega: p(s)>0,-\frac{2 p(s)}{b}<q(s) \leq-p(s), \quad Q_{6}=\{\omega: p(s)<0,\right. \\
&\left.\frac{2 p(s)}{b}<q(s) \leq \frac{p(s)}{3}\right\}, \quad Q_{7}=\left\{\omega: p(s)>0, \frac{p(s)}{3}<q(s) \leq \frac{2 p(s)}{b}\right\}, \\
& Q_{8}=\left\{\omega: p(s)<0,-p(s)<q(s) \leq-\frac{2 p(s)}{b}\right\}, \quad Q_{9}=\{\omega: p(s)>0, \\
&\left.-\frac{p(s)}{a} \leq q(s)<-\frac{2 p(s)}{b}\right\}, \quad Q_{10}=\left\{\omega: p(s)<0, \frac{p(s)}{a}<q(s) \leq \frac{2 p(s)}{b}\right\}, \\
& Q_{11}=\left\{\omega: p(s)>0, \frac{2 p(s)}{b} \leq q(s)<\frac{p(s)}{a}\right\}, \quad Q_{12}=\{\omega: p(s)<0, \\
&\left.-\frac{2 p(s)}{b} \leq q(s)<-\frac{p(s)}{a}\right\}, \quad Q_{13}=\left\{\omega: p(s)>0, q(s) \leq-\frac{p(s)}{a}\right\}, \\
& Q_{14}=\left\{\omega: p(s)<0, q(s) \leq \frac{p(s)}{a}\right\}, \quad Q_{15}=\left\{\omega: p(s)>0, \frac{p(s)}{a} \leq q(s)\right\}, \\
& Q_{16}=\left\{\omega: p(s)<0,-\frac{p(s)}{a} \leq q(s)\right\} .
\end{aligned}
$$

Theorem 3. (i) If $\omega \in Q_{1} \bigcup Q_{2} \bigcup Q_{3} \bigcup Q_{4}$, then the operator \widetilde{H}_{1} has no LIS.
(ii) If $\omega \in Q_{5} \cup Q_{6}\left(\omega \in Q_{7} \bigcup Q_{8}\right)$, then the operator \widetilde{H}_{1} has a single LIS φ with the energy $z<m_{3}\left(z>M_{3}\right)$. The energy level is of multiplicity one.
(iii) If $\omega \in Q_{9} \bigcup Q_{10}\left(\omega \in Q_{11} \bigcup Q_{12}\right)$, then the operator \widetilde{H}_{1} has two LIS's, φ_{1} and φ_{2}, with the energy levels z_{1} and $z_{2}\left(z_{3}\right.$ and $\left.z_{4}\right)$, where $z_{i}<m_{3}, i=1,2$ $\left(z_{j}>M_{3}, j=3,4\right)$. Furthermore, the energy level $z_{1}\left(z_{3}\right)$ is of multiplicity one, while $z_{2}\left(z_{4}\right)$ is of multiplicity two.
(iv) If $\omega \in Q_{13} \cup Q_{14}\left(\omega \in Q_{15} \cup Q_{16}\right)$, then the operator \widetilde{H}_{1} has exactly three LIS's, φ_{1}, φ_{2} and φ_{3}, with the energies z_{1}, z_{2} and $z_{3}\left(z_{4}, z_{5}\right.$ and $\left.z_{6}\right)$ satisfying the inequalities $z_{i}<m_{3}, i=1,2,3\left(z_{j}>M_{3}, j=4,5,6\right)$. Moreover, the energy level $z_{1}\left(z_{4}\right)$ is of multiplicity one, $z_{2}\left(z_{5}\right)$ is of multiplicity two, and $z_{3}\left(z_{6}\right)$ is of multiplicity three.

Theorem 3 is proved basing on the monotonicity of the functions

$$
\begin{gathered}
\varphi(z)=\int_{T^{3}} \frac{\left(1-\cos t_{1}\right)\left(3-\cos t_{1}-\cos t_{2}-\cos t_{3}\right) d t}{p(s) h(t)-z}, \psi(z)=\int_{T^{3}} \frac{\sin ^{2} t_{1} d t}{p(s) h(t)-z} \\
\theta(z)=\int_{T^{3}} \frac{\left(\cos t_{1}-\cos t_{2}\right)^{2} d t}{p(s) h(t)-z}
\end{gathered}
$$

for $z \notin\left[m_{3} ; M_{3}\right]$. Further we will use the values of the Watson integral [3]. It should be taken into account that the measure is normalized in the case under consideration.

It can be similarly proved that in the ν - dimensional lattice, the system has at most three types of LIS's (not counting the degeneracy multiplicities of their energy levels) with the energies $z_{i} \notin\left[m_{\nu} ; M_{\nu}\right]$. Furthermore, for $i=1,2,3$, the corresponding energy levels are of multiplicity one, of multiplicity ν and of multiplicity $(\nu-1)$. The domains of these LIS's can also be found.

We now consider the case $p(s) \equiv 0$. If $p(s) \equiv 0$ and $J_{n} \neq 0, n=1,2, \ldots, 2 s$, then the function $\Delta_{\nu}(z)=0$ takes the form $\Delta_{\nu}(z)=\operatorname{det} A \times \operatorname{det} B$, where $A=$

$$
\left(\begin{array}{ccccc}
a_{1} & b_{1} & b_{1} & \cdots & b_{1} \\
a_{2} & b_{2} & 0 & \cdots & 0 \\
a_{2} & 0 & b_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{2} & 0 & 0 & \cdots & b_{2}
\end{array}\right) \text { is a }(\nu+1) \times(\nu+1) \text { matrix, } B=\left(\begin{array}{ccccc}
b_{2} & 0 & 0 & \cdots & 0 \\
0 & b_{2} & 0 & \cdots & 0 \\
0 & 0 & b_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & b_{2}
\end{array}\right)
$$

is a diagonal $\nu \times \nu$ matrix. Here

$$
a_{1}=1-\frac{\nu q(s)}{2 z}, \quad a_{2}=\frac{q(s)}{2 z}, \quad b_{1}=\frac{q(s)}{z}, \quad b_{2}=1-\frac{q(s)}{2 z} .
$$

Theorem 4. If $p(s) \equiv 0$, and $J_{n} \neq 0, n=1,2, \ldots, 2 s$, then the operator \widetilde{H}_{1} has exactly two LIS's (not counting the multiplicities of degeneration of their
energy levels), φ_{1} and φ_{2}, with the energies $z_{1}=\frac{q(s)}{2}$ and $z_{2}=\frac{2 \nu+1}{2} q(s)$. The energy z_{1} is of multiplicity $(2 \nu-1)-$, while z_{2} is of multiplicity one. Moreover, $z_{i}<m_{\nu}, i=1,2,\left(z_{i}>M_{\nu}, i=1,2\right)$, if $q(s)<0(q(s)>0)$.

Proof. The equation $\Delta_{\nu}(z)=0$ is equivalent to the system of two equations,

$$
\begin{equation*}
b_{2}^{2 \nu-1}=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1} b_{2}-\nu a_{2} b_{1}=0 \tag{16}
\end{equation*}
$$

Equation (15) has a root equal to $z=\frac{q(s)}{2}$, and it is clear that its multiplicity is $2 \nu-1$, while equation (16) has a solution $z=z_{2}$. Consequently, for the arbitrary values of ν, the system has at most three types of LIS's.

2. Two-Magnon States

The Hamiltonian of a two-magnon system has the form

$$
\begin{equation*}
H^{\prime}=-\sum_{m, \tau} \sum_{n=1}^{2 s} J_{n}\left(\vec{S}_{m} \vec{S}_{m+\tau}\right)^{n} \tag{17}
\end{equation*}
$$

where $J_{n}>0$ are the parameters of the multipole exchange interaction between the nearest-neighbor atoms in the lattice. Hamiltonian (17) acts on the symmetric Fock space \mathscr{H}. The vector $S_{m}^{-} S_{n}^{-} \varphi_{0}$ describes the state of a system of two magnons with spin s located at the sites m and n. The vectors $\left\{\frac{1}{\sqrt{4 s^{2}+\left(4 s^{2}-4 s\right) \delta_{m, n}}} S_{m}^{-} S_{n}^{-} \varphi_{0}\right\}$ form an orthonormal system. Denote the Hilbert space spanned by these vectors by \mathscr{H}_{2}. It is called the space of two-magnon states of the operator H^{\prime}. By H_{2}^{\prime}, we denote the restriction of the operator H^{\prime} to $\mathscr{H}_{2}: H_{2}^{\prime}=H^{\prime} / \mathscr{H}_{2}$.

We find the action of operator (17) on the space $l_{2}\left(Z^{\nu} \times Z^{\nu}\right)$, i.e., the coordinate representation for the spin values $s=1, s=3 / 2, s=2, s=5 / 2$, and obtain the momentum representation of these operators in the space $L_{2}\left(T^{\nu} \times T^{\nu}\right)$. Finally, we generalize these formulas for the arbitrary values of s. The operator \tilde{H}_{2}^{\prime} in the momentum representation acts on the space $\tilde{\mathscr{H}}_{2}$ according to the formula

$$
\begin{equation*}
\left(\tilde{H}_{2}^{\prime} f\right)(x ; y)=h(x ; y) f(x ; y)+\int_{T^{\nu}} h_{1}(x ; y ; t) f(t ; x+y-t) d t \tag{18}
\end{equation*}
$$

where

$$
h(x ; y)=A \sum_{i=1}^{\nu}\left[1-\cos \frac{x_{i}+y_{i}}{2} \cos \frac{x_{i}-y_{i}}{2}\right]
$$

and

$$
\begin{aligned}
& h_{1}(x ; y ; t)=B \sum_{i=1}^{\nu}\left[1-2 \cos \frac{x_{i}+y_{i}}{2} \cos \frac{x_{i}-y_{i}}{2}+\cos \left(x_{i}+y_{i}\right)\right] \\
& -C \sum_{i=1}^{\nu}\left[\cos \frac{x_{i}-y_{i}}{2}-\cos \frac{x_{i}+y_{i}}{2}\right] \cos \left(\frac{x_{i}+y_{i}}{2}-t_{i}\right), \quad x, y, t \in T^{\nu} .
\end{aligned}
$$

Here

$$
\begin{gathered}
A=\left\{\begin{array}{lll}
8\left(J_{1}-2 J_{2}\right), & \text { if } & s=1, \\
12\left(J_{1}-3 J_{2}+9 J_{3}\right), & \text { if } & s=3 / 2, \\
16\left(J_{1}-4 J_{2}+16 J_{3}-64 J_{4}\right), & \text { if } & s=2, \\
20\left(J_{1}-5 J_{2}+25 J_{3}-125 J_{4}+625 J_{5}\right), & \text { if } & s=5 / 2,
\end{array}\right. \\
B=\left\{\begin{array}{lll}
-4 J_{2}, & \text { if } & s=1, \\
-12\left(J_{2}-8 J_{3}\right), & \text { if } & s=3 / 2, \\
-24\left(J_{2}-11 J_{3}+93 J_{4}\right), & \text { if } & s=2, \\
-40\left(J_{2}-15 J_{3}+151 J_{4}-1484 J_{5}\right), & \text { if } & s=5 / 2,
\end{array}\right. \\
C=\left\{\begin{array}{lll}
-4\left(J_{1}-J_{2}\right), & \text { if } & s=1, \\
-4\left(J_{1}+J_{2}-23 J_{3}\right), & \text { if } & s=3 / 2, \\
-4\left(J_{1}+5 J_{2}-83 J_{3}+773 J_{4}\right), & s=2, \\
-4\left(J_{1}+11 J_{2}-199 J_{3}+2291 J_{4}-23119 J_{5}\right), & \text { if } & s=5 / 2 .
\end{array}\right.
\end{gathered}
$$

Proposition 4. The space \mathscr{H}_{2} is invariant with respect to the operator H^{\prime}. The operator $H_{2}^{\prime}=H^{\prime} / \mathscr{H}_{2}$ is a bounded self-adjoint operator generating a bounded self-adjoint operator ${\overline{H^{\prime}}}_{2}$ acting on the space $l_{2}\left(Z^{\nu} \times Z^{\nu}\right)$. The operator H_{2}^{\prime} in the momentum representation in the space $L_{2}\left(T^{\nu} \times T^{\nu}\right)$ acts according to the formula

$$
\begin{equation*}
\left(\widetilde{H_{2}^{\prime}} f\right)(x ; y)=h(x ; y) f(x ; y)+\int_{T^{\nu}} h_{1}(x ; y ; s) f(s ; x+y-s) d s \tag{19}
\end{equation*}
$$

where

$$
\begin{gathered}
h(x ; y)=8 s A \sum_{k=1}^{\nu}\left[1-\cos \frac{x_{k}+y_{k}}{2} \cos \frac{x_{k}-y_{k}}{2}\right], \\
h_{1}(x ; y ; t)=-4 s(2 s-1) B \sum_{k=1}^{\nu}\left\{1+\cos \left(x_{k}+y_{k}\right)-2 \cos \frac{x_{k}+y_{k}}{2} \cos \frac{x_{k}-y_{k}}{2}\right\} \\
-4 C \sum_{k=1}^{\nu}\left\{\cos \frac{x_{k}-y_{k}}{2}-\cos \frac{x_{k}+y_{k}}{2}\right\} \cos \left(\frac{x_{k}+y_{k}}{2}-t_{k}\right), \quad x, y, t \in T^{\nu},
\end{gathered}
$$

here $A=J_{1}-2 s J_{2}+(2 s)^{2} J_{3}+\ldots+(-1)^{2 s+1} J_{2 s}, B=J_{2}-(6 s-1) J_{3}+\left(28 s^{2}-\right.$ $10 s+1) J_{4}-\left(120 s^{3}-68 s^{2}+14 s-1\right) J_{5}+\ldots, C=J_{1}+\left(4 s^{2}-6 s+1\right) J_{2}-\left(24 s^{3}-\right.$
$\left.32 s^{2}+10 s-1\right) J_{3}+\left(112 s^{4}-160 s^{3}+72 s^{2}-14 s+1\right) J_{4}-\left(480 s^{5}-768 s^{4}+448 s^{3}-\right.$ $\left.128 s^{2}+18 s-1\right) J_{5}+\ldots$

The spectra and bound states of the energy operator of two-magnon systems in the isotropic non-Heisenberg ferromagnetic model of arbitrary spin s with impurity were studied in [4]. We consider the manifolds $\Gamma_{\Lambda}=\{(x ; y): x+y=\Lambda\}$.

The following fact is important for further studying of the spectrum of the operator $\widetilde{H^{\prime}}{ }_{2}$.

Let the total quasi-momentum of the system $x+y=\Lambda$ be fixed. By $L_{2}\left(\Gamma_{\Lambda}\right)$, we denote the space of functions that are square integrable over the manifold $\Gamma_{\Lambda}=\{(x ; y): x+y=\Lambda\}$. It is known [5] that the operators $\widetilde{H^{\prime}}{ }_{2}$ and the space $\tilde{\mathscr{H}}_{2}$ can be decomposed into the direct integrals ${\widetilde{H^{\prime}}}_{2}=\bigoplus \int_{T^{\nu}}{\widetilde{H^{\prime}}}^{\prime}{ }_{2 \Lambda} d \Lambda, ~ \widetilde{\mathscr{H}_{2}}=$ $\bigoplus \int_{T^{\nu}} \widetilde{\mathscr{H}}_{2 \Lambda} d \Lambda$ of the operators $\widetilde{H}^{\prime}{ }_{2 \Lambda}$ and the space $\tilde{\mathscr{H}}_{2 \Lambda}$ such that the spaces $\tilde{\mathscr{H}}_{2 \Lambda}$ are invariant under ${\widetilde{H^{\prime}}}^{\prime}{ }_{2 \Lambda}$, and the operator $\widetilde{H}^{\prime}{ }_{2 \Lambda}$ acts on the space $\tilde{\mathscr{H}}_{2 \Lambda}$ as

$$
\left(\widetilde{H^{\prime}}{ }_{2 \Lambda} f_{\Lambda}\right)(x)=h_{\Lambda}(x) f_{\Lambda}(x)-\int_{T^{\nu}} h_{1 \Lambda}(x ; t) f_{\Lambda}(t) d t
$$

where $h_{\Lambda}(x)=h(x ; \Lambda-x), h_{1 \Lambda}(x ; t)=h_{1}(x ; \Lambda-x ; t)$ and $f_{\Lambda}(x)=f(x ; \Lambda-x)$.
It is known that the continuous spectrum of the operator $\widetilde{H^{\prime}}{ }_{2}$ is independent of the functions $h_{1 \Lambda}(x ; t)$ and it consists of the intervals $G_{\Lambda}=\left[m_{\Lambda} ; M_{\Lambda}\right]$, where $m_{\Lambda}=\min _{x} h_{\Lambda}(x), M_{\Lambda}=\max _{x} h_{\Lambda}(x)$.

The eigenfunction $\varphi_{\Lambda} \in L_{2}\left(T^{\nu}\right)$ of the operator $\widetilde{H^{\prime}}{ }_{2}$ corresponding to an eigenvalue $z_{\Lambda} \notin G_{\Lambda}$ is called the bound state of the operator $\widetilde{H^{\prime}}{ }_{2}$, and z_{Λ} is called the energy of this $B S$.

Denote the $2 s$-th $\left(J_{1} ; J_{2} ; \ldots ; J_{2 s}\right)$ by P and introduce the following subsets of the $2 s-$ th P for $\nu=1$:

$$
\begin{array}{cl}
Q_{1}=\{P: A<0, B<0, C<0\}, & Q_{2}=\{P: A>0, B>0, C>0\} \\
Q_{3}=\{P: A>0, B>0, C<0\}, & Q_{4}=\{P: A<0, B<0, C>0\} \\
Q_{5}=\{P: A<0, B>0, C<0\}, & Q_{6}=\{P: A>0, B<0, C>0\} \\
Q_{7}=\{P: B=0, A=C>0\}, & Q_{8}=\{P: B=0, A=C<0\}
\end{array}
$$

Let $\Delta_{\Lambda}^{\nu}(z)=\operatorname{det} D$, where

$$
D=\left(\begin{array}{ccccc}
d_{1,1} & d_{1,2} & d_{1,3} & \cdots & d_{1, \nu+1} \\
d_{2,1} & d_{2,2} & d_{2,3} & \cdots & d_{2, \nu+1} \\
d_{3,1} & d_{3,2} & d_{3,3} & \cdots & d_{3, \nu+1} \\
\vdots & \vdots & \vdots & \vdots & \\
d_{\nu, 1} & d_{\nu, 2} & d_{\nu, 3} & \cdots & d_{\nu, \nu+1} \\
d_{\nu+1,1} & d_{\nu+1,2} & d_{\nu+1,3} & \cdots & d_{\nu+1, \nu+1}
\end{array}\right)
$$

and

$$
\begin{gathered}
d_{1,1}=1-4 s(2 s-1) B \int_{T^{\nu}} \frac{g_{\Lambda}(s) d s}{h_{\Lambda}(s)-z}, \\
d_{1, k+1}=-4 C \int_{T^{\nu}} \frac{f_{\Lambda_{k}}\left(s_{k}\right) d s}{h_{\Lambda}(s)-z}, \quad k=\overline{1, \nu}, \\
d_{k+1,1}=-4 s(2 s-1) B \int_{T_{\nu}} \frac{\eta_{\Lambda_{k}}\left(s_{k}\right) g_{\Lambda}(s) d s}{h_{\Lambda}(s)-z}, \quad k=\overline{1, \nu}, \\
d_{k+1, k+1}=1-4 C \int_{T^{\nu}} \frac{\eta_{\Lambda_{k}}\left(s_{k}\right) f_{\Lambda_{k}}\left(s_{k}\right) d s}{h_{\Lambda}(s)-z}, \quad k=\overline{1, \nu}, \\
d_{k+1, i+1}=-4 C \int_{T^{\nu}} \frac{\eta_{\Lambda_{k}}\left(s_{k}\right) f_{\Lambda_{i}}\left(s_{i}\right) d s}{h_{\Lambda}(s)-z}, \quad k=\overline{1, \nu}, \quad i=\overline{1, \nu}, \quad k \neq i .
\end{gathered}
$$

In these formulas

$$
\begin{gathered}
g_{\Lambda}(s)=\sum_{k=1}^{\nu}\left[1+\cos \Lambda_{k}-2 \cos \frac{\Lambda_{k}}{2} \cos \left(\frac{\Lambda_{k}}{2}-s_{k}\right)\right] \\
f_{\Lambda_{k}}\left(s_{k}\right)=\cos \left(\frac{\Lambda_{k}}{2}-s_{k}\right)-\cos \frac{\Lambda_{k}}{2}, k=\overline{1, \nu}, \quad \eta_{\Lambda_{k}}\left(s_{k}\right)=\cos \left(\frac{\Lambda_{k}}{2}-s_{k}\right), k=\overline{1, \nu}
\end{gathered}
$$

Lemma 3. A number $z=z_{0} \notin G_{\Lambda}$ is an eigenvalue of the operator $\tilde{H}_{2 \Lambda}^{\prime}$ if and only if it is a zero of the function $\Delta_{\Lambda}^{\nu}(z)$, i.e., $\Delta_{\Lambda}^{\nu}\left(z_{0}\right)=0$.

The proof of Lemma 3 is similar to that of Lemma 2.
In the case when $\nu=1$, the change of the energy spectrum is described by the theorems below.

Theorem 5. 1. Let $P \in Q_{1}$ and $\left.\Lambda \in\right] 0 ; \pi[\quad(\Lambda \in] \pi ; 2 \pi[)$.
a) If $C \neq 2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has two $B S$'s, φ_{1} and φ_{2}, with the energy levels $z_{1}<m_{\Lambda}$ and $z_{2}>M_{\Lambda}$.
b) If $C=2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy level $z<m_{\Lambda}$.
2. Let $P \in Q_{2}$ and $\left.\Lambda \in\right] 0 ; \pi[(\Lambda \in] \pi ; 2 \pi[)$.
a) If $2 s A<C<2 s(2 s-1) B, \cos \frac{\Lambda}{2}>\frac{C}{2 s(2 s-1) B},(C>2 s(2 s-1) B, A<$ $(2 s-1) B)$, then the operator \tilde{H}_{2}^{\prime} has three $B S ' s, \varphi_{i}, i=1,2,3$; with the energy values $z_{k}<m_{\Lambda}, k=1,2$; and $z_{3}>M_{\Lambda}$.
b) If $C<2 s A<2 s(2 s-1) B, \cos \frac{\Lambda}{2}>\frac{C}{2 s(2 s-1) B}$, $(C>2 s(2 s-1) B, A=$ $(2 s-1) B)$, then the operator \tilde{H}_{2}^{\prime} has two $B S ' s, \varphi_{i}, i=1,2$, corresponding to the
energy values $z_{1}<m_{\Lambda}$ and $z_{2}>M_{\Lambda}$. In this case the third $B S$ vanishes because it is absorbed by the continuous spectrum.
c) If $C<2 s(2 s-1) B<(2 s-1) A, \cos \frac{\Lambda}{2}>\frac{C}{2 s(2 s-1) B},(C>2 s(2 s-1) B$, $A>(2 s-1) B)$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z>M_{\Lambda}$.
d) If $C=2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z<m_{\Lambda}$.
e) If $C>2 s(2 s-1) B(C<2 s(2 s-1) B)$, then the operator \tilde{H}_{2}^{\prime} has two $B S$'s, φ_{1}, φ_{2}, corresponding to the energy values $z_{1}<m_{\Lambda}, z_{2}>M_{\Lambda}$.
3. Let $P \in Q_{3}$ and $\left.\Lambda \in\right] 0 ; \pi[\quad(\Lambda \in] \pi ; 2 \pi[)$.
a) If $C \geq-2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has two $B S$'s, φ_{1} and φ_{2}, with the energy values z_{1} and z_{2}, where $z_{1}<m_{\Lambda}$, and $z_{2}>M_{\Lambda}$.
b) If $C<2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z<m_{\Lambda}$.
4. Let $P \in Q_{4}$ and $\left.\Lambda \in\right] 0 ; \pi[(\Lambda \in] \pi ; 2 \pi[)$.
a) If $2 s A-2 s(2 s-1) B-C>0, \cos \frac{\Lambda}{2}>\frac{C}{2 s A-2 s(2 s-1) B-C}\left(\cos \frac{\Lambda}{2} \neq \frac{C}{2 s(2 s-1) B}\right)$, then the operator \tilde{H}_{2}^{\prime} has three (two) BS's, $\varphi_{i}, i=1,2,3\left(\varphi_{j}, j=1,2\right)$ corresponding to the energy values $z_{k}<m_{\Lambda}, k=1,2 ; z_{3}>M_{\Lambda}\left(z_{1}<m_{\Lambda}, z_{2}>M_{\Lambda}\right)$.
b) If $2 s A-2 s(2 s-1) B-C>0,-\frac{C}{2 s(2 s-1) B}<\cos \frac{\Lambda}{2}<\frac{C}{2 s A-2 s(2 s-1) B-C}$ or $2 s A-2 s(2 s-1) B-C<0\left(\cos \frac{\Lambda}{2}=\frac{C}{2 s(2 s-1) B}\right)$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z>M_{\Lambda}$.
5. Let $P \in Q_{5}$ and $\left.\Lambda \in\right] 0 ; \pi[(\Lambda \in] \pi ; 2 \pi[)$.
a) If $\cos \frac{\Lambda}{2}>-\frac{C}{2 s(2 s-1) B}, C \geq 2 s A\left(\cos \frac{\Lambda}{2}<\frac{C}{2 s(2 s-1) B}, C \geq 2 s A\right)$, then the operator \tilde{H}_{2}^{\prime} has three BS's, φ_{1}, φ_{2} and φ_{3}, corresponding to the energy values $z_{i}<m_{\Lambda}, i=1,2 ;$ and $z_{3}>M_{\Lambda}$.
b) If $C<2 s A, 2 s A-2 s(2 s-1) B-C<0, \cos \frac{\Lambda}{2}>\frac{C}{2 s A-2 s(2 s-1) B-C}(C<$ $\left.2 s A, 2 s A-2 s(2 s-1) B-C<0, \cos \frac{\Lambda}{2}<-\frac{C}{2 s A-2 s(2 s-1) B-C}\right)$, then the operator \tilde{H}_{2}^{\prime} has three $B S ' s, \varphi_{1}, \varphi_{2}$ and φ_{3}, corresponding to the energy values $z_{i}<m_{\Lambda}, i=$ 1,2 ; and $z_{3}>M_{\Lambda}$.
c) If $C<2 s A, 2 s A-2 s(2 s-1) B-C<0,-\frac{C}{2 s(2 s-1) B}<\cos \frac{\Lambda}{2}<\frac{C}{2 s(2 s-1) B}$ $\left(C<2 s A, 2 s A-2 s(2 s-1) B-C<0,-\frac{C}{2 s A-2 s(2 s-1) B-C} \leq \cos \frac{\Lambda}{2}<\frac{C}{2 s(2 s-1) B}\right)$ or $C<2 s A, 2 s A-2 s(2 s-1) B-C \geq 0(C>2 s A, 2 s A-2 s(2 s-1) B-C \geq 0)$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z>M_{\Lambda}$.
d) If $\cos \frac{\Lambda}{2}=-\frac{C}{2 s(2 s-1) B}, C \geq 2 s A\left(\cos \frac{\Lambda}{2}=\frac{C}{2 s(2 s-1) B}, C \geq 2 s A\right)$, then the operator \tilde{H}_{2}^{\prime} has two BS's, φ_{1} and φ_{2}, with the energy values $z_{1}<m_{\Lambda}$ and $z_{2}>M_{\Lambda}$.
e) If $\cos \frac{\Lambda}{2}<-\frac{C}{2 s(2 s-1) B}\left(\cos \frac{\Lambda}{2}>\frac{C}{2 s(2 s-1) B}\right)$, then the operator \tilde{H}_{2}^{\prime} has two BS's, φ_{1} and φ_{2}, with the energy values $z_{1}<m_{\Lambda}$ and $z_{2}>M_{\Lambda}$.
f) If $\cos \frac{\Lambda}{2}=-\frac{C}{2 s(2 s-1) B}, C<2 s A\left(\cos \frac{\Lambda}{2}>\frac{C}{2 s(2 s-1) B}, C<2 s A\right)$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z>M_{\Lambda}$.
6. Let $P \in Q_{6}$ and $\left.\Lambda \in\right] 0 ; \pi[(\Lambda \in] \pi ; 2 \pi[)$.
a) If $\cos \frac{\Lambda}{2}<-\frac{C}{2 s(2 s-1) B}\left(\cos \frac{\Lambda}{2}>\frac{C}{2 s(2 s-1) B}\right)$, then the operator \tilde{H}_{2}^{\prime} has two $B S$'s, φ_{1} and φ_{2}, with the energy values $z_{1}<m_{\Lambda}$, and $z_{2}>M_{\Lambda}$.
b) If $\cos \frac{\Lambda}{2} \geq-\frac{C}{2 s(2 s-1) B}\left(\cos \frac{\Lambda}{2} \leq \frac{C}{2 s(2 s-1) B}\right)$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z<m_{\Lambda}$.
7. Let $P \in Q_{7} \cup Q_{8}$ and $\Lambda \neq 0$.

Then the operator \tilde{H}_{2}^{\prime} has two BS's, φ_{1} and φ_{2}, with the energy values $z_{1}<$ m_{Λ}, and $z_{2}>M_{\Lambda}$.

In the case where $\nu=1$ and $\Lambda=0$, the change of the energy spectrum is described by the following theorems.

Theorem 6. Let $\Lambda=0$. a) If $P \in Q_{1}, C>2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has two $B S$'s, φ_{1} and φ_{2}, with the energy values $z_{1}<m_{\Lambda}$, and $z_{2}>M_{\Lambda}$.
b) If $P \in Q_{1}, C \leq 2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z<m_{\Lambda}$.
2.a) If $P \in Q_{2}, 2 s A<C<2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has three $B S$'s, $\varphi_{i}, i=1,2,3$; with the energy values $z_{j}<m_{\Lambda}, j=1,2$; and $z_{3}>M_{\Lambda}$.
b) If $P \in Q_{2}, C \leq 2 s A, C<2 s(2 s-1) B$ or $P \in Q_{2}, 2 s A<2 s(2 s-1) B<C$, then the operator \tilde{H}_{2}^{\prime} has two $B S$'s, $\varphi_{i}, i=1,2$ with the energy values $z_{1}<m_{\Lambda}$ and $z_{2}>M_{\Lambda}$.
c) If $P \in Q_{2}, C=2 s(2 s-1) B>2 s A$, then the operator \tilde{H}_{2}^{\prime} has only one $B S$ φ with the energy value $z<m_{\Lambda}$.
d) If $P \in Q_{2}, C=2 s A \geq 2 s(2 s-1) B$ or $P \in Q_{2}, 2 s(2 s-1) B<2 s A<C$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z>M_{\Lambda}$.
e) If $P \in Q_{2}, C=2 s(2 s-1) B<2 s A$ or $P \in Q_{2}, 2 s(2 s-1) B<2 s A<C$, then the operator \tilde{H}_{2}^{\prime} has no $B S$.
3.a) If $P \in Q_{3}, C<-2 s(2 s-1) B, A \geq(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has two $B S$'s, $\varphi_{i}, i=1,2$, with the energy values $z_{1}<m_{\Lambda}$ and $z_{2}>M_{\Lambda}$.
b) If $P \in Q_{3}, A<(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z>M_{\Lambda}$.
c) If $P \in Q_{3}, C \geq-2 s(2 s-1) B, A \geq(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z<m_{\Lambda}$.
4.a) If $P \in Q_{4}, C>-2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has two BS's, φ_{1} and φ_{2}, with the energy values $z_{i}<m_{\Lambda}, i=1,2$.
b) If $P \in Q_{4}, C<-2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z<m_{\Lambda}$.
c) If $P \in Q_{4}, C=-2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has no $B S$.
5.a) If $P \in Q_{5},-2 s(2 s-1) B<C<2 s A, C>s A-s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has two BS's, φ_{1} and φ_{2}, with the energy values $z_{i}<m_{\Lambda}, i=1,2$.
b) If $P \in Q_{5},-2 s(2 s-1) B<C<2 s A, C \leq s A-s(2 s-1) B$ or $P \in Q_{5}$, $C=-2 s(2 s-1) B<2 s A$, then the operator \tilde{H}_{2}^{\prime} has no $B S$.
c) If $P \in Q_{5}, C=-2 s(2 s-1) B \geq 2 s A$ or $P \in Q_{5}, C<-2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z<m_{\Lambda}$.
6.a) If $P \in Q_{6}, 2 s A \leq C<-2 s(2 s-1) B$, then the operator \tilde{H}_{2}^{\prime} has two $B S$'s, φ_{1} and φ_{2}, with the energy values $z_{i}>M_{\Lambda}, i=1,2$.
b) If $P \in Q_{6}, C=2 s A>-2 s(2 s-1) B$ or $P \in Q_{6}, C<-2 s(2 s-1) B$, $C<2 s A$, then the operator \tilde{H}_{2}^{\prime} has no $B S$.
c) If $P \in Q_{6}, C=-2 s(2 s-1) B<2 s A$ or $P \in Q_{6}, C>-2 s(2 s-1) B$, $C \neq 2 s A$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z>M_{\Lambda}$.
7. If $P \in Q_{7}\left(P \in Q_{8}\right)$, then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z>M_{\Lambda}\left(z<m_{\Lambda}\right)$.

A sketch of the proofs of Theorems 5, 6 is given below. In the case under consideration, the equation for eigenvalues is an integral equation with a degenerate kernel. It is therefore equivalent to a system of the linear homogeneous algebraic equations. The system is known to have a nontrivial solution if and only if its determinant is equal to zero. In this case, the equation $\Delta_{\Lambda}^{\nu}(z)=0$ is therefore equivalent to the equation stating that the determinant of the system is zero. In the case where $\nu=1$, the determinant has the form

$$
\Delta_{\Lambda}^{1}(z)=\operatorname{det} D
$$

where

$$
D=\left(\begin{array}{ll}
d_{1,1} & d_{1,2} \\
d_{2,1} & d_{2,2}
\end{array}\right)
$$

Here

$$
\begin{gathered}
d_{1,1}=1-4 s(2 s-1) B \int_{T} \frac{g_{\Lambda}(s) d s}{h_{\Lambda}(s)-z}, \quad d_{1,2}=-4 C \int_{T} \frac{f_{\Lambda}(s) d s}{h_{\Lambda}(s)-z} \\
d_{2,1}=-4 s(2 s-1) \int_{T} \frac{\eta_{\Lambda}(s) g_{\Lambda}(s) d s}{h_{\Lambda}(s)-z}, \quad d_{2,2}=1-4 C \int_{T} \frac{\eta_{\Lambda}(s) f_{\Lambda}(s) d s}{h_{\Lambda}(s)-z} \\
g_{\Lambda}(s)=1+\cos \Lambda-2 \cos \frac{\Lambda}{2} \cos \left(\frac{\Lambda}{2}-s\right), \quad f_{\Lambda}(s)=\cos \left(\frac{\Lambda}{2}-s\right)-\cos \frac{\Lambda}{2} \\
\eta_{\Lambda}(s)=\cos \left(\frac{\Lambda}{2}-s\right)
\end{gathered}
$$

Expressing all integrals in the equation $\Delta_{\Lambda}^{1}(z)=0$ via the integral

$$
J^{\star}(z)=\int_{T} \frac{d t}{h_{\Lambda}(t)-z}
$$

we can see that the equation $\Delta_{\Lambda}^{1}(z)=0$ is equivalent to the equation

$$
\begin{gather*}
\left\{C(z-8 s A)^{2}+8 s A[2 s(2 s-1) B+C] \cos ^{2} \frac{\Lambda}{2}(z-8 s A)+128 s^{3}(2 s-1) A^{2} B \cos ^{4} \frac{\Lambda}{2}\right\} \\
\times J^{\star}(z)=-C(z-8 s A)+8 s A[2 s A-C-2 s(2 s-1) B] \cos ^{2} \frac{\Lambda}{2} . \tag{20}
\end{gather*}
$$

Because $\frac{1}{h_{\Lambda}(t)-z}$ is a continuous function for $z \notin\left[m_{\Lambda} ; M_{\Lambda}\right]$ and

$$
\left[J^{\star}(z)\right]^{\prime}=\int_{T} \frac{1}{\left[h_{\Lambda}(t)-z\right]^{2}}>0,
$$

the function $J^{\star}(z)$ is an increasing function of z for $z \notin\left[m_{\Lambda} ; M_{\Lambda}\right]$. Moreover, $J^{\star}(z) \rightarrow 0$ as $z \rightarrow-\infty, J^{\star}(z) \rightarrow+\infty$ as $z \rightarrow m_{\Lambda}-0, J^{\star}(z) \rightarrow-\infty$ as $z \rightarrow$ $M_{\Lambda}+0$, and $J^{\star}(z) \rightarrow 0$ as $z \rightarrow+\infty$. Analyzing equation (20) outside the set $G_{\Lambda}=\left[m_{\Lambda} ; M_{\Lambda}\right]$, we get the proof of Theorems 5, 6 .

The energy spectrum of the operator \tilde{H}_{2}^{\prime} in the case where $\nu=2$ for the total quasi-momentum of the form $\Lambda=\left(\Lambda_{1} ; \Lambda_{2}\right)=\left(\Lambda_{0} ; \Lambda_{0}\right)$ is described below. It is easy to see that if the parameters $J_{n}, n=\overline{1,2 s}$ and Λ_{0} satisfy the conditions of Theorems 5,6 , then the statements of the theorems are true. Only one additional BS $\tilde{\varphi}$ appears, whose energy value is \tilde{z}, because $\tilde{z}<m_{\Lambda} \quad\left(\tilde{z}>M_{\Lambda}\right)$ if $C>0 \quad(C<$ $0)$. If $C=0$, the operator \tilde{H}_{2}^{\prime} does not have an additional BS.

The proof of this statement is based on the fact that if $\nu=2$ and $\Lambda=\left(\Lambda_{0} ; \Lambda_{0}\right)$, then the function $\Delta_{\Lambda}^{\nu}(z)$ has the form

$$
\begin{equation*}
\Delta_{\Lambda}^{\nu}(z)=\left[1-2 C \int_{T^{2}} \frac{\left[\cos \left(\frac{\Lambda_{0}}{2}-t_{1}\right)-\cos \left(\frac{\Lambda_{0}}{2}-t_{2}\right)\right]^{2} d t_{1} d t_{2}}{h_{\Lambda}\left(t_{1} ; t_{2}\right)-z}\right] \Psi_{\Lambda}(z), \tag{21}
\end{equation*}
$$

where

$$
\begin{gathered}
\Psi_{\Lambda}(z)=\left\{1-4 s(2 s-1) B \int_{T^{2}} \frac{g_{\Lambda}(t)}{h_{\Lambda}\left(t_{1} ; t_{2}\right)-z} d t_{1} d t_{2}\right\}[1-4 C \\
\left.\times \int_{T^{2}} \frac{f_{\Lambda}\left(t_{1}\right) \eta_{\Lambda}\left(t_{1} ; t_{2}\right)}{h_{\Lambda}\left(t_{1} ; t-2\right)-z} d t_{1} d t_{2}\right]-32 s(2 s-1) B C \int_{T^{2}} \frac{\xi_{\Lambda}\left(t_{1}\right)}{h_{\Lambda}\left(t_{1} ; t_{2}\right)-z} d t_{1} d t_{2} \\
\times \int_{T^{2}} \frac{f_{\Lambda}\left(t_{1}\right) g_{\Lambda}(t)}{h_{\Lambda}\left(t_{1} ; t_{2}\right)-z} d t_{1} d t_{2}, t \in T^{2}, \Lambda \in T^{\nu} .
\end{gathered}
$$

Here $g_{\Lambda}(t)=2+2 \cos \Lambda_{0}-2 \cos \frac{\Lambda_{0}}{2}\left[\cos \left(\frac{\Lambda_{0}}{2}-t_{1}\right)+\cos \left(\frac{\Lambda_{0}}{2}-t_{2}\right)\right], f_{\Lambda}\left(t_{1}\right)=\cos \left(\frac{\Lambda_{0}}{2}-\right.$ $\left.t_{1}\right), \eta_{\Lambda}\left(t_{1} ; t_{2}\right)=\cos \left(\frac{\Lambda_{0}}{2}-t_{1}\right)+\cos \left(\frac{\Lambda_{0}}{2}-t_{2}\right)-2 \cos \frac{\Lambda_{0}}{2}, \xi_{\Lambda}\left(t_{1}\right)=\cos \left(\frac{\Lambda_{0}}{2}-t_{1}\right)-\cos \frac{\Lambda_{0}}{2}$.

Therefore the equation $\Delta_{\Lambda}^{\nu}(z)=0$ holds if either the equation

$$
\begin{equation*}
1-2 C \int_{T^{2}} \frac{\left[\cos \left(\frac{\Lambda_{0}}{2}-t_{1}\right)-\cos \left(\frac{\Lambda_{0}}{2}-t_{1}\right)\right]^{2} d t_{1} d t_{2}}{h_{\Lambda}\left(t_{1} ; t_{2}\right)-z}=0 \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
\Psi_{\Lambda}(z)=0 \tag{23}
\end{equation*}
$$

holds.
It is easy to see that equation (22) has the unique solution $\tilde{z}<m_{\Lambda}$ if $C>0$; if $C<0$, then this solution satisfies the condition $\tilde{z}>M_{\Lambda}$. If $C=0$, equation (22) has no solution. Expressing the integrals in (23) via the integral

$$
J^{\star}(z)=\int_{T^{2}} \frac{d t_{1} d t_{2}}{h_{\Lambda}\left(t_{1} ; t_{2}\right)-z}
$$

we obtain

$$
\eta_{\Lambda}(z) J^{\star}(z)=\xi_{\Lambda}(z)
$$

where

$$
\begin{aligned}
& \eta_{\Lambda}(z)=C(z-16 s A)^{2}+16 s A[2 s(2 s-1) B+C] \\
& \times \cos ^{2} \frac{\Lambda_{0}}{2}(z-16 s A)+512 s^{3}(2 s-1) A^{2} B \cos ^{4} \frac{\Lambda_{0}}{2}
\end{aligned}
$$

and

$$
\xi_{\Lambda}(z)=-C(z-16 s A)+16 s A[2 s A-C-2 s(2 s-1) B] \cos ^{2} \frac{\Lambda_{0}}{2}
$$

In its turn, for $\eta_{\Lambda}(z) \neq 0$, the above last equation is equivalent to the equation

$$
\begin{equation*}
J^{\star}(z)=\frac{\xi_{\Lambda}(z)}{\eta_{\Lambda}(z)} \tag{24}
\end{equation*}
$$

Analyzing equation (24) outside the set G_{Λ} and taking into account that the function $J^{\star}(z)$ is monotonic for $z \notin\left[m_{\Lambda} ; M_{\Lambda}\right]$, we obtain the statements similar to those of Theorems 5,6 .

For all other quasi-momenta, $\Lambda=\left(\Lambda_{1} ; \Lambda_{2}\right), \Lambda_{1} \neq \Lambda_{2}$, there exist the sets $G_{j}, j=\overline{0,5}$, of the parameters $J_{n}, n=\overline{1,2 s}$ and Λ such that in every set G_{j} the operator \tilde{H}_{2}^{\prime} has exactly j BS's (taking the multiplicity of energy levels into account) with the corresponding energy values $z_{k}, k=\overline{1,5}$, and $z_{k} \notin G_{\Lambda}$.

Indeed, in this case, for $\nu=2$, the function $\Delta_{\Lambda}^{\nu}(z)$ has the form

$$
\Delta_{\Lambda}^{\nu}(z)=\operatorname{det} D
$$

where

$$
D=\left(\begin{array}{lll}
d_{1,1} & d_{1,2} & d_{1,3} \\
d_{2,1} & d_{2,2} & d_{2,3} \\
d_{3,1} & d_{3,2} & d_{3,3}
\end{array}\right) .
$$

Here

$$
\begin{gathered}
d_{1,1}=1-4 s(2 s-1) B \int_{T^{2}} \frac{g_{\Lambda}(s) d s_{1} d s_{2}}{h_{\Lambda}(s)-z}, d_{1, k+1}=-4 C \int_{T^{2}} \frac{f_{\Lambda_{k}}\left(s_{k}\right)}{h_{\Lambda}(s)-z} d s_{1} d s_{2}, k=1,2, \\
d_{k+1,1}=-4 s(2 s-1) B \int_{T^{2}} \frac{\zeta_{\Lambda_{k}}\left(s_{k}\right) g_{\Lambda}(s) d s_{1} d s_{2}}{h_{\Lambda}(s)-z}, \quad k=1,2, \\
d_{k+1, k+1}=1-4 C \int_{T^{2}} \frac{\zeta_{\Lambda_{k}}\left(s_{k}\right) f_{\Lambda_{k}}\left(s_{k}\right) d s_{1} d s_{2}}{h_{\Lambda}(s)-z}, \quad k=1,2, \\
d_{k+1, j+1}=-4 C \int_{T^{2}} \frac{\zeta_{\Lambda_{k}}\left(s_{k}\right) f_{\Lambda_{j}}\left(s_{j}\right) d s_{1} d s_{2}}{h_{\Lambda}(s)-z}, \quad k=1,2, j=1,2, k \neq j .
\end{gathered}
$$

In these formulas

$$
\begin{gathered}
g_{\Lambda}(s)=\sum_{k=1}^{2}\left[1+\cos \Lambda_{k}-2 \cos \frac{\Lambda_{k}}{2} \cos \left(\frac{\Lambda_{k}}{2}-s_{k}\right)\right], \\
f_{\Lambda_{k}}\left(s_{k}\right)=\cos \left(\frac{\Lambda_{k}}{2}-s_{k}\right)-\cos \frac{\Lambda_{k}}{2}, \quad k=1,2, \\
\zeta_{\Lambda_{k}}\left(s_{k}\right)=\cos \left(\frac{\Lambda_{k}}{2}-s_{k}\right), \quad k=1,2 .
\end{gathered}
$$

Expressing all integrals in the equation $\Delta_{\Lambda}^{\nu}(z)=0$ via $J^{\star}(z)$ and performing some algebraic transformations, we can reduce it to the form

$$
\begin{equation*}
\theta_{\Lambda}(z) J^{\star}(z)=\chi_{\Lambda}(z), \tag{25}
\end{equation*}
$$

where $\theta_{\Lambda}(z)$ is the fifth-order polynomial in z, and $\chi_{\Lambda}(z)$ is the lower-order polynomial in z. Analyzing equation (25) outside the set G_{Λ} and taking into account that the function $J^{\star}(z)$ with $z \notin\left[m_{\Lambda} ; M_{\Lambda}\right]$ is monotonic, we can easily verify that the equation has no more than five solutions outside the set G_{Λ}.

For an arbitrary $\nu \geq 3$ and $\Lambda=\left(\Lambda_{1} ; \Lambda_{2} ; \ldots ; \Lambda_{\nu}\right)=\left(\Lambda_{0} ; \Lambda_{0} ; \Lambda_{0} ; \ldots ; \Lambda_{0}\right) \in T^{\nu}$, the change of the energy spectrum of the operator $\widetilde{H}^{\prime}{ }_{2}$ is similar to that observed in the case of $\nu=1$. In this case, if the parameters $J_{1}, J_{2}, \ldots, J_{2 s}$ and Λ_{0} satisfy the conditions of Theorems 5, 6, then there exist the statements of these theorems that are true. In this situation, the operator $\widetilde{H}^{\prime}{ }_{2}$ with $C \neq 0$ has only one
additional BS with the energy z. Moreover, the energy level of this additional BS z degenerates $\nu-1$ times, and $z<m_{\Lambda}\left(z>M_{\Lambda}\right)$ if $C>0(C<0)$. For all other values of the total quasi-momentum Λ, the operator \tilde{H}_{2}^{\prime} has at most $2 \nu+1$ BS's (taking the multiplicity of the energy levels into account) with the energy values lying outside the set G_{Λ}.

The proof of these statements is based on finding zeros of the function $\Delta_{\Lambda}^{\nu}(z)$. Expressing all integrals in $\Delta_{\Lambda}^{\nu}(z)$ via $J^{\star}(z)$, we can bring the equation $\Delta_{\Lambda}^{\nu}(z)=0$ to the form

$$
\begin{equation*}
J^{\star}(z)=\frac{\mathscr{C}_{\Lambda}(z)}{\mathscr{D}_{\Lambda}(z)} \tag{26}
\end{equation*}
$$

where $\mathscr{D}_{\Lambda}(z)$ is the $(2 \nu+1)$ th-order polynomial in z, and $\mathscr{C}_{\Lambda}(z)$ is also a polynomial in z whose order (with respect to $\mathscr{D}_{\Lambda}(z)$) is lower. The analyzing of equation (26) outside the set G_{Λ} leads to the proof of the above statements.

Theorem 7. Let $A=0$ and ν be arbitrary. Then the operator \tilde{H}_{2}^{\prime} has two $B S ' s, \varphi_{1}$ and φ_{2}, (not taking the multiplicity of energy levels into account) with the energy values $z_{1}=-2 C-8 s(2 s-1) B \sum_{i=1}^{\nu} \cos ^{2} \frac{\Lambda_{i}}{2}$ and $z_{2}=-2 C$. Moreover, z_{1} is not degenerate, while z_{2} is degenerative $\nu-1$ times, and $z_{i} \notin G_{\Lambda}, i=1,2$, for all $\Lambda \in T^{\nu}$, i.e., the energy values of these BS's lie outside the continuous spectrum domain of the operator tilde $H_{2 \Lambda}^{\prime}$. When $B=0$, this $B S$'s vanishes because it is incorporated into the continuous spectrum.

Proof. If $A=0$, then $h_{\Lambda}(s) \equiv 0$, and

$$
\begin{gathered}
\Delta_{\Lambda}^{\nu}(z)=\left(1+\frac{2 C}{z}\right)^{\nu-1}\left\{\left[1+\frac{8 s(2 s-1) B \sum_{k=1}^{\nu} \cos ^{2} \frac{\Lambda_{k}}{2}}{z}\right]\left(1+\frac{2 C}{z}\right)\right. \\
\left.-\frac{16 s(2 s-1) B C \sum_{k=1}^{\nu} \cos ^{2} \frac{\Lambda_{k}}{2}}{z^{2}}\right\} .
\end{gathered}
$$

Solving the equation $\Delta_{\Lambda}^{\nu}(z)=0$, we prove the theorem.
Note. In the theorem, the zero-order degeneracy corresponds to the case where there is no $B S$.

Let $\widetilde{\pi}=(\pi ; \pi ; \ldots ; \pi) \in T^{\nu}$.
Theorem 8. Let $\Lambda=\widetilde{\pi}, \Lambda, \widetilde{\pi} \in T^{\nu}$ and $C \neq 0$. Then the operator \tilde{H}_{2}^{\prime} has only one $B S \varphi$ with the energy value $z=8 s A \nu-2 C$, and this energy level is of multiplicity ν. In addition, if $C>0$, then $z<m_{\Lambda}$, and if $C<0$, then $z>M_{\Lambda}$. When $C=0$, this $B S$ vanishes because it is absorbed by the continuous spectrum.

The proof is based on the equality $h_{\Lambda}(x)=8 s A \nu$ with $\Lambda=\widetilde{\pi}$ and also on the corresponding form of the function $\Delta_{\Lambda}^{\nu}(z)=\left(1-\frac{2 C}{8 s A \nu-z}\right)^{\nu}$ with $\Lambda=\widetilde{\pi}$.

Theorem 9. Let $C=0$, and ν be an arbitrary number. Then the operator \tilde{H}_{2}^{\prime} has at most one $B S$, the corresponding energy level is of multiplicity one, and $z \notin G_{\Lambda}$.

Proof. If $C=0$, the relations

$$
\begin{gathered}
h_{1 \Lambda}(x ; t)=-4 s(2 s-1) B \sum_{k=1}^{\nu}\left[1+\cos \Lambda_{k}-2 \cos \frac{\Lambda_{k}}{2} \cos \left(\frac{\Lambda_{k}}{2}-x_{k}\right)\right] \\
\Delta_{\Lambda}^{\nu}(z)=1-4 s(2 s-1) B \int_{T^{\nu}} \frac{g_{\Lambda}(s) d s}{h_{\Lambda}(s)-z}
\end{gathered}
$$

where
$g_{\Lambda}(s)=\sum_{k=1}^{\nu}\left[1+\cos \Lambda_{k}-2 \cos \frac{\Lambda_{k}}{2} \cos \left(\frac{\Lambda_{k}}{2}-s_{k}\right)\right], \Lambda \in T^{\nu}, s \in T^{\nu}, d s=d s_{1} d s_{2} \ldots d s_{\nu}$,
hold. Using the form of the determinant $\Delta_{\Lambda}^{\nu}(z)$ and solving the corresponding equation, we get the proof of Theorem 9 .

Besides, the qualitative pictures of the change of the energy spectrum of operator \tilde{H}_{2}^{\prime} in the cases for $s=1 / 2$ and $s>1 / 2$ are shown to be different. We also show that the energy spectrum of the system is the same either for integer and half-integer values of s or for odd and even values of s.

3. Structure of Essential Spectrum of Three-Particle System

We first determine the structure of the essential spectrum of a three-particle system consisting of two magnons and an impurity spin, and then estimate the number of thee-particle BS's in the system. Comparing formulas (2) and (7) and using the tensor products of the Hilbert spaces and the tensor products of the operators in Hilbert spaces [6], we can verify that the operator \widetilde{H}_{2} can be represented in the form $\widetilde{H}_{2}=\widetilde{H}_{1} \otimes E+E \otimes \widetilde{H}_{1}+K_{1}+K_{2}$, where E is the unit operator in $\widetilde{\mathscr{H}}_{1}$, and K_{1} and K_{2} are the integral operators

$$
\begin{aligned}
& \left(K_{1} f\right)(x ; y)=\int_{T^{\nu}} h_{1}(x ; y ; t) f(t ; x+y-t) d t \\
& \left(K_{2} f\right)(x ; y)=\int_{T^{\nu}} \int_{T^{\nu}} h_{4}(x ; y ; s ; t) f(s ; t) d s d t
\end{aligned}
$$

The kernels of these operators have the forms

$$
\begin{aligned}
& h_{1}(x ; y ; t)=-4 s(2 s-1) B \sum_{i=1}^{\nu}\left\{1+\cos \left(x_{k}+y_{k}\right)-2 \cos \frac{x_{k}+y_{k}}{2} \cos \frac{x_{k}-y_{k}}{2}\right\} \\
& -4 C \sum_{i=1}^{\nu}\left\{\cos \frac{x_{k}-y_{k}}{2}-\cos \frac{x_{k}+y_{k}}{2}\right\} \cos \left(\frac{x_{k}+y_{k}}{2}-t_{k}\right), \quad x, y, t \in T^{\nu}
\end{aligned}
$$

and

$$
\begin{gathered}
h_{4}(x ; y ; s ; t)=F \sum_{i=1}^{\nu}\left[1+\cos \left(x_{i}+y_{i}-s_{i}-t_{i}\right)+\cos \left(s_{i}+t_{i}\right)+\cos \left(x_{i}+y_{i}\right)\right. \\
\left.-\cos \left(x_{i}-s_{i}-t_{i}\right)-\cos \left(y_{i}-s_{i}-t_{i}\right)-\cos x_{i}-\cos y_{i}\right]+Q \sum_{i=1}^{\nu}\left[\cos \left(x_{i}-t_{i}\right)+\cos \left(y_{i}-s_{i}\right)\right] \\
+M \sum_{i=1}^{\nu}\left[\cos \left(x_{i}-s_{i}\right)+\cos \left(y_{i}-t_{i}\right)\right]+N \sum_{i=1}^{\nu}\left[\cos s_{i}+\cos t_{i}+\cos \left(x_{i}+y_{i}-s_{i}\right)\right. \\
\left.+\cos \left(x_{i}+y_{i}-t_{i}\right)\right]
\end{gathered}
$$

here $B=J_{2}-(6 s-1) J_{3}+\left(28 s^{2}-10 s+1\right) J_{4}-\left(120 s^{3}-68 s^{2}+14 s-1\right) J_{5}+\ldots$, $C=J_{1}+\left(4 s^{2}-6 s+1\right) J_{2}-\left(24 s^{3}-32 s^{2}+10 s-1\right) J_{3}+\left(112 s^{4}-160 s^{3}+\right.$ $\left.72 s^{2}-14 s+1\right) J_{4}-\left(480 s^{5}-768 s^{4}+448 s^{3}-128 s^{2}+18 s-1\right) J_{5}+\ldots, F=$ $\left(2 s-4 s^{2}\right)\left(J_{2}^{0}-J_{2}\right)+\left(2 s-16 s^{2}+24 s^{3}\right)\left(J_{3}^{0}-J_{3}\right)+\ldots+\ldots, Q=\left(-4 s^{2}+\right.$ $2 s)\left(J_{2}^{0}-J_{2}\right)+\left(-4 s+20 s^{2}-24 s^{3}\right)\left(J_{3}^{0}-J_{3}\right)+\ldots+\ldots, M=2\left[\left(J_{1}^{0}-J_{1}\right)-\right.$ $\left.\left(1+5 s+2 s^{2}\right)\left(J_{2}^{0}-J_{2}\right)+\left(1-8 s+22 s^{2}-12 s^{3}\right)\left(J_{3}^{0}-J_{3}\right)+\ldots+\ldots\right], N=$ $-\left(J_{1}^{0}-J_{1}\right)+\left(1-6 s+4 s^{2}\right)\left(J_{2}^{0}-J_{2}\right)-\left(1-10 s+32 s^{2}-24 s^{3}\right)\left(J_{3}^{0}-J_{3}\right)+\ldots+\ldots$.

As we have already mentioned, for the fixed total quasi-momentum $x+y=$ Λ of the two-magnon subsystem, the operator H_{2}^{\prime} and the space \mathscr{H}_{2} can be decomposed into direct integrals $\widetilde{H^{\prime}}{ }_{2}=\bigoplus \int_{T^{\nu}} \widetilde{H^{\prime}}{ }_{2 \Lambda} d \Lambda, \widetilde{\mathscr{H}}_{2}=\bigoplus \int_{T^{\nu}} \widetilde{\mathscr{H}}_{2 \Lambda} d \Lambda$, such that the operators $K_{1 \Lambda}$ become compact after the decomposition.

It can be seen from the expressions for the kernels of K_{1} and K_{2} that $K_{1 \Lambda}$ and K_{2} are finite-rank operators, i.e., finite-dimensional operators. Therefore, the essential spectra of \widetilde{H}_{2} and $\widetilde{H}_{1} \otimes E+E \bigotimes \widetilde{H}_{1}$ coincide. A simple verification shows that the spectrum of \widetilde{H}_{1} is independent of Λ, i.e., of λ and μ. The spectrum of $A \bigotimes E+E \bigotimes B$, where A and B are densely defined bounded linear operators, was studied in [6-8]. In these papers there were also given the explicit formulas expressing $\sigma_{\text {ess }}(A \bigotimes E+E \bigotimes B)$ and $\sigma_{\text {disc }}(A \otimes E+E \bigotimes B)$ in terms of $\sigma(A), \sigma_{d i s c}(A), \sigma(B)$, and $\sigma_{d i s c}(B)$:

$$
\begin{gather*}
\sigma_{d i s c}(A \bigotimes E+E \bigotimes B)=\left\{\left(\sigma(A) \backslash \sigma_{e s s}(A)\right)+\left(\sigma(B) \backslash \sigma_{e s s}(B)\right)\right\} \backslash\left\{\left(\sigma_{\text {ess }}(A)\right.\right. \tag{}\\
\left.+\sigma(B)) \bigcup\left(\sigma(A)+\sigma_{e s s}(B)\right)\right\} \\
\sigma_{e s s}(A \bigotimes E+E \bigotimes B)=\left(\sigma_{e s s}(A)+\sigma(B)\right) \bigcup\left(\sigma(A)+\sigma_{e s s}(B)\right)
\end{gather*}
$$

It is clear that $\sigma(A \bigotimes E+E \bigotimes B)=\{\lambda+\mu: \lambda \in \sigma(A), \mu \in \underset{\sim}{\sigma}(B)\}$.
It can be seen from the results of [1] that the spectrum of \widetilde{H}_{1} consists of the continuous spectrum and at most three eigenvalues of multiplicity one, multiplicity $(\nu-1)$, and multiplicity ν.

First we prove the theorem on the finite-dimensional perturbations of bounded linear operators in Banach spaces.

Theorem 10. Let A and B be the linear bounded self-adjoint operators with the difference of the self-adjoint operator with finite rank m. Then $\sigma_{\text {ess }}(A)=$ $\sigma_{\text {ess }}(B)$, and at most m eigenvalues appear (taking into account their degeneration multiplicities).

Proof. Let $C=A-B$. As C is a self-adjoint operator of rank m, the function $C(A-z)^{-1}$ is analytical and it has the value of the operator of rank at most m in $\mathbb{C} \backslash \sigma(A)$. It is meromorphic in $\mathbb{C} \backslash \sigma_{\text {ess }}(A)$ with finite-rank residues at points in $\sigma_{\text {disc }}(A)$. If $z \notin \sigma(A)$, then $(B-z)^{-1}$ exists if and only if there exists $\left(1-C(A-z)^{-1}\right)^{-1}$. We can conclude that in every component of $\mathbb{C} \backslash \sigma(A)$ the operator $\left(1-C(A-z)^{-1}\right)^{-1}$ is somewhere reversible. The components $\mathbb{C} \backslash \sigma(A)$ and $\mathbb{C} \backslash \sigma_{\text {ess. }}(A)$ coincide because of the discreteness of $\sigma_{\text {disc }}(A)$. By the Fredholm meromorphic theorem, the operator $\left(1-C(A-z)^{-1}\right)^{-1}$ exists on $\mathbb{C} \backslash \sigma_{\text {ess }}(A)$ everywhere, but the discrete set D^{\prime} where it has finite rank residues. Here $D^{\prime}=$ $\sigma_{\text {disc }}(A) \cup D^{\prime \prime}$, where $D^{\prime \prime}$ consists of no more than m points, since the operator $C(A-z)^{-1}$ can have an eigenvalue equal to 1 with multiplicity no more than m. It follows that the operator B can have only a discrete spectrum in $\mathbb{C} \backslash \sigma_{\text {ess }}(A)$ such that $\sigma_{\text {ess }}(B) \subset \sigma_{\text {ess }}(A)$.

Every component of $\mathbb{C} \backslash \sigma_{\text {ess }}(B)$ has the points lying neither in $\sigma(A)$ nor in $\sigma(B)$. As C is a self-adjoint operator of rank m, the function $C(B-z)^{-1}$ is analytical and has the values of the operator of rank no more than m in $\mathbb{C} \backslash \sigma(B)$. It is meromorphic in $\mathbb{C} \backslash \sigma_{\text {ess }}(B)$ with the finite rank residues at the points of $\sigma_{\text {disc }}(B)$. If $z \notin \sigma(B)$, then $(A-z)^{-1}$ exists if and only if there exists $\left(1+C(B-z)^{-1}\right)^{-1}$. One can conclude that in every component of $\mathbb{C} \backslash \sigma(B)$, the operator $\left(1+C(B-z)^{-1}\right)^{-1}$ is somewhere reversible. The components $\mathbb{C} \backslash \sigma(B)$ and $\mathbb{C} \backslash \sigma_{\text {ess }}(B)$ coincide because of the discreteness $\sigma_{\text {disc }}(B)$. By the Fredholm meromorphic theorem, the operator $\left(1+C(B-z)^{-1}\right)^{-1}$ exists in $\mathbb{C} \backslash \sigma_{\text {ess }}(B)$ everywhere except the discrete set D_{1} where it has finite-rank residues. Here $D_{1}=\sigma_{\text {disc }}(B) \bigcup D_{2}$, where D_{2} consists of at most m points, since the operator $C(B-z)^{-1}$ can have an eigenvalue equal to -1 with the multiplicities at most m. Hence the operator A can have only a discrete spectrum in $\mathbb{C} \backslash \sigma_{\text {ess }}(B)$ such that $\sigma_{\text {ess }}(A) \subset \sigma_{\text {ess }}(B)$. Consequently, $\sigma_{\text {ess }}(A)=\sigma_{\text {ess }}(B)$. And we can conclude that when there are perturbations of self-adjoint operators with rank m, the essential spectrum of the operator exists, and at most m eigenvalues appear (taking into account their degeneration multiplicities).

Notice that the problems on the finite rank perturbations for the compact operators were considered in [9-11].

The theorems below describe the structure of the essential spectrum of $\widetilde{H}_{1} \otimes E+E \otimes \widetilde{H}_{1}$ and give lower and upper estimations for N, the number
of points of discrete spectrum of the operator \widetilde{H}_{2}.
Theorem 11. If $\nu=1$ and $\omega \in A_{1} \cup A_{7}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of a single interval $\sigma_{\text {ess. }}\left(\widetilde{H}_{2}\right)=[0 ; 4 p(s)]$ or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$ [$4 p(s) ; 0]$, and the relation $0 \leq N \leq 12$ holds for the number N of three-particle $B B s$.

Theorem 12. If $\nu=1$ and $\omega \in A_{6}$ or $\omega \in A_{5}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of the union of two intervals, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$ $[0 ; 4 p(s)] \bigcup\left[z_{1} ; z_{1}+2 p(s)\right]$ or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[4 p(s) ; 0] \bigcup\left[z_{1} ; z_{1}+2 p(s)\right]$, and the relation $1 \leq N \leq 13$ holds for the number N of the three-particle operator.

Theorem 13. If $\nu=1$ and $\omega \in A_{2} \bigcup A_{3}$ or $\omega \in A_{4} \bigcup A_{8}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of the union of three intervals, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$ $[0 ; 4 p(s)] \bigcup\left[z_{1} ; z_{1}+2 p(s)\right] \bigcup\left[z_{2} ; z_{2}+2 p(s)\right]$, or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[4 p(s) ; 0] \bigcup\left[z_{1} ; z_{1}+\right.$ $2 p(s)] \cup\left[z_{2} ; z_{2}+2 p(s)\right]$, and the relation $3 \leq N \leq 15$ holds for the number N of the three-particle operator.

Theorem 14. If $\nu=2$ and $\omega \in B_{1} \bigcup B_{2}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of a single interval $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[0 ; 8 p(s)]$, or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$ $[8 p(s) ; 0]$, and the relation $0 \leq N \leq 22$ holds for the number N of the three-particle operator.

Theorem 15. If $\nu=2$ and $\omega \in B_{3} \bigcup B_{4}$ or $\omega \in B_{5} \bigcup B_{6}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of the union of two intervals, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$ $[0 ; 8 p(s)] \bigcup\left[z_{1} ; z_{1}+4 p(s)\right]$, or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[8 p(s) ; 0] \bigcup\left[z_{1} ; z_{1}+4 p(s)\right]$, and the relation $1 \leq N \leq 23$ holds for the number N of the three-particle operator.

Theorem 16. If $\nu=\underset{\sim}{2}$ and $\omega \in B_{7} \bigcup B_{8}$ or $\omega \in B_{9} \bigcup B_{10}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of the union of three intervals, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$ $[0 ; 8 p(s)] \bigcup\left[z_{1} ; z_{1}+4 p(s)\right] \bigcup\left[z_{2} ; z_{2}+4 p(s)\right]$, or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[8 p(s) ; 0] \bigcup\left[z_{1} ; z_{1}+\right.$ $4 p(s)] \cup\left[z_{2} ; z_{2}+4 p(s)\right]$, and the relation $3 \leq N \leq 25$ holds for the number N of the three-particle operator.

Theorem 17. If $\nu=2$ and $\omega \in B_{11} \bigcup B_{12}$ or $\omega \in B_{13} \bigcup B_{14}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of the union of four intervals, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$ $[0 ; 8 p(s)] \bigcup\left[z_{1} ; z_{1}+4 p(s)\right] \bigcup\left[z_{2} ; z_{2}+4 p(s)\right] \bigcup\left[z_{3} ; z_{3}+4 p(s)\right]$, or $\quad \sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[8 p(s) ; 0] \bigcup\left[z_{1} ; z_{1}+\right.$ $4 p(s)] \bigcup\left[z_{2} ; z_{2}+4 p(s)\right] \bigcup\left[z_{3} ; z_{3}+4 p(s)\right]$, and the relation $6 \leq N \leq 28$ holds for the number N of the three-particle operator.

Theorem 18. If $\nu=3$ and $\omega \in Q_{1} \bigcup Q_{2} \bigcup Q_{3} \bigcup Q_{4}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of a single interval $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[0 ; 12 p(s)]$ or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[12 p(s) ; 0]$, and the relation $0 \leq N \leq 32$ holds for the number N of three-particle BBs.

Theorem 19. If $\nu=3$ and $\omega \in Q_{5} \bigcup Q_{6}$ or $\omega \in Q_{7} \bigcup Q_{8}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of the union of two intervals, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$
$[0 ; 12 p(s)] \bigcup\left[z_{1} ; z_{1}+6 p(s)\right]$, or $\sigma_{e s s}\left(\widetilde{H}_{2}\right)=[12 p(s) ; 0] \bigcup\left[z_{1} ; z_{1}+6 p(s)\right]$, and the relation $1 \leq N \leq 33$ holds for the number N of the three-particle operator.

Theorem 20. If $\nu=3$ and $\omega \in Q_{9} \bigcup Q_{10}$ or $\omega \in Q_{11} \bigcup Q_{12}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of the union of three intervals, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=$ $[0 ; 12 p(s)] \bigcup\left[z_{1} ; z_{1}+6 p(s)\right] \bigcup\left[z_{2} ; z_{2}+6 p(s)\right]$, or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[12 p(s) ; 0] \bigcup\left[z_{1} ; z_{1}+\right.$ $6 p(s)] \bigcup\left[z_{2} ; z_{2}+6 p(s)\right]$, and the relation $3 \leq N \leq 35$ holds for the number N of the three-particle operator.

Theorem 21. If $\nu=3$ and $\omega \in Q_{13} \bigcup Q_{14}$ or $\omega \in Q_{15} \bigcup Q_{16}$, then the essential spectrum of the operator \widetilde{H}_{2} consists of the union of four intervals, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[0 ; 12 p(s)] \bigcup\left[z_{1} ; z_{1}+6 p(s)\right] \bigcup\left[z_{2} ; z_{2}+6 p(s)\right] \bigcup\left[z_{3} ; z_{3}+6 p(s)\right]$, or $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[12 p(s) ; 0] \bigcup\left[z_{1} ; z_{1}+6 p(s)\right] \bigcup\left[z_{2} ; z_{2}+6 p(s)\right] \bigcup\left[z_{3} ; z_{3}+6 p(s)\right]$, and the relation $6 \leq N \leq 38$ holds for the number N of the three-particle operator.

Proof. The proofs of Theorems 11-21 are similar. Therefore we prove one of the theorems. As an example, we prove Theorem 21. From Theorem 3 (in statement (iv)) from [1], it is seen that for $\omega \in Q_{13} \cup Q_{14}\left(\omega \in Q_{15} \cup Q_{16}\right)$ the operator \widetilde{H}_{1} has exactly three LIS's, φ_{1}, φ_{2} and φ_{3}, with the energies z_{1}, z_{2} and $z_{3}\left(z_{4}, z_{5}\right.$ and $\left.z_{6}\right)$ satisfying the inequalities $z_{i}<m_{3}, i=1,2,3\left(z_{j}>M_{3}\right.$, $j=4,5,6)$. Moreover, the level $z_{1}\left(z_{4}\right)$ is of multiplicity one, the level $z_{2}\left(z_{5}\right)$ is of multiplicity two and the level $z_{3}\left(z_{6}\right)$ is of multiplicity three.

The continuous spectrum of the operator \widetilde{H}_{1} consists of the interval $[0 ; 6 p(s)]$ or $[6 p(s) ; 0]$. Therefore, the essential spectrum of the operator \widetilde{H}_{2} consists of a set $[0 ; 6 p(s)]+\left\{[0 ; 6 p(s)], z_{1}, z_{2}, z_{3}\right\}$, i.e., $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=[0 ; 12 p(s)] \bigcup\left[z_{1} ; z_{1}+6 p(s)\right] \bigcup\left[z_{2} ;\right.$ $\left.z_{2}+6 p(s)\right] \bigcup\left[z_{3} ; z_{3}+6 p(s)\right]$. The numbers $2 z_{1}, 2 z_{2}, 2 z_{3}, z_{1}+z_{2}, z_{1}+z_{3}, z_{2}+z_{3}$ are the eigenvalues of the operator $\widetilde{H}_{1} \otimes E+E \otimes \widetilde{H}_{1}$ and are outside the domain of the essential spectrum of $\widetilde{H}_{1} \otimes E+E \otimes \widetilde{H}_{1}$. It is clear that the multiplicity of their eigenvalues is at most $3 \times 3=9$. Consequently, these six eigenvalues of the operator $\widetilde{H}_{1} \otimes E+E \otimes \widetilde{H}_{1}$ belong to the discrete spectrum of the considering three-particle operator.

Then, the operator $K_{1 \Lambda}$ in the three-dimensional case is the seven-rank operator, while the rank of the operator K_{2} is equal to 25 . Consequently, as follows from Theorem 10, the number N of the points of discrete spectrum of the threeparticle operator is not less than 6 and not more than $6+7+25=38$.

Theorem 22. Let ν be an arbitrary number, $p(s) \equiv 0$, and $J_{n} \neq 0, n=$ $1,2, \ldots, 2 s$. Then the essential spectrum of the operator \widetilde{H}_{2} consists of three points, $\sigma_{\text {ess }}\left(\widetilde{H}_{2}\right)=\left\{0 ; \frac{q(s)}{2} ; \frac{2 \nu+1}{2} q(s)\right\}$, and the relation $3 \leq N \leq 10 \nu+5$ holds for the number N of the points of discrete spectrum of the three-particle operator.

P r oof. When ν is an arbitrary number, $p(s) \equiv 0$, and $J_{n} \neq 0, n=$ $1,2, \ldots, 2 s$, by Theorem 4 from [1], the operator \widetilde{H}_{1} has two eigenvalues equal to $z_{1}=\frac{q(s)}{2}$ and $z_{2}=\frac{2 \nu+1}{2} q(s)$, where z_{1} is of multiplicity $(2 \nu-1)$, while z_{2} is of
multiplicity one. The essential (continuous) spectrum of the operator \widetilde{H}_{1} consists of a single point 0 . Therefore, $\sigma_{e s s}\left(\widetilde{H}_{2}\right)=\left\{0 ; \frac{q(s)}{2} ; \frac{2 \nu+1}{2} q(s)\right\}$, and the points $q(s) ;(2 \nu+1) q(s) ;(\nu+1) q(s)$ are the eigenvalues of the operator $\widetilde{H}_{1} \otimes E+E \otimes \widetilde{H}_{1}$. Now, taking into account that the operators $K_{1 \Lambda}$ and K_{2} are of ranks $2 \nu+1$ and $8 \nu+1$, respectively, we immediately obtain the proof of Theorem 22 .

It should be noticed that if $h(x ; y)$ is an arbitrary 2π-periodic continuous function, $h_{2}(x ; s)=h_{3}(x ; s)$ is an arbitrary degenerated 2π-periodic continuous kernel, and $h_{1}(x ; y ; t)$ and $h_{4}(x ; y ; s ; t)$ are also arbitrary degenerated 2π-periodic continuous kernels, i.e., the operators $K_{1 \Lambda}$ and K_{2} are arbitrary finite-dimensional operators, then the analogous results are true.

References

[1] S.M. Tashpulatov, One-Magnon Systems in an Isotropic non-Heisenberg Ferromagnetic Impurity Model. - Theor. Math. Phys. 142 (2005), No. 1, 83-92.
[2] M. Reed and B. Simon, Methods of Modern Mathematical Physics. V. 1. Funct. Anal. Acad. Press, New York, 1977.
[3] V.V. Val'kov, S.G. Ovchinnikov, and O.P. Petrakovskii, Spectra of Two-Magnon System Excitations in the Easy Axis Quasidimensional Ferfomagnetics. - Fiz. Tverd. Tela 30 (1988), 3044-3047.
[4] S.M. Tashpulatov, Spectra and Bound States of the Energy Operator of Two-Magnon Systems in a Isotropic non-Heisenberg Ferromagnet with NearestNeighbour Interactions and Arbitrary Spin Value S. - Uzbek. Math. J. (2008), No. 1, 95-111.
[5] M.A. Neimark, Normed Rings. Nauka, Moskow, 1968. (Russian) (English transl.: Wolters-Noordhoff, Graningen, 1970).
[6] T. Ichinose, Spectral Properties of Tensor Products of Linear Operators. 1. Trans. Amer. Math. Soc. 235 (1978), 75-113.
[7] T. Ichinose, Spectral Properties of Tensor Products of Linear Operators. 2: The Approximate Point Spectrum and Kato Essential Spectrum. - Trans. Amer. Math. Soc. 237 (1978), 223-254.
[8] T. Ichinose, Tensor Products of Linear Operators. Spectral Theory. - Banach Center Publications. PWN-Polish Scientific Publishers, Warsaw. 8 (1982), 294-300.
[9] H. Hochstadt, One Dimensional Perturbations of Compact Operators. - Proc. Amer. Soc. 37 (1973), 465-467.
[10] H. Vasueda, One Dimensional Perturbations of Compact Operators. - Proc. Amer. Soc. 57 (1976), No. 1, 58-60.
[11] S.V. Shevchenko, About Dependence of Spectral Properties of Matrix to Relative of Perturbation with Sufficiently Low Ranks. - Funct. Anal. Appl. 38 (2004), No. 1, 85-88.

